首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By GC-MS the following acidic constituents of the endosperm of Echinocystis macrocarpa were identified: abscisic acid and its trans,trans-isomer, 4′-dihydrophaseic acid, GA4, GA7, iso-GA7, GA24, GA25, two isomers of GA13, GA43, ent-6α,7α,17-trihydroxy-16αH-kauran-19-oic acid and ent-6α,7α, 16β, 17-tetrahydroxykauran- 19-oic acid. The structures of the last three new natural products were confirmed by partial synthesis. ent-Kaurene was detected in the neutral fraction.  相似文献   

2.
The GC/MS detection is reported of over 30 compounds, in extracts of the endosperm and embryos from seeds of Cucurbita maxima. The compounds which were identified from reference spectra include: cis,trans-ABA; trans,trans-ABA; dihydrophaseic acid; IAA; GA4; GA12; GA13; GA25; GA39; GA43; GA49; ent-13-hydroxy-, ent-6α,7α-and ent-7α,13-dihydroxy-, and ent-6α,7α,13-trihydroxykaur-16-en-19-oic acids; ent-7α,16,17-trihydroxy- and ent-6α,7α,16,17-tetrahydroxy-kauran-19-oic acids, ent-6,7-seco-7-oxokauren-6,19-dioic acid and/or ent-6,7-secokauren-6,7,19-trioic acid, and 7β,12α-dihydroxykaurenolide. New compounds, the structures of which were deduced from GC/MS data, include: the 12α-hydroxy-derivatives of GA12, GA14, GA37 and GA4, and the 12β-hydroxy-derivatives of ent-7α-hydroxy- and ent-6α,7α-dihydroxykaurenoic acids.  相似文献   

3.
The metabolism of several ring C and D-functionalized ent-kaur-16-en-19-oic acids by cultures of Gibberella fujikuroi, mutant B1-41a, to the corresponding derivatives of the normal fungal gibberellins (GAs) and ent-kaurenoids is described. A range of 12α- and 12β-hydroxyGAs and ent-kaurenoids are characterized by their mass spectra and GC Kovats retention indices. The mass spectral and GC data are used to identify the 12α-hydroxy derivatives of GA12, GA14, GA37 and GA4 (GA58), and of the 12β-hydroxy derivatives of ent-7α-hydroxy- and ent-6α, 7α-dihydroxykaurenoic acids, in seeds of Cucurbita maxima. Similarly the metabolites of GA9, formed in seeds of Pisum sativum and cultures of G.fujikuroi, mutant B1-41a, are identified as 12α-hydroxyGA9. ent-11β-Hydroxy- and ent-11-oxo-kaurenoic acids are metabolized by the fungus to the corresponding 11-oxygenated derivatives of the normal fungal ent-kaurenoids and some C20-GAs; no 11-oxygenated C19-GAs are formed. Grandiflorenic acid, 11β-hydroxygrandiflorenic acid, attractyligen and ent-15β-hydroxykaurenoic acid are metabolized to unidentified products.  相似文献   

4.
Steviol(ent-13-hydroxykaur-16-en-19-oic acid) is rapidly metabolised by the mutant B1-41a of Gibberellafujikuroi. The initial product is the ent- 7-α-hydroxy derivative which is then further metabolised to gibberellins A1, A18, A19, A20, 13-hydroxy GA12, the ent-6α, 7α, 13- and ent-6β, 7α, 13 (19,6-lactone)-trihydroxykaurenoic acids, and a seco-ring B diacid. This apparently low substrate specificity of the enzymes operative beyond the block in the mutant B1-41a provides a useful model for the biosynthetic pathways to 13-hydroxylated gibberellins of higher plants and a preparative route to these plant gibberellins.  相似文献   

5.
Three novel gibberellins, GA54 (ent-1α, 3α, 10-trihydroxy-20-norgibberell-16-ene-7, 19-dioic acid 19, 10-lactone), GA55 (ent-1α, 3α, 10, 13-tetrahydroxy-20-norgibberell-16-ene-7, 19-dioic acid 19, 10-lactone) and GA56 (ent-2β, 3α, 10, 13-tetrahydroxy-20-norgibberell-16-ene-7, 19-dioic acid 19, 10-lactone) were shown to occur in the culture broth of Gibberella fujikuroi. Their structures were determined mainly by mass spectrometrical comparison of the derivatives with those of authentic compounds prepared from known gibberellins.  相似文献   

6.
The microbiological transformation by Gibberelia fujikuroi of ent-beyer-15-ene into the beyergibberellins A9 and A13, 7β-hydroxy- and 7β,18-dihydroxybeyerenolides, and of ent-beyer-15-en-19-ol into beyergibberellins A4, A7, A9, A13 and A25,and 7β-hydroxy-and 7β,18-dihydroxybeyerenolides is described. In contrast, ent-beyer-15-en-18-ol gave ent-7α, 18,19-trihydroxybeyer-15-ene, 7β,18-dihydroxybeyerenolide and ent-7α,18-dihydroxybeyer-15-en-19-oic acid again revealing the inhibitory effect of an 18-hydroxyl group on oxidative transformations at C-6β by Gibberella fujikuroi.  相似文献   

7.
The structures of three new gibberellins A30, A48 and A49 and a new kaurenolide, isolated from seeds of Cucurbita pepo L., were elucidated. The structures of GA39, GA48 and GA49 were shown to be ent-3α,12β-dihydroxygibberell-16-ene-7,19,20-trioic acid (1), ent-2α,3α,10,12α-tetrahydroxy-20-norgibberell-16-ene-7,19-dioic acid 19,10-lactone (5) and the epimer at C–12 of GA48 (8), respectively. The kaurenolide was shown to have the structure: ent-6β,7α,12β-trihydroxykaur-16-en-19-oic acid 19,6-lactone (14).  相似文献   

8.
GA12-aldehyde obtained from mevalonate via ent-kaurene, ent-kaurenol, ent-kaurenoic acid and ent-7α-hydroxykaurenoic acid in a cell-free system from immature seeds of Cucurbita maxima was converted to GA12 by the same system. When Mn2+ was omitted from the system GA12-aldehyde and GA12 were converted further to several products. Among these GA15, GA24, GA36 and GA37 were conclusively identified by GC-MS. With the exception of GA37 these GAs have not previously been found in higher plants. Another biosynthetic pathway led from ent-7α-hydroxykaurenoic acid to very polar products via what was tentatively identified as ent-6α, 7α-dihydroxykaurenoic acid. An unidentified component with an MS resembling that of a dihydroxykaurenolide was also obtained from incubations with mevalonate.  相似文献   

9.
The microbiological transformation of ent-trachylobane, ent-7α-hydroxytrachylobane and ent-19-hydroxytrachylobane into trachylobagibberellins A7, A9, A13, A25, A40 and A47 by Gibberella fujikuroi is described. Whereas 7β-hydroxy- and 7β,18-dihydroxytrachylobanolides were obtained from ent-trachylobane and ent-trachyloban- 19-ol, the presence of a 7β-hydroxyl group directed metabolism exclusively into the gibberellin pathway. An 18-hydroxyl group as in ent-7α,18-dihydroxytrachylobane inhibited oxidation at C-6 affording ent-7α,18,19-trihydroxytrachylobane as the major metabolite.  相似文献   

10.
The microbiological transformation of 7α,19-dihydroxy-ent-atis-16-ene by the fungus Gibberella fujikuroi gave 19-hydroxy-7-oxo-ent-atis-16-ene, 13(R),19-dihydroxy-7-oxo-ent-atis-16-ene, 7α,11β,19-trihydroxy-ent-atis-16-ene and 7α,16β,19-trihydroxy-ent-atis-16-ene, while the incubation of 19-hydroxy-7-oxo-ent-atis-16-ene afforded 13(R),19-dihydroxy-7-oxo-ent-atis-16-ene and 16β,17-dihydroxy-7-oxo-ent-atisan-19-al. The biotransformation of 7-oxo-ent-atis-16-en-19-oic acid gave 6β-hydroxy-7-oxo-ent-atis-16-en-19-oic acid, 6β,16β,17-trihydroxy-7-oxo-19-nor-ent-atis-4(18)-ene and 3β,7α-dihydroxy-6-oxo-ent-atis-16-en-19-oic acid.  相似文献   

11.
Four new diterpenes have been isolated from Sideritis serata: lagascol (4, ent-8,5-friedopimar-5-ene-15S,16-diol), tobarrol (8, ent-15-beyerene-12α,17-diol), benuol (12, ent-15-beyerene-7α,17-diol) and serradiol (18, ent-16R-atis-13-ene-16,17-diol). The previously known diterpenes lagascatriol (1, ent-8,5-friedopimar-5-ene-11β,15S,16-triol), jativatriol (2, ent-15-beyerene-1β,12α,17-triol), conchitriol (3, ent-15-beyerene-7α,12α,17-triol) and sideritol (17, ent-16R-atis-13-ene-1β,16,17-triol) have also been obtained from the same source.  相似文献   

12.
The native hormones from tassels of maize (Zea mays) were re-investigated. The previous identification by GC/SIM of GA1, GA8 and GA29 in normal tassels was confirmed by full GC/MS scans at the correct Kovats retention indices. In tassels of dwarf-1 mutants, GA44,?GA19, GA17, GA20 and the 16,17-dihydro, 7β,16α,17-trihydroxy derivative of ent-kaurenoic acid were identified by GC/MS. Gibberellin A1 was not found in the mutant tassels. [14C]Gibberellin A53 was fed to tassels of the dwarf-5 mutant. In the ethyl acetate-soluble acidic fraction from the feeds, [14C]GA44 was identified by GC/MS; [14C]GA19 and [14C]GA29 were identified by GC/SIM. The GA29 is probably a metabolite of the feeds because the dwarf-5 mutant is known to control the step copalyl pyrophosphate to ent-kaurene in the maize GA-biosynthetic pathway and because GA29 was not identified in a control experiment. The n-butanol fractions obtained from the feeds were shown, by GC/MS, to contain [14C]GA53 after hydrolysis, suggesting that conjugated [14C]GA53 is a major metabolite from GA53 feeds. [17-13C, 17-3H2]Gibberellin A20 was fed to normal, dwarf-1 and dwarf-5 tassels. In each case, analysis of the purified ethyl acetate-soluble acidic extracts by GC/MS led to the identification of [13C]GA29 and unmetabolized [13C]GA20 in which no 13C-isotope dilution was observed.  相似文献   

13.
Gibberellin A1 (GA1), 3-epi-GA1, GA4, GA9, 11α-hydroxyGA12, 12α-hydroxyGA12, GA15, GA17, GA19, GA20, GA25, GA37, GA40, GA58, GA69, GA70, and GA71 have been identified from Kovats retention indices and full scan mass spectra by capillary GC-MS analyses of purified extracts from sporophytes of the tree fern, Cibotium glaucum. Abscisic acid, dihydrophaseic acid, an epimer of 4′-dihydrophaseic acid, and the epimeric ent-6α, 7α, 16α, 17-(OH)4 and ent-6α, 7α, 16β, 17-(OH)4 derivatives of ent16, 17-dihydrokaurenoic acid, in addition to the epimeric 16α, 17- and 16β, 17-dihydroxy-16, 17-dihydro derivatives of GA12, were also identified in extracts of C. glaucum. An oxodihydrophaseic acid and a hydroxydihydrophaseic acid were also detected. In extracts of sporophytes of Dicksonia antarctica, GA4, GA9, 12α- and 12β-hydroxyGA12, GA15, GA25, and GA37 were identified by the same criteria, as well as abscisic acid, phaseic acid, 8′-hydroxymethylabscisic acid and dihydrophaseic acid. This is the first time that GA40 has been identified in a higher plant; it is also the first report of the natural occurrence of the two gibberellins, 11α- and 12β-hydroxyGA12. The total gibberellin (GA) content in C. glaucum (tall) was at least one order of magnitude greater than that of D. antarctica (dwarf) based on total ion current response in GC-MS and bioassay data. Abscisic acid was a major component of D. antarctica and the oxodihydrophaseic acid was a major component of C. glaucum.  相似文献   

14.
Two new ent-kauren-19-oic acid derivatives, ent-14S*-hydroxykaur-16-en-19-oic acid and ent-14S*,17-dihydroxykaur-15-en-19-oic acid together with eleven known compounds ent-kaur-16-en-19-oic acid, ent-kaur-16-en-19-al, ent-12β-hydroxykaur-16-en-19-oic acid, ent-12β-acetoxykaur-16-en-19-oic acid, 8R,13R-epoxylabd-14-ene, eudesm-4(15)-ene-1β,6α-diol, (?)-7-epivaleran-4-one, germacra-4(15), 5E,10(14)-trien-9β-ol, acetyl aleuritolic acid, β-amyrin, and stigmasterol were isolated from the stem bark of Croton pseudopulchellus (Euphorbiaceae). Structures were determined using spectroscopic techniques. Ent-14S*-hydroxykaur-16-en-19-oic acid, ent-kaur-16-en-19-oic acid, ent-12β-hydroxykaur-16-en-19-oic acid, ent-12β-acetoxykaur-16-en-19-oic acid and 8R,13R-epoxylabd-14-ene were tested for their effects on Semliki Forest virus replication and for cytotoxicity against human liver tumour cells (Huh-7 strain) but were found to be inactive. Ent-kaur-16-en-19-oic acid, the major constituent, showed weak activity against the Plasmodium falciparum (CQS) D10 strain.  相似文献   

15.
Ingram TJ  Reid JB 《Plant physiology》1987,83(4):1048-1053
The elongation response of the gibberellin (GA) deficient genotypes na, ls, and lh of peas (Pisum sativum L.) to a range of GA-precursors was examined. Plants possessing gene na did not respond to precursors in the GA biosynthetic pathway prior to GA12-aldehyde. In contrast, plants possessing lh and ls responded as well as wild-type plants (dwarfed with AMO-1618) to these compounds. The results suggest that GA biosynthesis is blocked prior to ent-kaurene in the lh and ls mutants and between ent-7α-hydroxykaurenoic acid and GA12-aldehyde in the na mutant. Feeds of ent-[3H]kaurenoic acid and [2H]GA12-aldehyde to a range of genotypes supported the above conclusions. The na line WL1766 was shown by gas chromatography-mass spectrometry (GC-MS) to metabolize [2H]GA12-aldehyde to a number of[2H]C19-GAs including GA1. However, there was no indication in na genotypes for the metabolism of ent-[3H]kaurenoic acid to these GAs. In contrast, the expanding shoot tissue of all Na genotypes examined metabolised ent-[3H]kaurenoic acid to radioactive compounds that co-chromatographed with GA1, GA8, GA20, and GA29. However, insufficient material was present for unequivocal identification of the metabolites. The radioactive profiles from HPLC of extracts of the node treated with ent-[3H]kaurenoic acid were similar for both Na and na plants and contained ent-16α,17-dihydroxykaurenoic acid and ent-6α,7α,16β,17-tetrahydroxykaurenoic acid (both characterized by GC-MS), suggesting that the metabolites arose from side branches of the main GA-biosynthetic pathway. Thus, both Na and na plants appear capable of ent-7α-hydroxylation.  相似文献   

16.
Gibberellins (GAs) are a group of diterpenoid plant hormones that control plant growth and development at various stages. Biologically active GAs share the common structures of a 3β-hydroxy group, a carboxy group at C-6, and a γ-lactone between C-4 and C-10. Hydroxylation at C-2β is a major deactivation step in many plant species, and hydroxylation at C-13 has been shown to weaken the binding affinity of GAs to their receptor proteins. In rice, bioactive GA4 has also been shown to be deactivated through 16α,17-epoxidation. Moreover, 16,17-dihydro-16α,17-dihydroxy GA4 has been identified as an aglycon of its glucoside from rice. However, our knowledge on the biological activity of 16,17-epoxidized GAs is currently limited to 16,17-dihydro-16α,17-epoxy GA4. Moreover, the bioactivity of 16,17-dihydro-16α,17-dihydroxy GA4 remains unknown. Here, we synthesized 16,17-epoxidized or dihydroxylated GA derivatives and performed a structure–activity relationship study using rice seedlings. 16,17-Epoxidation of bioactive GA1 and GA4 reduced their activity to promote elongation of rice leaf sheaths. Moreover, 16,17-dihydroxylation significantly decreased the activities of 16,17-dihydro-16α,17-epoxy GAs. These results suggest that GAs are deactivated in a stepwise manner via 16,17-epoxidation and hydrolysis of these epoxy groups.  相似文献   

17.
Glycyrrhetinic acid (GA), the major bioactive pentacyclic triterpene aglycone of licorice root, was known to play a vital role in anti-ulcer, anti-depressant, anti-inflammatory, and anti-allergic. In this study, we semi-synthesized five GA derivatives by a series of chemical reactions. They were selected as substrates for the biotransformation and yielded thirteen metabolites by Bacillus subtilis ATCC 6633 and Bacillus megaterium CGMCC 1.1741. Their structures were identified on the basis of extensive spectroscopic methods and nine of them were found for the first time. Two main types of reactions, regio- and stereo-selective hydroxylation and glycosylation, especially in the unactivated C-H bonds including C-11, C-19 and C-27, were observed in the biotransformation process, which greatly expand the chemical diversities of GA derivatives. All compounds were tested for their inhibitory effects on nitric oxide (NO) generation in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Among them, olean-12-ene-3β,7β,15α,19α,30-pentol (16) and olean-12-ene-3β,7β,15α,27,30-pentol (17) showed significant inhibitory effect with IC50 values of 0.64 and 0.07 μM, respectively.  相似文献   

18.
The conversion of ent-kaur-16-enes to gibberellic acid in Gibberella fujikuroi is blocked by A-ring modifications. Thus ent-3β-hydroxykaur-16-en-19-yl succinate gives good conversion (46%) to the 7β-hydroxy derivative.* Under the same conditions the 3β-epimer gives 7β- or 6α-hydroxylation and the former occurs for the 3-oxo analogue. The succinoyloxy function acts as a less efficient block and ent-kaur-16-en-19-yl succinate is converted to 7β-hydroxy and 6β,7β-dihydroxy derivatives along with gibberellic acid. Hydrolysis of the succinate block of the metabolities provides the 7β, 19-diol and 6β,7β, 19-triol. Of this pair only the former was effectively metabolized to gibberellic acid in G. fujikuroi.  相似文献   

19.
Steviol (ent-13-hydroxykaur-16-en-19-oic acid)* is metabolized by Gibberella fujikuroi in the presence of inhibitors of gibberellin biosynthesis, such as quaternary ammonium salt-type growth retardants, to afford 7β-Miydroxy- and 6β,7β-dihydroxysteviol, gibberelhns A1, A18, A19, A53 and 7β,13-dihydroxykaurenolide. Steviol acetate (ent-13-acetoxykaur-16-en-19-oic acid) is also metabolized to the 6β,7β-dihydroxy-derivative and to the 13-acetyl derivatives of gibberellins A17 and A20 and steviol methyl ester (methyl ent-13-hydroxykaur-16-en-19-oate) into the monohydroxy-, dihydroxy- and hydroxyoxo-derivatives. These results indicate a low substrate specificity of the enzymes in the fungus and provide a useful preparative methodology of several important plant gibberellins carrying the 13-hydroxyl group.  相似文献   

20.
Subcellular fractions from germinated barley embryos, chloroplast preparations and whole germinating barley grains are able to carry out the conversions ent-kaurenol → ent-kaurenal → ent-kaurenoic acid → ent-hydroxykaurenoic acid, the initial steps of the biosynthetic pathway to gibberellins. Whole grains, and chloroplasts to a slight extent, incorporate radioactivity from ent-kaurenol-[17-14C] and ent-kaurenoic acid-[17-14C] into materials with similar but distinct properties from the gibberellins GA1, GA3, GA4 and GA7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号