首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The carotid body (CB) is the site in the body that triggers awareness of changes in blood oxygen pressure. Aging is characterized by a decrease in oxygen supply to tissues, in reduction of tissue Po2, and in the activity of several enzymes and metabolic factors. The ventilatory response to hypoxia is attenuated with aging related to the age-dependent structure modifications including the basal reduction of oxygen requirements. The aged CB shows an increase in extracellular matrix, a reduction in number and volume of type I cells, and a reduction in volume of mitochondria that was consistent with and similar to that during chronic hypoxia; this phenomenon seems to operate also during aging as shown by the reduced volume of mitochondria in the aged CB. During chronic hypoxia, CB hypertrophy is less evident in aged CB than in young CB. Therefore, hypoxia and aging seem to share some type of link at different cell sites. CB represents an experimental model adequate for studying aging processes because of its high blood flow and metabolism, and thus it serves as a means to understanding the oxygen modulation of the aging process.  相似文献   

2.
The regulatory mechanisms of individual rat resistance to acute hypobaric hypoxia were studied using the functional indices of the central nervous system (neurochemical and behavioral) and the hematopoietic system. The resistance to hypoxia was evaluated by the time of attitudinal reflex maintenance and recovery after decompression to a simulated altitude of 11 200 m. Animals with different types of tolerance to hypoxia demonstrated different metabolic backgrounds of neurochemical processes (which were most balanced in moderately resistant rats). This agrees with the differences in active behavior and adaptive efficiency of these animals exposed to mild open-field stress. High functional activity of erythropoiesis and early leukocytic response were observed in hypoxia-tolerant rats.  相似文献   

3.
The hypoxic tolerance and the cerebral metabolic rates (CMR) of young adult mice (20 to 25 g, 4 to 5 weeks old) and adult mice (30 g and above, 6 to 7 weeks old), respectively, were determined and their interrelationship was evaluated. CMRs increased from 25 mmol - P/kg.min to 38 mmol/kg.min as the animals grew older from young to full adulthood. Concurrently the tolerance to aerogcnic hypoxia (5% O2-95%j N2) declined. The effects of hypoxia on the cerebral energy metabolism were greater in adult than in young adult animals. It is concluded that the full metabolic maturation of the brain is reached in adult animals only. They become more dependent on an adequate oxygen supply as the aerobic activity of the energy metabolism of the brain is further increasing. Hypoxic gasping occurred while the pool of cerebral energy reserves was still far from being depleted. A failure to utilize energy reserves rather than their exhaustion is suggested as the ultimate cause of death from hypoxia. An acid-soluble form of glycogen or related polyglucan was found in addition to the usual amounts of insoluble glycogen. It was utilizcd rapidly during hypoxia and ischaemic anoxia and it may, therefore, constitute an additional source of carbohydrate substrates in thc brain.  相似文献   

4.
Abstract: It has been reported that immature rats subjected to cerebral hypoxia-ischemia sustain less brain damage if they are previously exposed to systemic hypoxia compared with animals not exposed to prior hypoxia. Accordingly, neuropathologic and metabolic experiments were conducted to confirm and extend the observation that hypoxic preconditioning protects the perinatal brain from subsequent hypoxic-ischemic brain damage. Six-day postnatal rats were subjected to systemic hypoxia with 8% oxygen at 37°C for 2.5 h. Twenty-four hours later, they were exposed to unilateral cerebral hypoxia-ischemia for 2.5 h, produced by unilateral common carotid artery ligation and systemic hypoxia with 8% oxygen. Neuropathologic analysis, conducted at 30 days of postnatal age, indicated a substantial reduction in the severity of brain damage in the preconditioned rats, such that only 6 of 14 such animals exhibited cystic infarction, but all 13 animals without prior preconditioning exhibited infarction ( p < 0.001). Measurement of cerebral glycolytic and tricarboxylic acid intermediates and high-energy phosphate reserves at the terminus of and at 4 and 24 h following hypoxia-ischemia showed no differences in the extent of alterations in the preconditioned and nonpreconditioned immature rats. A difference was seen in the restitution of high-energy stores during the first 24 h of recovery from hypoxia-ischemia, with a more optimal preservation of these metabolites in the preconditioned animals, reflecting the less severe ultimate brain damage. Accordingly, the neuroprotection afforded to the preconditioned animals was not the result of any differences in the extent of anaerobic glycolysis, tissue acidosis, or depletion in high-energy reserves during hypoxia-ischemia but rather the result of other mechanisms that improved the metabolic status of the immature brain during the early hours of reperfusion following hypoxia-ischemia.  相似文献   

5.
During flurothyl seizures in 4-day-old rats, cortical concentration of ATP, phosphocreatine and glucose fell while lactate rose. Cortical energy use rate more than doubled, while glycolytic rate increased fivefold. Calculation of the cerebral metabolic balance during sustained seizures suggests that energy balance could be maintained in hyperglycemic animals, and would decline slowly in normoglycemia, but would be compromised by concurrent hypoglycemia, hyperthermia or hypoxia. These results suggest that the metabolic challenge imposed on the brain by this model of experimental neonatal seizures is milder than that seen at older ages, but can become critical when associated with other types of metabolic stress.  相似文献   

6.
Arousal is an important survival mechanism when infants are confronted with hypoxia during sleep. Many sudden infant death syndrome (SIDS) infants are exposed to repeated episodes of hypoxia before death and have impaired arousal mechanisms. We hypothesized that repeated exposures to hypoxia would cause a progressive blunting of arousal, and that a reversal of this process would occur if the hypoxia was terminated at the time of arousal. P5 (postnatal age of 5 days), P15, and P25 rat pups were exposed to either eight trials of hypoxia (3 min 5% O(2) alternating with room air) (group A), or three hypoxia trials as in group A, followed by five trials in which hypoxia was terminated at arousal (group B). In both groups A and B, latency increased over the first four trials of hypoxia, but reversed in group B animals during trials 5-8. Progressive arousal blunting was more pronounced in the older pups. The effects of intermittent hypoxia on heart rate also depended on age. In the older pups, heart rate increased with each hypoxia exposure. In the P5 pups, however, heart rate decreased during hypoxia and did not return to baseline between exposures, resulting in a progressive fall of baseline values over successive hypoxia exposures. In the group B animals, heart rate changes during trials 1-4 also reversed during trials 5-8. We conclude that exposure to repeated episodes of hypoxia can cause progressive blunting of arousal, which is reversible by altering the exposure times to hypoxia and the period of recovery between hypoxia exposures.  相似文献   

7.
Increasing age is the most robust predictor of greater malignancy and treatment resistance in human gliomas. However, the adverse association of clinical course with aging is rarely considered in animal glioma models, impeding delineation of the relative importance of organismal versus progenitor cell aging in the genesis of glioma malignancy. To address this limitation, we implanted transformed neural stem/progenitor cells (NSPCs), the presumed cells of glioma origin, from 3‐ and 18‐month‐old mice into 3‐ and 20‐month host animals. Transplantation with progenitors from older animals resulted in significantly shorter (P ≤ 0.0001) median survival in both 3‐month (37.5 vs. 83 days) and 20‐month (38 vs. 67 days) hosts, indicating that age‐dependent changes intrinsic to NSPCs rather than host animal age accounted for greater malignancy. Subsequent analyses revealed that increased invasiveness, genomic instability, resistance to therapeutic agents, and tolerance to hypoxic stress accompanied aging in transformed NSPCs. Greater tolerance to hypoxia in older progenitor cells, as evidenced by elevated HIF‐1 promoter reporter activity and hypoxia response gene (HRG) expression, mirrors the upregulation of HRGs in cohorts of older vs. younger glioma patients revealed by analysis of gene expression databases, suggesting that differential response to hypoxic stress may underlie age‐dependent differences in invasion, genomic instability, and treatment resistance. Our study provides strong evidence that progenitor cell aging is responsible for promoting the hallmarks of age‐dependent glioma malignancy and that consideration of progenitor aging will facilitate development of physiologically and clinically relevant animal models of human gliomas.  相似文献   

8.
Aging is associated with the development of insulin resistance, increased adiposity, and accumulation of ectopic lipid deposits in tissues and organs. Starting in mid‐life there is a progressive decline in lean muscle mass associated with the preferential loss of glycolytic, fast‐twitch myofibers. However, it is not known to what extent muscle loss and metabolic dysfunction are causally related or whether they are independent epiphenomena of the aging process. Here, we utilized a skeletal‐muscle‐specific, conditional transgenic mouse expressing a constitutively active form of Akt1 to examine the consequences of glycolytic, fast‐twitch muscle growth in young vs. middle‐aged animals fed standard low‐fat chow diets. Activation of the Akt1 transgene led to selective skeletal muscle hypertrophy, reversing the loss of lean muscle mass observed upon aging. The Akt1‐mediated increase in muscle mass led to reductions in fat mass and hepatic steatosis in older animals, and corrected age‐associated impairments in glucose metabolism. These results indicate that the loss of lean muscle mass is a significant contributor to the development of age‐related metabolic dysfunction and that interventions that preserve or restore fast/glycolytic muscle may delay the onset of metabolic disease.  相似文献   

9.
Early consequences of lithium-pilocarpine convulsive status epilepticus (SE) were studied six days after this status had been induced in rat pups at the age of either 12 or 25 days. Studies of spontaneous EEG activity demonstrated the presence of epileptic phenomena (isolated spikes) in both hippocampus and cortex (cortical spikes were more expressed in the older group). There were no marked behavioral correlates of spikes and transition into the ictal phase was exceptional. The motor performance on a rotorod and a horizontal bar was the same in experimental and control rats of both ages. Behavior in the open field was changed in a reverse manner in the two age groups: the locomotor activity of rats with induced seizures at the age of 12 days was significantly lower than that of their control siblings, whereas animals undergoing status at the age of 25 days were hyperactive. In addition, they also exhibited increased exploratory activity (rearing) and their habituation to the open field was deranged. Nissl-stained brain sections demonstrated extensive brain damage in the older group in contrast to the negative findings in younger animals. EEG, behavioral and morphological changes induced by status epilepticus in developing rats persisted for 6 days after the status. They markedly differed according to the age of animals.  相似文献   

10.
The experiments on white rats have shown that animals with distinct tolerance to hypoxia were characterized by individual metabolic changes in phylogenetically different brain structures. Adaptation to hypoxia in animals with high tolerance was associated with metabolic changes in the reticular formation and in animals with low tolerance with changes in the cerebral cortex. The experiments have shown that white rats with distinct individual tolerance to hypoxia are characterized by an inherent level of plastic metabolism in different brain structures. A correlation between brain tissue metabolism and individual tolerance of animals to hypoxia is suggested.  相似文献   

11.
Reactive oxygen species (ROS) are common products of the physiological metabolic reactions, which are associated with cell signaling and with the pathogenesis of various nervous disorders. The brain tissue has the high rate of oxidative metabolic activity, high concentration of polyunsaturated fatty acids in membrane lipids, presence of iron ions and low capacity of antioxidant enzymes, which makes the brain very susceptible to ROS action and lipid peroxidation formation. Membranes of brain cortex show a higher production of thiobarbituric acid-reactive substances (TBARS) in prooxidant system (ADP.Fe(3+)/NADPH) than membranes from the heart or kidney. Lipid peroxidation influences numerous cellular functions through membrane-bound receptors or enzymes. The rate of brain cortex Na(+),K(+)-ATPase inhibition correlates well with the increase of TBARS or conjugated dienes and with changes of membrane fluidity. The experimental model of short-term hypoxia (simulating an altitude of 9000 m for 30 min) shows remarkable increase in TBARS in four different parts of the rat brain (cortex, subcortical structures, cerebellum and medulla oblongata) during the postnatal development of Wistar rat of both sexes. Young rats and males are more sensitive to oxygen changes than adult rats and females, respectively. Under normoxia or hypobaric hypoxia both ontogenetic aspects and sex differences play a major role in establishing the activity of erythrocyte catalase, which is an important part of the antioxidant defense of the organism. Rats pretreated with L-carnitine (and its derivatives) have lower TBARS levels after the exposure to hypobaric hypoxia. The protective effect of L-carnitine is comparable with the effect of tocopherol, well-known reactive species scavenger. Moreover, the plasma lactate increases after a short-term hypobaric hypoxia and decreases in L-carnitine pretreated rats. Acute hypobaric hypoxia and/or L-carnitine-pretreatment modify serum but not brain lactate dehydrogenase activity. The obtained data seem to be important because the variations in oxygen tension represent specific signals of regulating the activity of many specific systems in the organism.  相似文献   

12.
It has been suggested that a decline in skeletal muscle oxidative capacity is a general consequence of aging in humans. However, previous studies have not always controlled for the effects of varying levels of physical activity on muscle oxidative capacity. To test the hypothesis that, when matched for comparable habitual physical activity levels, there would be no age-related decline in the oxidative capacity of a locomotor muscle, the postexercise recovery time of phosphocreatine was compared in the tibialis anterior muscle of young [n = 19; 33.8 +/- 4.8 (SD) yr] and older [n = 18; 75.5 +/- 4.5 yr] healthy women and men of similar, relatively low, activity levels. The intramuscular metabolic measurements were accomplished by using phosphorus magnetic resonance spectroscopy. The results indicate that there was no age effect on the postexercise recovery time of phosphocreatine recovery, thus supporting the stated hypothesis. These data suggest that there is no requisite decline in skeletal muscle oxidative capacity with aging in humans, at least through the seventh decade.  相似文献   

13.
Studies were done to determine the effects of age on steroidogenesis in the inner (zona reticularis) and outer (zona fasciculta plus glomerulosa) zones of the guinea pig adrenal cortex. In 35-day-old animals, cortisol production by adrenal outer zone cells was approximately twice as great as that by inner zone cells. With aging, cortisol secretion by inner zone cells decreased to very low levels, but there was no detectable change in the capacity for cortisol production by the outer zone. However, the outer zone comprised a progressively decreasing fraction of the total adrenal mass in older animals. To determine the basis for the decline in cortisol production by inner zone cells with aging, the activities of several steroidogenic enzymes were determined. Microsomal 21-hydroxylase activity was greater in the inner than outer zone but was not significantly affected by age. By contrast, 17-hydroxylase activity was greater in the outer zone at all ages, and decreased with aging in the inner but not the outer zone. Mitochondrial cholesterol sidechain cleavage and 11β-hydroxylase activities were also higher in the outer than inner zone and declined in the zone only in older animals. The decrease in inner zone cholesterol sidechain cleavage activity with aging was proportionately greater than the age-dependent changes in other enzyme activities. The results indicate that the effects of aging on steroidogenesis are both zone- and enzyme-specific. The overall decline in cortisol secretion by the guinea pig adrenal cortex with aging is attributable to both a decrease in cortisol production by the cells of the zone reticularis and a disproportionate increase in the mass of the gland comprised by this zone. The decrease in cortisol secretion correlates closely with a decline in cholesterol sidechain cleavage activity in the zona reticularis, and may be causally related.  相似文献   

14.
Pharmacological inhibition of excitatory neurotransmission attenuates cell death in models of global and focal ischemia and hypoglycemia, and improves neurological outcome after experimental spinal cord injury. The present study examined the effects of the noncompetitive N-methyl-D-aspartate receptor blocker MK-801 on neurochemical sequelae following experimental fluid-percussion brain injury in the rat. Fifteen minutes after fluid-percussion brain injury (2.8 atmospheres), animals received either MK-801 (1 mg/kg, i.v.) or saline. MK-801 treatment significantly attenuated the development of focal brain edema at the site of injury 48 h after brain injury, significantly reduced the increase in tissue sodium, and prevented the localized decline in total tissue magnesium that was observed in injured tissue of saline-treated animals. Using phosphorus nuclear magnetic resonance spectroscopy, we also observed that MK-801 treatment improved brain metabolic status and promoted a significant recovery of intracellular free magnesium concentrations that fell precipitously after brain injury. These results suggest that excitatory amino acid neurotransmitters may be involved in the pathophysiological sequelae of traumatic brain injury and that noncompetitive N-methyl-D-aspartate receptor antagonists may effectively attenuate some of the potentially deleterious neurochemical sequelae of brain injury.  相似文献   

15.
The effects of exposing rats to hypoxia (10% O2) at normal atmospheric pressure for periods of 14 or 28 days on angiotensin-converting enzyme (ACE) activity and stores of angiotensin I (ANG I) and angiotensin II (ANG II) in lung, kidney, brain, and testis were examined. ACE activity was measured by spectrophotometric assay, and active sites of ACE were estimated by measuring the binding of 125I-351A [N-(1-carbonyl-3-phenyl-propyl)-L-lysyl-L-proline], a highly specific active site-directed inhibitor of ACE, to tissue homogenates and perfused lungs. Hypoxia exposure produced progressive reductions in ACE activity in lung homogenates and in ACE inhibitor binding to perfused lungs. ANG II levels in lungs from hypoxia-adapted animals were significantly less than air controls, suggesting that the reduction in intrapulmonary ACE activity was associated with reduced local generation of ANG II. ACE activity was increased in kidney and unchanged in brain and testis of hypoxia-adapted rats compared with air controls. Thus the effects of chronic hypoxia on catalytically active ACE and ACE active sites in the intact animal were organ specific. Adaptation to chronic hypoxia did not significantly alter plasma renin activity or ANG I or ANG II levels or serum ACE content. The hypoxia-induced alterations in lung and kidney ACE were reversible after return to a normoxic environment.  相似文献   

16.
Unexplained weight loss during the latter stages of aging is commonly preceded by a spontaneous diminution in food intake. Multiple etiologies of age-related anorexia in humans, ranging from social isolation to impaired gastrointestinal function, have been proposed. The observation of this phenomenon in older laboratory animals suggests that physiological changes play a significant causal role. A continually expanding body of information on the neurochemical control of food intake supports a contribution of altered neurochemistry to dysregulated feeding behavior. This review provides an update on the relationship between declining food intake during advanced age and physiological (specifically neurochemical) function. The complexity of the control of food intake as well as the variety of investigative methods used in this field of study render the identification of definitive causes difficult. Evidence presented here is evaluated and possible etiologic factors are suggested.  相似文献   

17.
Previous studies in mammalian models indicate that the rate of mitochondrial reactive oxygen species ROS production and the ensuing modification of mitochondrial DNA (mtDNA) link oxidative stress to aging rate. However, there is scarce information concerning this in relation to caloric restriction (CR) in the brain, an organ of maximum relevance for ageing. Furthermore, it has never been studied if CR started late in life can improve those oxidative stress-related parameters. In this investigation, rats were subjected during 1 year to 40% CR starting at 24 months of age. This protocol of CR significantly decreased the rate of mitochondrial H2O2 production (by 24%) and oxidative damage to mtDNA (by 23%) in the brain below the level of both old and young ad libitum-fed animals. In agreement with the progressive character of aging, the rate of H2O2 production of brain mitochondria stayed constant with age. Oxidative damage to nuclear DNA increased with age and this increase was fully reversed by CR to the level of the young controls. The decrease in ROS production induced by CR was localized at Complex I and occurred without changes in oxygen consumption. Instead, the efficiency of brain mitochondria to avoid electron leak to oxygen at Complex I was increased by CR. The mechanism involved in that increase in efficiency was related to the degree of electronic reduction of the Complex I generator. The results agree with the idea that CR decreases aging rate in part by lowering the rate of free radical generation of mitochondria in the brain.  相似文献   

18.
The SAMP8 strain spontaneously develops learning and memory deficits with characteristics of aging, and is a good model for studying the mechanism of cognitive dysfunction with age. Oxidative stress occurs systemically in SAMP8 from early on in life and increases with aging. Neuropathological changes such as the deposition of Aβ, hyperphosphorylation of tau, impaired development of dendritic spines, and sponge formation, and neurochemical changes were found in the SAMP8 brain. These changes may be partially mediated by oxidative stress. Oxidative damage is a major factor in neurodegenerative disorders and aging. A decline in the respiratory control ratio suggesting mitochondrial dysfunction was found in the brain of SAMP8. The rise in oxidative stress following mitochondrial dysfunction may trigger neuropathological and neurochemical changes, disrupting the development of neural networks in the brain in SAMP8. Special issue article in Honour of Dr. Akitane Mori.  相似文献   

19.
1. Mitochondria show morphological changes on aging: the volume density decreases and the total surface area or volume increase. 2. Biochemical studies indicated a decrease in the rate of oxygen consumption and ATP levels for increasing age. Measurements of calcium transport across the mitochondrial membrane revealed a decrease in accumulated calcium and an alteration in the uptake kinetics of the ion in older animals. 3. Theophylline and calcitonin action were also studied. In both age groups (young and old) theophylline shows an inhibitory effect on all the parameters studied (both morphological and biochemical). 4. Calcitonin showed no effect on morphological and respiratory parameters, although it increased calcium uptake into the mitochondrion to a lesser extent in the 24 month old animals.  相似文献   

20.
A brief review of the available information concerning age-related genomic (DNA) damage and its repair, with special reference to brain tissue, is presented. The usefulness of examining the validity of DNA-damage and repair hypothesis of aging in a postmitotic cell like neuron is emphasized. The limited number of reports that exist on brain seem to overwhelmingly support the accumulation of DNA damage with age. However, results regarding the age-dependent decline in DNA-repair capacity are conflicting and divided. The possible reasons for these discrepancies are discussed in light of the gathering evidence, including some human genetic disorders, to indicate how complex is the DNA-repair system in higher animals. It is suggested that assessment of repair potential of neurons with respect to a specific damage in a specific gene might yield more definitive answers about the DNA-repair process and its role in aging.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号