首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Vitamin A-deficient (VAD) quail embryos have severe abnormalities, including a high incidence of reversed cardiac situs. Using this model we examined in vivo the physiological function of vitamin A in the left/right (L/R) cardiac asymmetry pathway. Molecular analysis reveals the expression of early asymmetry genes activin receptor IIa, sonic hedgehog, Caronte, Lefty-1, and Fgf8 to be unaffected by the lack of retinoids, while expression of the downstream genes nodal-related, snail-related (cSnR), and Pitx2 is altered. In VAD embryos nodal expression in left lateral plate mesoderm (LPM) is severely downregulated and the expression domain altered during neurulation. Similarly, the expression of cSnR in the right LPM and of Pitx2 in the left side posterior heart-forming region (HFR) is downregulated in the VAD embryos. The lack of retinoids does not cause randomization or ectopic expression of nodal, cSnR, or Pitx2. At the six- to eight-somite stage nodal is expressed transiently in the left posterior HFR of normal quail embryos; this expression is missing in VAD embryos and may be linked to the loss of Pitx2 expression in this region of VAD quail embryos. Administration of retinoids to VAD embryos prior to the six-somite stage rescues the expression of nodal, cSnR, and Pitx2 as well as the randomized VAD cardiac phenotype. There is an absolute requirement for retinoids at the four- to five-somite developmental window for cardiogenesis and cardiac L/R specification to proceed normally. We conclude that retinoids do not regulate the left/right-specific sidedness assignments for expression of genes on the vertebrate cardiac asymmetry pathway, but are required during neurulation for the maintenance of adequate levels of their expression and for the development of the posterior heart tube and a loopable heart. Cardiac asymmetry may be but one of several critical events regulated by retinoid signaling in the retinoid-sensitive developmental window.  相似文献   

3.
4.
The cytoskeletal protein Shroom3 is a potent inducer of epithelial cell shape change and is required for lens and neural plate morphogenesis. Analysis of gut morphogenesis in Shroom3 deficient mouse embryos revealed that the direction of gut rotation is also disrupted. It was recently established that Pitx2-dependent, asymmetrical cellular behaviors in the dorsal mesentery (DM) of the early mid-gut, a structure connecting the gut-tube to the rest of the embryo, contribute to the direction of gut rotation in chicken embryos by influencing the direction of the dorsal mesenteric tilt. Asymmetric cell shapes in the DM epithelium are hypothesized to contribute to the tilt, however, it is unclear what lies downstream of Pitx2 to alter epithelial cell shape. The cells of the left DM epithelium in either Pitx2 or Shroom3 deficient embryos are shorter and wider than those in control embryos and resemble the shape of those on the right, demonstrating that like Pitx2, Shroom3 is required for cell shape asymmetry and the leftward DM tilt. Because N-cadherin expression is specific to the left side and is Pitx2 dependent, we determined whether Shroom3 and N-cadherin function together to regulate cell shape in the left DM epithelium. Analysis of mouse embryos lacking one allele of both Shroom3 and N-cadherin revealed that they possess shorter and wider left epithelial DM cells when compared with Shroom3 or N-cadherin heterozygous embryos. This indicates a genetic interaction. Together these data provide evidence that Shroom3 and N-cadherin function cooperatively downstream of Pitx2 to directly regulate cell shape changes necessary for early gut tube morphogenesis.  相似文献   

5.
6.
7.
A variety of TGF-beta-related ligands regulate the left-right asymmetry of vertebrates but the involvement of TGF-betas in left-right specification has not been reported. We assessed whether TGF-beta signaling is involved in the left-right specification of Xenopus post-gastrula embryos by microinjecting Xenopus TGF-beta5 protein into the left or right flank of neurula-tailbud embryos. Injection on the right side of neurulae caused left-right reversal of the internal organs in 93% of the embryos, while injection on the left side caused less than 5% left-right reversal. Expression of Xenopus nodal related-1 (Xnr-1 ), Xenopus antivin and Xenopus Pitx2, which are normally expressed on the left, was unaltered by the left-side injection. In contrast, right-side injection into neurulae induced the expression of these genes predominantly on the right side. Right-side injection into tailbud embryos caused bilateral expression of these handed genes. Time course analysis of asymmetric gene expression revealed that Xnr-1 could be induced by TGF-beta5 at late neurula stage, while antivin and Pitx2 could be induced by TGF-beta5 at the latertail bud stage. Injection of the antisense morpholino oligonucleotide against Xenopus TGF-beta5 into the left dorsal blastomere inhibited the normal left-handed expression of Xnr-1 and Pitx2, and caused the organ reversal in the injected embryos. These results suggest that normal left-right balance of endogenous TGF-beta5 signaling in the neurula embryo may be needed to determine the laterality of the asymmetric genes and to generate the correct left-right axis.  相似文献   

8.
Pitx2 is expressed in developing visceral organs on the left side and is implicated in left-right (LR) asymmetric organogenesis. The asymmetric expression of Pitx2 is controlled by an intronic enhancer (ASE) that contains multiple Foxh1-binding sites and an Nkx2-binding site. These binding sites are essential and sufficient for asymmetric enhancer activity and are evolutionarily conserved among vertebrates. We now show that mice that lack the ASE of Pitx2 (Pitx2(Delta)(ASE/)(Delta)(ASE) mice) fail to manifest left-sided Pitx2 expression and exhibit laterality defects in most visceral organs, although the position of the stomach and heart looping remain unaffected. Asymmetric Pitx2 expression in some domains, such as the common cardinal vein, was found to be induced by Nodal signaling but to be independent of the ASE of Pitx2. Expression of Pitx2 appears to be repressed in a large portion of the heart ventricle and atrioventricular canal of wild-type mice by a negative feedback mechanism at a time when the gene is still expressed in its other domains. Rescue of the early phase of asymmetric Pitx2 expression in the left lateral plate of Pitx2(Delta)(ASE/)(Delta)(ASE) embryos was not sufficient to restore normal organogenesis, suggesting that continuous expression of Pitx2 in the lineage of the left lateral plate is required for situs-specific organogenesis.  相似文献   

9.
Regulation of left-right asymmetry by thresholds of Pitx2c activity   总被引:3,自引:0,他引:3  
Although much progress has been made in understanding the molecular mechanisms regulating left-right asymmetry, the final events of asymmetric organ morphogenesis remain poorly understood. The phenotypes of human heterotaxia syndromes, in which organ morphogenesis is uncoupled, have suggested that the early and late events of left-right asymmetry are separable. The Pitx2 homeobox gene plays an important role in the final stages of asymmetry. We have used two new Pitx2 alleles that encode progressively higher levels of Pitx2c in the absence of Pitx2a and Pitx2b, to show that different organs have distinct requirements for Pitx2c dosage. The cardiac atria required low Pitx2c levels, while the duodenum and lungs used higher Pitx2c doses for normal development. As Pitx2c levels were elevated, the duodenum progressed from arrested rotation to randomization, reversal and finally normal morphogenesis. In addition, abnormal duodenal morphogenesis was correlated with bilateral expression of Pitx2c. These data reveal an organ-intrinsic mechanism, dependent upon dosage of Pitx2c, that governs asymmetric organ morphogenesis. They also provide insight into the molecular events that lead to the discordant organ morphogenesis of heterotaxia.  相似文献   

10.
11.
Although vertebrates appear bilaterally symmetric on the outside, various internal organs, including the heart, are asymmetric with respect to their position and/or their orientation based on the left/right (L/R) axis. The L/R axis is determined during embryo development. Determination of the L/R axis is fundamentally different from the determination of the anterior-posterior or the dorsal-ventral axis. In all vertebrates a ciliated organ has been described that induces a left-sided gene expression program, which includes Nodal expression in the left lateral plate mesoderm. To have a better understanding of organ laterality it is important to understand how L/R patterning induces cellular responses during organogenesis. In this review, we discuss the current understanding of the mechanisms of L/R patterning during zebrafish development and focus on how this affects cardiac morphogenesis. Several recent studies have provided unprecedented insights into the intimate link between L/R signaling and the cellular responses that drive morphogenesis of this organ.  相似文献   

12.
13.
The spleen is a vertebrate organ that has both hematopoietic and immunologic function. The embryonic origins of the spleen are obscure, with most studies describing the earliest rudiment of the spleen as a condensation of mesodermal mesenchyme on the left side of the dorsal mesogastrium. The development of spleen handedness has not been described previously, presumably because of the difficulty in assaying spleen position in the embryo and the lack of early, organ-specific molecular markers. Here we show that expression of the homeobox gene Nkx2-5 serves as a marker for spleen precursor tissue. Pre-splenic tissue is initially located in symmetric domains on both sides of the embryo but, during subsequent development, only the left side goes on to form the mature spleen. Therefore, the final location of the spleen on the left side of the body axis appears to result from preferential development of the spleen precursor cells on the left side of the embryo. Our studies indicate that the spleen and heart become asymmetric via different cellular mechanisms. Nkx2-5 may function locally as part of the laterality cascade, downstream of nodal and Pitx2, or it may direct asymmetric morphogenesis after laterality has been determined.  相似文献   

14.
15.
The left-right asymmetry of the vertebrate heart is evident in the topology of the heart loop, and in the dissimilar morphology of the left and right chambers. How left-right asymmetric gene expression patterns influence the development of these features is not understood, since the individual roles of the left and right sides of the embryo in heart looping or chamber morphogenesis have not been specifically defined. To this end, we have constructed a bilateral heart-specific fate map of the left and right contributions to the developing heart in the Xenopus embryo. Both the left and right sides contribute to the conoventricular segment of the heart loop; however, the left side contributes to the inner curvature and ventral face of the loop while the right side contributes to the outer curvature and dorsal aspect. In contrast, the left atrium is derived mainly from the original left side of the embryo, while the right atrium is derived primarily from the right side. A comparison of our fate map with the domain of expression of the left-right gene, Pitx2, in the left lateral plate mesoderm, reveals that this Pitx2-expressing region is fated to form the inner curvature of the heart loop, the left atrioventricular canal, and the dorsal aspect of the left atrium. We discuss the implications of these results for the role of left-right asymmetric gene expression in heart looping and chamber morphogenesis.  相似文献   

16.
All vertebrates have directional asymmetries in the organization of their internal organs. In jawed vertebrates, development of asymmetry is controlled by a conserved molecular pathway that includes Pitx2, which is expressed by lateral plate mesoderm cells on the left side of the embryo. Pitx2 is a member of the Pitx homeobox gene family, the expression of which also marks stomodeal ectoderm and the adenohypophysis. Here we report the characterization of Pitx genes from Branchiostoma floridae (an amphioxus) and Ciona intestinalis (a urochordate), representatives of two basal chordate lineages and successively deeper outgroups to the vertebrates. Expression of B. floridae Pitx is similar to that reported from B. belcheri, a different amphioxus species. Expression of the Ciona Pitx ortholog in the embryonic primordial pharynx and adult neural complex leads us to propose the Ciona primordial pharynx and ciliated funnel are homologous to the adenohypophyseal placode and adenohypophysis, respectively. Additionally, in both species we identify asymmetrical left-sided expression of Pitx genes during embryonic development. This shows that asymmetrical Pitx gene expression, and by inference directional asymmetry, evolved before the radiation of living chordates and should be considered a chordate character.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号