首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A large number of studies have been performed concerning dopamine's inhibitory effect on prolactin release, but many of these studies have examined the effect of dopamine dissolved in a solution containing ascorbic acid. Ascorbic acid, routinely used to protect dopamine from oxidation, alone does not stimulate or inhibit prolactin release, but it can potentiate the inhibitory effect of dopamine in a static monolayer culture system by approximately 100 times. We have closely examined the inhibitory effect of dopamine on prolactin release in the absence of ascorbic acid using a perifusion system. Male rat adenohypophyses were dispersed with trypsin and cultured in a Petri dish to form cell clusters. Inhibition of prolactin release by dopamine (1 mumol/L) in the absence of ascorbic acid was sustained for only 63 min during the 2-h perifusion period. Following a 2-h period of incubation of dopamine in the same experimental solution, the dopamine concentration was reduced from 1 to 0.18 mumol/L, yet this "2-h-old dopamine" was still effective in inhibiting prolactin release (approximately 30 min). This result suggests that the lactotrophs may be desensitized by chronic exposure to a high concentration of dopamine in the absence of ascorbic acid. In contrast, when a low concentration of dopamine (3 nmol/L) containing ascorbic acid (0.1 mmol/L) was perifused, inhibition of prolactin release was sustained for the entire 2-h perifusion period. Although there may be a large number of explanations for dopamine's transient inhibitory effect on prolactin release, the present results suggest that dopamine may require supplementary agent(s) to effectively inhibit prolactin release and thus function as the prolactin release inhibitory factor (PIF).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
OBJECTIVE: We investigated the effect of chronic estrogen treatment on the inhibitory action of nitric oxide (NO) on prolactin release. METHODS: The effect of NO on prolactin release was studied in anterior pituitaries of female Wistar rats, intact at random stages, ovariectomized (OVX), and OVX treated for 15 days with 17beta-estradiol (OVX-E(2)). RESULTS: Sodium nitroprusside (NP, 0.5 mM), a NO donor, inhibited prolactin release from anterior pituitaries and was able to stimulate cGMP synthesis in intact and OVX rats. Only a high, supraphysiological concentration of NP (2 mM) inhibited prolactin release from anterior pituitaries of OVX-E(2) rats and increased cGMP synthesis in OVX-E(2) rats. 8-Br-cGMP, a cGMP analogue, decreased prolactin release from anterior pituitaries of OVX rats but did not affect it in OVX-E(2) rats. CONCLUSION: Our results suggest that estrogen may modify the sensitivity of the anterior pituitary to the inhibitory effect of NO on prolactin release by affecting guanylyl cyclase activity and the cGMP pathway.  相似文献   

3.
The influence of serotonergic and adrenergic antagonists on serum prolactin levels was studied in ketamine anesthetized monkeys. Methysergide, a serotonergic receptor blocker, at 0.035, 0.1 and 1 mg/kg body weight induced a rapid and transient increase in serum prolactin. Cyproheptadine, another serotonergic receptor blocker, at 0.05, 0.5 and 1 mg/kg induced a rapid and sustained increase in serum prolactin. SQ 10631, a third serotonergic receptor blocker, had a minimal effect on increasing basal prolactin levels even at doses as high as 10 mg/kg. Propranolol, a β adrenergic blocker, at a dose of 5 mg/kg induced a small sustained increase in serum prolactin, while a lower dose (1 mg/kg) had a slight but significant effect. Phentolamine, an α adrenergic receptor blocker, at a dose of 5 mg/kg induced a rapid and transient increase in plasma prolactin while a lower dose (1 mg/kg) had no effect. Phenoxybenzamine, a potent α adrenergic receptor blocker, had only a minimal effect on prolactin release even at doses of 3 and 5 mg/kg. It appears that the time course and extent of prolactin release differs among neural antagonists even within the same biogenic amine system.  相似文献   

4.
K Cheng  W W Chan  R Arias  A Barreto  B Butler 《Life sciences》1992,51(25):1957-1967
In GH3 cells and other clonal rat pituitary tumor cells, TRH has been shown to mediate its effects on prolactin release via a rise of cytosolic Ca2+ and activation of protein kinase C. In this study, we examined the role of protein kinase C in TRH-stimulated prolactin release from female rat primary pituitary cell culture. Both TRH and PMA stimulated prolactin release in a dose-dependent manner. When present together at maximal concentrations, TRH and PMA produced an effect which was slightly less than additive. Pretreatment of rat pituitary cells with 10(-6) M PMA for 24 hrs completely down-regulated protein kinase C, since such PMA-pretreated cells did not release prolactin in response to a second dose of PMA. Interestingly, protein kinase C down-regulation had no effect on TRH-induced prolactin release from rat pituitary cells. In contrast, PMA-pretreated GH3 cells did not respond to a subsequent stimulation by either PMA or TRH. Pretreatment of rat pituitary cells with TRH (10(-7) M, 24 hrs) inhibited the subsequent response to TRH, but not PMA. Forskolin, an adenylate cyclase activator, stimulated prolactin release by itself and in a synergistic manner when incubated together with TRH or PMA. The synergistic effects of forskolin on prolactin release was greater in the presence of PMA than TRH. Down-regulation of protein kinase C by PMA pretreatment abolished the synergistic effect produced by PMA and forskolin but had no effect on those generated by TRH and forskolin. sn-1,2-Dioctanylglycerol (DOG) pretreatment attenuated the subsequent response to DOG and PMA but not TRH. The effect of TRH, but not PMA, on prolactin release required the presence of extracellular Ca2+. In conclusion, the mechanism by which TRH causes prolactin release from rat primary pituitary cells is different from that of GH3 cells; the former is a protein kinase C-independent process whereas the latter is at least partially dependent upon the activation of protein kinase C.  相似文献   

5.
The effect of muscimol, a specific potent GABAA receptor agonist, on prolactin release from human prolactin-secreting tissue was investigated using a perifusion system. Perifusion studies on normal rat anterior pituitary tissue, which has identical GABA receptors to those found in normal human pituitary glands, show that muscimol has a specific biphasic effect on prolactin release. This is characterized by an initial transient stimulation (222.3 +/- 21.6% of basal) lasting for 5-10 min followed by a more prolonged inhibitory phase (63.9 +/- 3.1% inhibition of basal). Five human prolactin-secreting adenomas were studied, and in none of the tumours could a biphasic response be demonstrated. One of the prolactin-secreting adenomas had a blunted inhibitory response, but the other 4 showed no inhibitory effect of muscimol on prolactin release. Muscimol had no significant effect on basal or thyrotropin-releasing-hormone (TRH)-stimulated prolactin secretion from GH3 rat pituitary tumour cells. These studies suggest that the GABAergic effect on prolactin secretion is absent or altered in both rat and human prolactin-secreting tumour cells.  相似文献   

6.
The role of hypothalamic catecholamines and luteinizing hormone releasing hormone (LHRH) in the negative feedback effect of estradiol benzoate (EB) on luteinizing hormone (LH) release was studied in chronic ovariectomized rats. Administration of 10 micrograms EB decreased plasma LH levels and increased LHRH content in the medial basal hypothalamus (MBH) 1 day after injection. Inhibition of dopamine and norepinephrine synthesis with alpha-methyl-p-tyrosine (alpha-MT) reduced the LHRH content in the MBH in both oil- and EB-treated animals and partially reversed the decrease in plasma LH levels. Inhibition of norepinephrine synthesis with fusaric acid decreased LHRH content in both oil- and EB-treated rats but had no effect on plasma LH levels. The results suggest that at least a portion of the inhibitory effect of EB on LH release is due to the stimulation of an inhibitory dopaminergic mechanism which reduces LHRH release from the MBH. This feedback mechanism is apparently not susceptible to dopaminergic receptor blockade since administration of pimozide had no effect on LH levels. The stimulatory feedback effect of EB on prolactin release was studied in the same animals. alpha-MT and EB produced additive effects on plasma prolactin levels whereas fusaric acid blocked the EB-induced increase in plasma prolactin levels. Pimozide appeared to potentiate the effect of EB on prolactin release. The results reconfirm the possible role of noradrenergic neurons in the release of prolactin induced by EB and also suggest that EB stimulates a dopaminergic mechanism which is inhibitory to prolactin release but is normally masked by increased noradrenergic activity.  相似文献   

7.
Prolactin release is controlled by prolactin-release inhibiting factor (PIF), possibly dopamine, and an unidentified putative hypothalamic prolactin-releasing factor (PRF). Morphine and related opioids may indirectly stimulate prolactin release by inhibiting PIF release and (or) by stimulating putative PRF release. In the present study, we have completely blocked the dopaminergic receptors in normal male rats by pretreatment with a large dose of pimozide (3 mg/kg) to demonstrate if putative PRF has a role in morphine-induced prolactin release. Morphine sulfate (10 mg/kg) was still able to stimulate prolactin release in the rat without any functional dopaminergic PIF receptors. When naloxone (3 mg/kg) was injected 20 min before the morphine in the pimozide-treated rat, plasma prolactin concentration was not affected by morphine indicating that the stimulatory effect of this opioid on prolactin release in the pimozide-pretreated rat was mediated by mu-receptors. We can conclude that morphine can stimulate prolactin release through a mechanism apparently independent of dopaminergic receptors, one possible route being through a putative PRF.  相似文献   

8.
Debeljuk L  Lasaga M 《Peptides》2006,27(11):3007-3019
Tachykinins are present in the pituitary gland and in brain areas involved in the control of the secretion of pituitary hormones. Tachykinins have been demonstrated to stimulate prolactin release acting directly on the anterior pituitary gland. These peptides have also been revealed to be able to act at the hypothalamic level, interacting with neurotransmitters and neuropeptides that have the potential to affect prolactin secretion. Tachykinins seem to act by stimulating or inhibiting the release of the factors that affect prolactin secretion. Among them, tachykinins have been demonstrated to stimulate oxytocin and vasopressin release, which in turn results in prolactin release. Tachykinins also potentiated the response to vasoactive intestinal peptide (VIP) and reinforced the action of glutamate, which in turn result in prolactin release. They have also been shown to interact with serotonin, a neurotransmitter involved in the control of prolactin secretion. In addition, tachykinins have been shown to inhibit GABA release, a neurotransmitter with prolactin-release inhibiting effect. This inhibition may result in an increased prolactin secretion by removal of the GABA inhibition. On the other hand, tachykinins have also been shown to stimulate dopamine release by the hypothalamus, an action that results in an inhibition of prolactin release. Dopamine is a well known inhibitor of prolactin secretion. In conclusion, although tachykinins have been shown to have a predominantly stimulatory effect on prolactin secretion, especially at the pituitary level, under some circumstances they may also exert an inhibitory influence on prolactin release, by stimulating dopamine release at the hypothalamic level.  相似文献   

9.
Effects of domperidone, a dopamine antagonist, on prolactin release in female rats were studied. Oral administration of domperidone for 14 days caused a significant increase in serum prolactin levels in mature female rats. The routes by which domperidone exerted its effects on prolactin release were studied by a in vitro incubation system using rat pituitary tissues. Pituitary halves were incubated with (1) domperidone, (2) dopamine, (3) dopamine plus domperidone, (4) hypothalamic extracts from rats which had been treated with control meal (control hypothalamic extract), (5) control hypothalamic extract plus domperidone, and with (6) hypothalamic extract from rats which had been treated with domperidone for 14 days (domperidone-treated hypothalamic extract). Pituitary halves, when incubated alone, released a significant amount of prolactin into the incubation medium after 24 hours incubation, which was completely inhibited by dopamine or control hypothalamic extract. The addition of domperidone could not reverse the inhibitory effect of dopamine or control hypothalamic extract. On the other hand, domperidone-treated hypothalamic extract showed no inhibitory effects on prolactin release. These results indicated that domperidone could increase serum prolactin levels in female rats by acting primarily at the hypothalamus.  相似文献   

10.
In the ovine fetus, the adrenal medulla activity secretes catecholamines into the circulation under normal and stress conditions. Little is known regarding the endocrine regulation of adrenal medullary catecholamine secretion in the fetus. The present study was undertaken to investigate the direct effects of the hormones prolactin, angiotensin II and cortisol on catecholamine release from fetal adrenal medulla, and to determine whether the effect of the hormones change during development into adulthood. Adrenal medulla from fetal, newborn and adult pregnant sheep was collected, dispersed into single cells and plated. Following preincubation, the cells were treated with ovine prolactin or angiotensin II at 8, 40 and 200 micrograms/ml; or cortisol at 10(-8), 10(-7) and 10(-6)M for 24 h. Catecholamine release into the medium were measured at 3, 6, 12 and 24 h. Ovine prolactin at 8 to 200 micrograms/ml significantly stimulated the release of total catecholamines after 12 h of incubation. The effect of prolactin was dose-dependent such that the magnitude of the response increased and the response time shortened with increasing concentrations of prolactin. In addition, the release of all three catecholamines--dopamine, norepinephrine and epinephrine--was significantly elevated. In newborn cells, only the highest concentration of 200 micrograms/ml ovine prolactin stimulated total catecholamine release at 6 h and 12 h, with significant increases of the three catecholamines at 12 h. In maternal cells, stimulation of catecholamine release was observed also with the highest concentration of prolactin tested (200 micrograms/ml) and after 12 h of incubation, when only the release of epinephrine was significantly enhanced by 324%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A study was performed to examine the release patterns of prolactin and LH of young beef cows with one (single calf) or two calves (double calf) throughout the postpartum interval. The effect on prolactin release of intramuscular and intra-carotid administration of lergotrile and intra-carotid administration of L-dopa was also examined. In approximately 50% and 65% of the cases, no prolactin release could be detected after the beginning of or during the suckling stimulus in cows with one or two calves respectively. LH plasma concentrations remained constant throughout the experiment in all animals. The chosen intramuscular lergotrile treatment lowered plasma prolactin concentrations to baseline levels but had no effect on the length of the postpartum interval. No effect on prolactin release was observed by the given intra-carotid treatments of both lergotrile and L-dopa. First postpartum estrus was observed on days 67 and 88 in the single and double calf cows respectively. The number of suckling periods did not change during the postpartum period but their duration decreased during the same period. These results demonstrate that in at least half of the cases the suckling stimulus does not cause a release of prolactin from the pituitary in the young beef cow. Also, the inhibitory effect of suckling on the resumption of ovarian cyclic function postpartum appears to be of a quantitative nature and mediated by a factor other than prolactin.  相似文献   

12.
Spontaneous prolactin release from the isolated rat anterior pituitary was inhibited by endothelin-1 in a dose-dependent manner (10(-8)-10(-6) M). Endothelin-3 also inhibited spontaneous prolactin release with an almost identical dose-response relationship as endothelin-1. These inhibitory effects were unaffected by application of a dopamine D2-receptor antagonist, YM-09151-2 (10(-7) M). Rat anterior and posterior pituitary glands were abundant in both endothelin-1 and endothelin-3, as compared with other regions of the brain. The present results suggest that endogenous endothelin-1 and endothelin-3 in the anterior and posterior pituitary are involved in the inhibitory regulation of prolactin secretion as autocrine or paracrine factors.  相似文献   

13.
The involvement of cyclic AMP in mediating regulatory peptide-controlled prolactin release from GH3 pituitary tumour cells was investigated. Cholera toxin and forskolin elicited concentration-dependent increases in both GH3 cell cyclic AMP content and prolactin release. The maximum rise in prolactin release with these agents was 2-fold over basal. 8-Bromo-cyclic AMP produced a similar stimulation of prolactin release. The phosphodiesterase inhibitor isobutylmethylxanthine also produced an increase in prolactin release and GH3 cell cyclic AMP content. However, the magnitude of the stimulated prolactin release exceeded that obtained with any other agent. Thyrotropin-releasing hormone (thyroliberin) and vasoactive intestinal polypeptide produced a concentration-dependent rise in both cell cyclic AMP content and prolactin release. However, only vasoactive intestinal polypeptide elicited an increase in cell cyclic AMP content at concentrations relevant to the stimulation of prolactin release. Vasoactive intestinal polypeptide and thyrotropin-releasing hormone, when used in combination, were additive with respect to prolactin release. Vasoactive intestinal polypeptide and forskolin, at concentrations that were maximal upon prolactin release, were, when used in combination, synergistic upon GH3 cell cyclic AMP content but were not additive upon prolactin release. In conclusion the evidence supports a role for cyclic AMP in the mediation of vasoactive intestinal polypeptide- but not thyrotropin-releasing hormone-stimulated prolactin release from GH3 cells. A quantitative analysis indicates that a 50-100% rise in cyclic AMP suffices to stimulate cyclic AMP-dependent prolactin release fully.  相似文献   

14.
Neurohomonal control of prolactin release was studied in pseudopregnant and pregnant rats. Nembutal administered at 1300 hours on Day 3 of pseudopregnancy prevented prolactin release which normally occurred at 1700 hours of the same day. Antiestrogen administered the day before did not prevent prolactin release but ovariectomy did. Estrogen administered immediately after ovariectomy did not restore prolactin secretion; however, progesterone on Day 3 in the ovariectomized-estrogen treated induced an increase in prolactin at 1700 hours. Progesterone was capable of increasing prolactin release the first 5 days of pseudopregnancy but not Days 6-12 when prolactin values were low. A similar effect was seen the first 7 days of pregnancy. Progesterone, but not estrogen, modified prolactin values on Day 9 at 1700 hours. Ovariectomy on Day 19 of pregnancy induced prolactin release within 4 hours and persisted for 58 hours. Progesterone administration immediately after ovariectomy prevented prolactin release for a few hours. These results suggest that the regulation of prolactin release by the central nervous system depends on the circulating estrogen/progesterone ratio, since estrogen facilitated prolactin release when plasma progesterone was low and progesterone induced prolactin release when adequated levels of estrogen existed, but exerted an inhibitory action when estrogen was not present.  相似文献   

15.
Neuropeptide Y (NPY) has been recently localized in several hypothalamic nuclei in the mammalian brain. In order to investigate the possible role of NPY on neuroendocrine function, we have investigated the effects of the peptide on the release of anterior pituitary hormones in the rat. Both intravenous (300 μg) or intraventricular (2 to 15 μg) injection of NPY produced in gonadectomized male rats a significant and long-lasting decrease of plasma LH levels. A short duration stimulating effect on prolactin plasma levels was also observed after the intravenous but not after the intraventricular injection of NPY. Plasma levels of the other pituitary hormones were not significantly modified after NPY injection. When incubated in vitro with anterior pituitary cells in monolayer culture, NPY produced no significant change in release of pituitary hormones. Thus NPY seems to exert a selective effect on LH release. Since this effect can be observed after both intravenous and intraventricular injection, it might be hypothesized that NPY could affect LHRH release in two areas which lack blood-brain barrier: the organum vasculosum of the lamina terminalis (OVLT) which contains LHRH cell bodies and NPY fibers and the median eminence which contains both LHRH and NPY fibers. The effect on prolactin release needs to be carefully evaluated in different experimental conditions.  相似文献   

16.
Administration of d-fenfluramine, a serotonin-releasing drug, to male rats induced a dose-dependent increase in both serum prolactin and corticosterone concentrations. Serum growth hormone levels increased, but not significantly, at a dose of 1.25 mg/kg i.p. and decreased significantly at higher doses. When rats were pretreated with the serotonin uptake inhibitor fluoxetine (10 mg/kg i.p.) 30 min prior to injection of d-fenfluramine (5 mg/kg i.p.), the serum prolactin response to d-fenfluramine was partially inhibited, whereas the growth hormone response was not significantly modified. Fluoxetine pretreatment increased the serum corticosterone to the same level as did d-fenfluramine. d-Fenfluramine's effect on prolactin and growth hormone release was further tested in a hypothalamic-pituitary in vitro system. The addition of d-fenfluramine (5-500 ng/mL) for 30 min to rat hypothalami resulted in an enhancement of prolactin and growth hormone-releasing activities. These were expressed as the ability of the media in which the hypothalami had been incubated to stimulate prolactin and growth hormone release by cultured pituitary cells. The data suggest that the effect of d-fenfluramine on prolactin secretion is exerted through the hypothalamus and is probably mediated, at least partially, by a serotoninergic mechanism. The mechanism of d-fenfluramine's effect on corticosterone and growth hormone release needs further evaluation.  相似文献   

17.
E L Lein  A Morrison  W Dvonch 《Life sciences》1979,25(20):1709-1715
Opiate agonists, partial agonists, and antagonists differed in their effects on release of prolactin and growth hormone. Agonists (morphine, methadone or meperidine) elevated plasma levels of both hormones. An antagonist (naloxone) lowered levels of prolactin but not growth hormone. All partial agonists studied raised growth hormone levels; among these, levallorphan, nalorphine, and ciramadol lowered prolactin levels while pentazocine and meptazinol did not. Naloxone blocked morphine-induced release of prolactin and growth hormone. The partial agonists suppressed morphine-induced prolactin release, and several suppressed the elevated growth hormone levels as well. Data from the opiate radioreceptor assay (displacement of 3H-naloxone) in the presence and absence of sodium agrees with the above placement of agents into three classes. These results suggest that classification of opioid compounds into agonists, partial agonists and antagonists may be made by their effects on prolactin and growth hormone release.  相似文献   

18.
Oestrogen and progesterone have marked effects on the secretion of the gonadotrophins and prolactin. During most of the oestrous or menstrual cycle the secretion of gonadotrophin is maintained at a relatively low level by the negative feedback of oestrogen and progesterone on the hypothalamic-pituitary system. The spontaneous ovulatory surge of gonadotrophin is produced by a positive feedback cascade. The cascade is initiated by an increase in the plasma concentration of oestradiol-17 beta which triggers a surge of luteinizing hormone releasing hormone (LHRH) and an increase in pituitary responsiveness to LHRH. The facilitatory action of oestrogen on pituitary responsiveness is reinforced by progesterone and the priming effect of LHRH. How oestrogen and progesterone exert their effects is not clear but the facilitatory effects of oestrogen take about 24 h, and the stimulation of LHRH release is produced by an indirect effect of oestradiol on neurons which are possibly opioid, dopaminergic or noradrenergic and which modulate the activity of LHRH neurons. In the rat, a spontaneous prolactin surge occurs at the same time as the spontaneous ovulatory gonadotrophin surge. The prolactin surge also appears to involve a positive feedback between the brain-pituitary system and the ovary. However, the mechanism of the prolactin surge is poorly understood mainly because the neural control of prolactin release appears to be mediated by prolactin inhibiting as well as releasing factors, and the precise role of these factors has not been established. The control of prolactin release is further complicated by the fact that oestradiol stimulates prolactin synthesis and release by a direct action on the prolactotrophes. Prolactin and gonadotrophin surges also occur simultaneously in several experimental steroid models. A theoretical model is proposed which could explain how oestrogen and progesterone trigger the simultaneous surge of LH and prolactin.  相似文献   

19.
Thyrotropin-releasing hormone (TRH) or 50 mM K+ stimulated the acute release of prolactin from the GH4C1 strain of rat pituitary cells in culture. The enhanced release of prolactin was inhibited in a dose-related manner by the Ca+2 antagonist Co+2 (2.0 to 0.5 mM) as well as by the Ca+2 chelator EGTA (1.0 mM). Co+2 also reduced spontaneous basal prolactin release. There was partial reversal of the inhibitory effect of Co+2 (2.0 mM) by Ca+2 (2.0 mM) and complete reversal of the inhibitory effect of EGTA (1.0 mM) by Ca+2 (2.0 mM). The enhanced release of prolactin stimulated by 50 mM K+ was maximal by 10–20 minutes in medium containing 0.67 to 0.74 mM Ca+2. Na+ (50 mM) did not mimic the effect of high K+. We conclude that Ca+2 is an essential cation in mediating the actions of high external K+ and TRH on the release of prolactin by GH4C1 cells.  相似文献   

20.
It has been demonstrated in our previous papers that in the anterior part of medial basal hypothalamus (AM BH) in sheep a stimulating, while in the caudal part of MBH (CMBH) an inhibiting centre of prolactin release are situated. These results suggested that CMBH might be the site of PIF production and prompted us to investigate the effect of dopamine (DA) on the concentration of prolactin in the peripheral blood (p.bl.) in animals in which CMBH had been previously lesioned and this concentration was very high. Microinfusion of L-dopamine into the third cerebral ventricle (c.v.) or into the internal maxillary artery in intact as well as in lesioned lactating ewes depressed distinctly the prolactin level in the p.bl. This action of DA suggests that in the CMBH exists dopaminergic system which itself plays an inhibitory role in the control of prolactin release without involvement of PIF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号