首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genetic code discovered 40 years ago, consists of 64 triplets (codons) of nucleotides. The genetic code is almost universal. The same codons are assigned to the same amino acids and to the same START and STOP signals in the vast majority of genes in animals, plants, and microorganisms. Each codon encodes for one of the 20 amino acids used in the synthesis of proteins. That produces some redundancy in the code and most of the amino acids being encoded by more than one codon. The two cases have been found where selenocysteine or pyrrolysine, that are not one of the standard 20 is inserted by a tRNA into the growing polypeptide.  相似文献   

2.
The chemical language of genetic code is proposed. As a result of chemical language application for the analysis of the modern genetic code, the existence of an unambiguous correspondence between the chemical properties of amino acids and their coding triplets (codons and anticodons) is shown. This confirms the hypothesis of the code chemical determination. The complementarity between the chemical properties of amino acids and their anticodons (but not the codons) has been found also to exist. This observation supports the hypothesis of the genetic code determination by the direct recognition and also underlines the primary role of anticodon in the origin of genetic code in comparison with codons.  相似文献   

3.
The laws governing degeneration of the genetic code are discussed below. Of fundamental importance in this context is the classification of the amino acids into groups on the basis of the physicochemical behaviour of their residues. From this, it is possible to formulate arithmetic relationships between the number of amino acids in the same group and the number of coding triplets.It is found that the degeneration of the genetic code obeys certain laws, the reasons for this being related to the number and the qualitative properties of the amino acids and triplets. The fact that the three bases of a coding triplet have different priorities must also be a critical factor.  相似文献   

4.
A model for topological coding of proteins is proposed. The model is based on the capacity of hydrogen bonds (property of connectivity) to fix conformations of protein molecules. The protein chain is modeled by an n -arc graph with the following elements: vertices (alpha -carbon atoms), structural edges (peptide bonds) and connectivity edges (virtual edges connecting non-adjacent atoms). It was shown that 64 conformations of the 4-arc graph can be described in the binary system by matrices of six variables which form a supermatrix containing four blocks. On the basis of correspondences between the pairs of variables in matrices and four letters of the genetic code matrices and supermatrix are converted, respectively, into the triplets and the table of the genetic code. An algorithm admitting computer programming is proposed for coding the n -arc graph and protein chain. Connectivity operators (polar amino acids) are assigned to blocks of triplets coding for cyclic conformations (G, A-in the second position), while anti-connectivity operators (non-polar amino acids) correspond to blocks of triplets coding for open conformations (C, U-in the second position). Amino acids coded by triplets differing by the first base have different structures. The third base for C, U and G, A is degenerated. Properties of the real genetic code are in full agreement with the model. The model provides an insight into the topological nature of the genetic code and can be used for development of algorithms for the prediction of the protein structure.  相似文献   

5.
6.
Chemical language of the genetic code is suggested in which elementary information code units are presented by functional groups of amino acids and nucleotides. Using this language, the existence of correspondence and conformity of chemical parameters of amino acids and of central nucleotides of their anticodons was demonstrated. These findings confirm the idea that the genetic code is determined by chemical properties of amino acids and nucleotides and that this determination is the result of direct specific interactions between amino acids and nucleotide triplets at the stage of the origin of the code. The data obtained reveal primary role of anticodon triplets in the origin of the code. Key role of the central nucleotide in triplets for amino acid coding is confirmed.  相似文献   

7.
Two ideas have essentially been used to explain the origin of the genetic code: Crick's frozen accident and Woese's amino acid-codon specific chemical interaction. Whatever the origin and codon-amino acid correlation, it is difficult to imagine the sudden appearance of the genetic code in its present form of 64 codons coding for 20 amino acids without appealing to some evolutionary process. On the contrary, it is more reasonable to assume that it evolved from a much simpler initial state in which a few triplets were coding for each of a small number of amino acids. Analysis of genetic code through information theory and the metabolism of pyrimidine biosynthesis provide evidence that suggests that the genetic code could have begun in an RNA world with the two letters A and U grouped in eight triplets coding for seven amino acids and one stop signal. This code could have progressively evolved by making gradual use of letters G and C to end with 64 triplets coding for 20 amino acids and three stop signals. According to proposed evidence, DNA could have appeared after the four-letter structure was already achieved. In the newborn DNA world, T substituted U to get higher physicochemical and genetic stability.  相似文献   

8.
Proteins account for the catalytic and structural versatility displayed by all cells, yet they are assembled from a set of only 20 common amino acids. With few exceptions, only 61 nucleotide triplets also direct incorporation of these amino acids. Endeavors to expand the genetic code recently progressed to nucleus-containing cells, after Chin et al.1 transferred Escherichia coli genes for a mutant tyrosine-adaptor molecule and its synthetase into Saccharomyces cerevisiae. Transformed yeast cells were produced that exhibit efficient site-specific incorporation of non-biotic amino acids into proteins. This makes it likely that code complexity can be elevated experimentally in mammals.  相似文献   

9.
The aim of this research was to examine the possible significance of genome/protein relationships in terms of effects on distribution of mass, especially in proteins. Amino acid residues in proteins have side-chains and polypeptide segments. We use "SCM" (side-chain mass), "MCM" (main-chain mass), and "deltaM" (SCM-MCM) as the deviation from "mass balance." Total MCM of the 61 amino acids in the standard code, 3412, equals total SCM: they form a mass balanced set (mean deltaM = 0). Of 14 natural variants of the code, seven have slightly positive mean deltaM values and seven have slightly negative values. Codes with the standard amino acids assigned randomly to the 20 codon sets of the standard code have about one chance in 3,300 of producing a mass balanced set. In natural proteins, as %A + T increases, the proportion of the mass in the side-chains also increases, by about half the amount calculated for standard genes with various AT/GC ratios, partly due to selection of codons with greater variability in composition at synonymous sites. For 203 representative species (including organelles), the total protein mass is distributed approximately equally between SCM and MCM (overall mean deltaM/amino acid residue, -0.06). The attainment of some overall macromolecular mass balance may have been a criterion for selecting the codon/amino acid pairs. When both structural and dynamic requirements are considered, a genetic code based on hydrophobicity and mass balance as key properties seems likely.  相似文献   

10.
Genetic code expansion (GCE) enables the site-specific incorporation of non-canonical amino acids as novel building blocks for the investigation and manipulation of proteins. The advancement of genetic code expansion has been benefited from the development of synthetic biology, while genetic code expansion also helps to create more synthetic biology tools. In this review, we summarize recent advances in genetic code expansion brought by synthetic biology progresses, including engineering of the translation machinery, genome-wide codon reassignment, and the biosynthesis of non-canonical amino acids. We highlight the emerging application of this technology in construction of new synthetic biology parts, circuits, chassis, and products.  相似文献   

11.
To study the recognition processes and interaction of peptides and proteins, a model has been suggested according to which the first steps of complex formation of molecules are defined by G/C and A/U complementarity of codon roots of amino acid forming the molecules contact sites or surfaces. In contrast to amino acid--antiamino acid interaction code (L. B. Mekler, 1969), the code of codon roots involves the interaction of amino acids independently of the base structures in nucleotide triplets in positions 1 and 3. The analysis of the spectra of point mutations homologous proteins confirms the possible role of the root code.  相似文献   

12.
Fifty years have passed since the genetic code was deciphered, but how the genetic code came into being has not been satisfactorily addressed. It is now widely accepted that the earliest genetic code did not encode all 20 amino acids found in the universal genetic code as some amino acids have complex biosynthetic pathways and likely were not available from the environment. Therefore, the genetic code evolved as pathways for synthesis of new amino acids became available. One hypothesis proposes that early in the evolution of the genetic code four amino acids—valine, alanine, aspartic acid, and glycine—were coded by GNC codons (N = any base) with the remaining codons being nonsense codons. The other sixteen amino acids were subsequently added to the genetic code by changing nonsense codons into sense codons for these amino acids. Improvement in protein function is presumed to be the driving force behind the evolution of the code, but how improved function was achieved by adding amino acids has not been examined. Based on an analysis of amino acid function in proteins, an evolutionary mechanism for expansion of the genetic code is described in which individual coded amino acids were replaced by new amino acids that used nonsense codons differing by one base change from the sense codons previously used. The improved or altered protein function afforded by the changes in amino acid function provided the selective advantage underlying the expansion of the genetic code. Analysis of amino acid properties and functions explains why amino acids are found in their respective positions in the genetic code.  相似文献   

13.
At the time of its discovery four decades ago, the genetic code was viewed as the result of a "frozen accident." Our current knowledge of the translation process and of the detailed structure of its components highlights the roles of RNA structure (in mRNA and tRNA), RNA modification (in tRNA), and aminoacyl-tRNA synthetase diversity in the evolution of the genetic code. The diverse assortment of codon reassignments present in subcellular organelles and organisms of distinct lineages has 'thawed' the concept of a universal immutable code; it may not be accidental that out of more than 140 amino acids found in natural proteins, only two (selenocysteine and pyrrolysine) are known to have been added to the standard 20-member amino acid alphabet. The existence of phosphoseryl-tRNA (in the form of tRNACys and tRNASec) may presage the discovery of other cotranslationally inserted modified amino acids.  相似文献   

14.
15.
The sequential fulfillment of theprinciple of succession necessarily guides the main steps of the genetic code evolution to be reflected in its structure. The general scheme of the code series formation is proposed basing on the idea of group coding (Woese, 1970). The genetic code supposedly evolved by means of successive divergence of pra-ARS's loci, accompanied by increasing specification of recognition capacity of amino acids and triplets.The sense of codons had not been changed on any step of stochastic code evolution. The formulated rules for code series formation produce a code version, similar to the contemporary one. Based on these rules the scheme of pra-ARS's divergence is proposed resulting in the grouping of amino acids by their polarity and size. Later steps in the evolution of the genetic code were probably based on more detailed features of the amino acids (for example, on theirfunctional similarities like their interchangeabilities in isofunctional proteins).  相似文献   

16.
By combining crystallographic and NMR structural data for RNA-bound amino acids within riboswitches, aptamers, and RNPs, chemical principles governing specific RNA interaction with amino acids can be deduced. Such principles, which we summarize in a “polar profile”, are useful in explaining newly selected specific RNA binding sites for free amino acids bearing varied side chains charged, neutral polar, aliphatic, and aromatic. Such amino acid sites can be queried for parallels to the genetic code. Using recent sequences for 337 independent binding sites directed to 8 amino acids and containing 18,551 nucleotides in all, we show a highly robust connection between amino acids and cognate coding triplets within their RNA binding sites. The apparent probability (P) that cognate triplets around these sites are unrelated to binding sites is ≅5.3 × 10−45 for codons overall, and P ≅ 2.1 × 10−46 for cognate anticodons. Therefore, some triplets are unequivocally localized near their present amino acids. Accordingly, there was likely a stereochemical era during evolution of the genetic code, relying on chemical interactions between amino acids and the tertiary structures of RNA binding sites. Use of cognate coding triplets in RNA binding sites is nevertheless sparse, with only 21% of possible triplets appearing. Reasoning from such broad recurrent trends in our results, a majority (approximately 75%) of modern amino acids entered the code in this stereochemical era; nevertheless, a minority (approximately 21%) of modern codons and anticodons were assigned via RNA binding sites. A Direct RNA Template scheme embodying a credible early history for coded peptide synthesis is readily constructed based on these observations.  相似文献   

17.
Summary In contrast to chemically induced mutants of tobacco mosaic virus (TMV) in which we have found replacement of one or at most of two amino acids per coat protein chain, the protein chains of naturally occurring TMV strains differ from each other in numerous positions. The complete amino acid sequence of the naturally occurring TMV straindahlemense isolated byMelchers (1940) has been determined. It differs in 30 of the 158 amino acid positions from the TMV wild strainvulgare (Fig. 1). This is the first case in which complete amino acid sequences of the coat proteins of two virus strains can be compared. Such a comparison permits conclusions about the structure of the protein subunits and about certain aspects of the genetic code to be drawn.The electrophoretic mobility curves for the virus rods and the A proteins ofvulgare anddahlemense (Fig. 4) can be explained on the basis of the amino acid sequences of the two strains. Spatial distribution of the positive and negative groups within the protein subunits are discussed. One particular segment of the protein chain appears to be so important for the secondary and/or tertiary structure of the protein subunit that amino acid replacements within this segment in general lead to a loss of infectivity.The 46 cases in which we have exactly located the positions of amino acid differences betweenvulgare and various TMV mutants and strains are summarized in Table 1. Combination of the data in Table 1 with the base compositions of the triplets as obtained from the cell free system ofE. coli permits conclusions about the nucleotide sequence within the triplets to be drawn. The triplets shown in Table 2 represent, at present, the best agreement between the data from the cell free system and the work with TMV mutants.

Mit 4 Textabbildungen  相似文献   

18.
Summary It has previously been shown that the formation of GU base pairs in RNA copying processes leads to an accumulation of G and U in both strands of the replicating RNA, which results in a non-random distribution of base triplets. In the present paper, this distribution is calculated, and, using the 2-test, a correlation between the distribution of triplets and the amino acid composition of the evolutionarily conservative interior regions of selected globular proteins is established.It is suggested that GU wobbling in early replication of RNA could have led to the observed amino acid composition of present-day protein interiors. If this hypothesis is correct, the GU wobbling must have been very extensive in the imprecisely replicating RNA, even reaching values close to the critical for stability of its double-helical structure. Implications of the hypothesis both for the evolution of the genetic code and of proteins are discussed.  相似文献   

19.
Glycine is unique among the amino acids in view of its symmetric nature. While the overall distribution of glycyl residues in the (phi, psi) plane is near-symmetric, there can be certain preferences for the individual conformations. An analysis of the observed glycyl conformations in 70 proteins has been carried out to find the influence of residues adjoining the glycyl residues. For this purpose, the (phi, psi) plane has been divided into two regions: the region in which phi is negative and the region in which phi is positive. The analysis is done in terms of the number of conformations occurring in these regions. It has been found that while the overall percentage distribution of glycyl residues between the positive and the negative phi regions is 54:46, the distribution shows asymmetry when the examples are sorted out in terms of X-Gly and Gly-Y doublets. The asymmetry becomes more prominent when the data are sorted out into triplets X-Gly-Y. Using the available information, it has been possible to designate 25 triplets as P-predominant and 19 as N-predominant. An examination of P-predominant triplets for possible occurrence in beta-bends having one of the conformations in the positive phi region shows that only 25% are of this nature. Thus, the P-preference of P-predominant triplets is not an outcome of the bend formation alone and must be an inherent property of these triplets.  相似文献   

20.
There is probably only one information system in living nature — the macromolecular system including DNA, RNA and protein. Its unity for the genetic and nervous activity can be followed in the storage of information (heredity, memory) and in its processing (recombination and selection of both genetic and mental information). According to the hypothesis of the code of nerve impulses, nucleotide triplets of the nucleus, or more likely amino acids of the surface protein of the impulse generating area of a neuron, generate a limited variety of interspike intervals so that each amino acid corresponds to a certain interspike interval and this particular interval initiates by means of a specific neurotransmitter, the synthesis of the same amino acid (or nucleotide triplet) in the postsynaptic neuron. Thus, a series of impulses produces in the postsynaptic neuron a sequence of amino acids in a form of a polypeptide identical to the polypeptide of the presynaptic neuron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号