首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. A spectrophotofluorimetric method for the determination of glyoxylic acid in biological materials is described. 2. The method is based on the reaction between glyoxylic acid and resorcinol in acid solution, a fluorescent complex being obtained on the subsequent addition of alkali. 3. The reaction was found to be sensitive and highly specific, the minimum detectable amount of glyoxylic acid being 1·35×10−8 mole. 4. The urinary excretion of glyoxylic acid by ten normal adults ranged from 1·4 to 4·7mg./24hr. Small but measurable amounts of glyoxylic acid were found in cell-free extracts of Pseudomonas oxalaticus OX1 grown on oxalic acid as a source of carbon. No glyoxylic acid was detected in human serum.  相似文献   

2.
Ten minutes after uptake of 2,4-dichlorophenoxyacetic acid-1-14C(2,4-D-1-14C) by excised Ribes sativum leaves, 37·8 % of the radioactivity in water-soluble metabolites was in glyoxylic acid. When 2,4-D- 2-14C was supplied under the same conditions, 23·0 % of the radioactivity of the water-soluble rnetabolites was in glyoxylic acid. Radioactive glycine and glyoxylic acid, isolated from Ribes sativum 6 hr after uptake of 2,4-D-1-14C, contained essentially all of the 14C in the carboxyl-carbon atoms. When 2,4-D-2-14C was the precursor, the glycine isolated contained 64·8 % of its radioactivity in C2, while 60·0 % of the radioactivity in glyoxylic acid was in C2. The side-chain label of 2,4-D-2-14C-4-36Cl was more efficiently incorporated into ethanol-insoluble plant residue than the ring-label. The metabolism of glyoxylic acid-1-14C and 2,4-D-1-14C in excised Ribes sativum leaves were compared. The data suggest a cleavage of the acetate-moiety of 2,4-D resulting in a C2 compound, perhaps glyoxylate.  相似文献   

3.
Ureide analyses of soybean (Glycine max L.) tissues were accomplished with a modified and simplified automated analysis used to determine allantoin concentration in rat urine. The length of the circuit and flow rates of the solutions were reduced, and NaOH was used for color development at room temperature. Keto-acids did not significantly interfere with the determinations of ureides except for glyoxylic acid in extracts of fresh soybean tissue. The interference caused by glyoxylic acid was avoided by adding phenylhydrazine HCl to the solution of NaOH used for alkaline hydrolysis of allantoin.  相似文献   

4.
Aldoses are degraded by vanadium pentaoxide in m sulphuric acid into formic acid and the next lower aldose, and aldonic acids are degraded into carbon dioxide and the next lower aldose. Each reaction consumes two equivalents of oxidant. Glycoaldehyde is oxidized to formic acid via glyoxal, and glycolic acid is oxidized to carbon dioxide and formic acid via glyoxylic acid.  相似文献   

5.
In this study, we investigated the metabolism of ethylene glycol in the Pseudomonas putida strains KT2440 and JM37 by employing growth and bioconversion experiments, directed mutagenesis, and proteome analysis. We found that strain JM37 grew rapidly with ethylene glycol as a sole source of carbon and energy, while strain KT2440 did not grow within 2 days of incubation under the same conditions. However, bioconversion experiments revealed metabolism of ethylene glycol by both strains, with the temporal accumulation of glycolic acid and glyoxylic acid for strain KT2440. This accumulation was further increased by targeted mutagenesis. The key enzymes and specific differences between the two strains were identified by comparative proteomics. In P. putida JM37, tartronate semialdehyde synthase (Gcl), malate synthase (GlcB), and isocitrate lyase (AceA) were found to be induced in the presence of ethylene glycol or glyoxylic acid. Under the same conditions, strain KT2440 showed induction of AceA only. Despite this difference, the two strains were found to use similar periplasmic dehydrogenases for the initial oxidation step of ethylene glycol, namely, the two redundant pyrroloquinoline quinone (PQQ)-dependent enzymes PedE and PedH. From these results we constructed a new pathway for the metabolism of ethylene glycol in P. putida. Furthermore, we conclude that Pseudomonas putida might serve as a useful platform from which to establish a whole-cell biocatalyst for the production of glyoxylic acid from ethylene glycol.  相似文献   

6.
3-(3-Carboxyphenyl)-DL-[2-14C]alanine has been incorporated into four species of iris. In all species extensive metabolization takes place. In Iris × hollandica, in which both the alanine derivative and 3′-carboxyphenylglycine occur, the products identified are the glycine derivative, 3′-carboxyphenylacetate acid, 3′-carboxymandelic acid, and 3′-carboxyphenylglyoxylic acid. In I. sanguinea, in which the alanine and glycine derivatives also occur, the products identified are the glycine and acetic acid derivatives but the major product is 3-(3-hydroxymethylphenyl)alanine, a naturally occurring amino acid in this species. In I. tectorum, in which only the carboxy-substituted alanine derivative occurs, the products identified are the acetic acid and glyoxylic acid derivatives. In I. pallida, not containing any of the meta-substituted amino acids, the products identified are again the acetic acid and glyoxylic acid derivatives. The results have been further substantiated by incorporation of labelled 3′-carboxyphenylacetic acid and 3′-carboxymandelic acid into I. × hollandica and I. sanguinea.The results demonstrate three different metabolic patterns for the alanine derivative and confirm previous results on the pathway from the alanine to the glycine derivative. Furthermore, the results may be of significance for the elucidation of the catabolism of phenylalanine.  相似文献   

7.
Specific, spectrophotometric methods are described for the determination of glyoxylic acid from aldonic acids and pyruvic acid from 2-C-methylaldonic acids, which allow their determination in admixture. Confirmation of the classification of these aldonic acids is obtained by ion-exchange chromatography of the products of periodate oxidation.  相似文献   

8.
An automated system is described for the hypoiodite oxidation of aldoses and substituted aldoses to the corresponding aldonic acids. Automated determination of the glyoxylic acid and formaldehyde obtained on oxidation with periodate enables the 3-O-, 4-O-, and 6-O-substituted aldonic acids to be distinguished. The method is applied to the analysis of oligosaccharides in column eluates.  相似文献   

9.
Degradation of 1,4-Dioxane and Cyclic Ethers by an Isolated Fungus   总被引:2,自引:1,他引:1  
By using 1,4-dioxane as the sole source of carbon, a 1,4-dioxane-degrading microorganism was isolated from soil. The fungus, termed strain A, was able to utilize 1,4-dioxane and many kinds of cyclic ethers as the sole source of carbon and was identified as Cordyceps sinensis from its 18S rRNA gene sequence. Ethylene glycol was identified as a degradation product of 1,4-dioxane by the use of deuterated 1,4-dioxane-d8 and gas chromatography-mass spectrometry analysis. A degradation pathway involving ethylene glycol, glycolic acid, and oxalic acid was proposed, followed by incorporation of the glycolic acid and/or oxalic acid via glyoxylic acid into the tricarboxylic acid cycle.  相似文献   

10.
Whole brains from Rhodnius prolixus treated with glyoxylic acid display catecholamine histofluorescence in eleven bilaterally distributed clusters of neurones, and in three circumscribed neuropile regions. This simple method offers resolution of some features not detected in studies on sectioned insect tissue; cephalic neurosecretory cells in chronically starved animals are histofluorescent and diverse catecholamine-handling fibres converge within the brain of this insect.  相似文献   

11.
The biosynthesis of bialaphos [a herbicide, 2-amino-4(hydroxy)(methyl)-phosphinoylbutyryl-alanylalanine] produced by Streptomyces hygroscopicus, proceeds through the degradation of glucose to phosphoenol pyruvate, the formation of a CP bond, acetic addition by acetyl-CoA and alanine addition. Therefore, bialaphos formation is considered to be closely related to glucose metabolism. Based on this hypothesis, sugar consumption and the activities of the tricarboxylic acid cycle enzymes were examined using a highly productive strain and a strain of the lower productivity. It was clear that the highly productive strain has a lower sugar consumption rate and lower yield of cells, compared with the lower productivity strain. The activities of the tricarboxylic acid cycle enzymes of the highly productive strain were lower than those of the lower productivity strain, while the activities of the glyoxylic acid cycle enzymes of the highly productive strain were higher. From these findings, it is suggested that the highly productive strain suppresses the flow from acetyl-CoA and pyruvate (as substrates of bialaphos) to the tricarboxylic acid cycle, and efficiently directs these substrates to the secondary metabolism by activation of the glyoxylic acid cycle, resulting in a high rate of bialaphos production in this strain.  相似文献   

12.
Homoaconitic acid, the second intermediate of the proposed pathway for lysine biosynthesis in yeast, is accumulated in the growth medium of a lysine-requiring mutant. This acid has been identified on paper and column chromatography by comparing it with authentic cis-homoaconitic acid. The infrared spectrum of the isolated material was identical with that of synthetic cis-homoaconitic acid. In addition, the chemical structure of the enzymatic product has been verified by degradation to glyoxylic and α-ketoglutaric acids after treatment with KMnO4 and HIO4 and by catalytic reduction to the saturated acid 1,2,4-butanetricarboxylic acid. The isolated homoaconitic acid was also identified as a substrate for a purified enzyme preparation of homoaconitase.  相似文献   

13.
A series of hydrazones and semicarbazones of glyoxylic acid were shown to have a potent inhibitory effect on the enzyme-catalysed conversion of D-Tyr-Val-Gly to D-Tyr-Val-NH2. Among the derivatives tested, the inhibitory activity was increased by the presence of hydrophobic substituents and decreased by polar substituents. The inhibition produced by glyoxylic acid phenylhydrazone was shown to be competitive. No inhibition was obtained with pyruvic acid phenylhydrazone, which possesses a methyl group in place of the alpha-H of glyoxylic acid phenylhydrazone. The inhibitory potencies of these non-peptide substances are in accord with the specificity exhibited by the amidating enzyme in its reaction with peptide substrates. The inhibition produced by the glyoxylic acid derivatives was shown to be due to their ability to act as substrates for the peptide-amidating enzyme. The product formed from [14C]glyoxylic acid phenylhydrazone was identified as oxalic acid phenylhydrazide by co-chromatography in three chromatographic systems. The results demonstrate that the enzyme-catalysed oxidation of glyoxylic acid phenylhydrazone takes place by a mechanism involving hydroxylation. It is implicit that peptide amidation catalysed by the same enzyme proceeds by a similar mechanism.  相似文献   

14.
The structures of the toxins produced by Cochliobolus victoriae, victorin B, C, D, E, and victoricine, have recently been established. These toxins and modified forms of victorin C were tested for their effect on dark CO2 fixation in susceptible oat (Avena sativa) leaf slices. Half-maximal inhibition of dark CO2 fixation occurred with the native toxins in the range of 0.004 to 0.546 micromolar. An essential component for the inhibitory activity of victorin is the glyoxylic acid residue, particularly its hydrated aldehyde group. Removal of glyoxylic acid completely abolished the inhibitory activity of victorin, and the reduction of the aldehydo group transformed the toxin into a protectant. Conversion of victorin to its methyl ester resulted in diminution of inhibitory activity to 10% of the original activity of the toxin, whereas derivatization of the ε-amino group of the β-hydroxylysine moiety resulted in a decrease of inhibitory activity to 1% of that of victorin C. However, the derivatized toxin retained its host selectivity. In addition, the opening of the macrocyclic ring of the toxin drastically reduced the inhibitory activity.  相似文献   

15.
Enzymes of general metabolism have been determined in the latex of Papaver somniferum in an attempt to elucidate further the nature of the 1000 g130 min organelles and their role in alkaloid biogenesis. A number of enzymes involved in the glyoxylic acid and tricarboxylic acid cycles have been found, namely, aconitase, isocitrate dehydrogenase, succinate dehydrogenase, fumarase, malate dehydrogenase and isocitrate lyase. Two enzymes of glycolysis, namely, pyruvate kinase and lactate dehydrogenase, as well as enzymes associated with peroxisomes (glyoxylate reductase, catalase) and lysosomes (arylesterase, acid phosphatase) have been studied. Finally, some enzymes previously reported as occurring in poppy seedlings have been investigated, namely peroxidase, glutamate—oxaloacetate and glutamate-pyruvate transaminases, together with phenylalanine, tyrosine, DOPA and glutamic acid decarboxylases.  相似文献   

16.
Summary Glyoxylic acid vapour is a most powerful reagent for the fluorescence histochemical visualization of biogenic monoamines. In the present investigation the mechanisms of fluorophore formation in the glyoxylic acid reaction has been studied in detail for tryptamine in histochemical models and in freeze-dried tissue, utilizing microspectrofluorometric, Chromatographic, and mass spectrometric techniques in combination with isotope measurements.The glyoxylic acid-tryptamine reaction proceeds through an initial Pictet-Spengler type cyclization to 1,2,3,4-tetrahydro--carboline-1-carboxylic acid, followed by two alternative fluorophore forming reactions yielding 3,4-dihydro--carboline, or the 2-carboxymethyl-3,4-dihydro--carbolinium and 2-methyl-3,4-dihydro--carbolinium salts, which are all strongly fluorescent. It is shown that the yield of fluorophores is considerably higher in the glyoxylic acid vapour reaction than in the formaldehyde vapour reaction of the standard Falck-Hillarp method, and that this higher efficiency of glyoxylic acid is due to the most favourable catalysing properties of the carboxylic group of the glyoxylic acid molecule.  相似文献   

17.
The mutagenicity of products formed by ozonation of naphthoresorcinol in aqueous solution was assayed with Salmonella typhimurium strains TA97, TA98, TA100, TA102 and TA104 in the presence and absence of S9 mix from phenobarbital- and 5,6-benzoflavone-induced rat liver. Ozonated naphthoresorcinol was mutagenic in TA97, TA98, TA100 and TA104 without S9 mix. By the addition of S9 mix, the mutagenic activity of ozonated naphthoresorcinol was markedly suppressed in TA98 and TA100, but became positive in TA102. High-performance liquid chromatography (HPLC) after derivatization to 2,4-dinitrophenylhydrazones demonstrated the formation of glyoxal as an ozonation product of naphthoresorcinol. Ion chromatographic technique also demonstrated the formation of o-phthalic acid, muconic acid, maleic acid, mesoxalic acid, glyoxylic acid and oxalic acid as ozonation products. The mutagenicity assays of these identified products with five Salmonella showed that glyoxal and glyoxylic acid were directly mutagenic; the former in TA100, TA102 and TA104, the latter in TA97, TA100 and TA104. In the presence of S9 mix, glyoxylic acid gave a positive response of mutagenicity for TA102. The experimental evidence supported that glyoxal and glyoxylic acid may contribute to the mutagenicity of ozonated naphthoresorcinol.  相似文献   

18.
Throughout the development (maturation) of mango fruit the contents of citric and glyoxylic acids increased steadily. As the fruit matured the levels of isocitrate lyase, malate lyase and alanine: glyoxylate aminotransferase increased and reached maximum values prior to the time of harvesting. At and after harvest the levels of malate lyase and alanine : glyoxylate aminotransferase began to decrease but that of isocitrate lyase remained high until after the harvest when it decreased. The level of glyoxylate reductase was highest in the early developmental stage but declined as the fruit matured and ripened. As the fruit ripened, after harvest, the amounts of citric and glyoxylic acids decreased concomitant with a considerable increase in the levels of isocitrate dehydrogenase, malic dehydrogenase, malic enzyme and glyoxylate dehydrogenase.Fatty acid oxidizing capacity of mitochondria isolated from immature (developing) and postclimacteric fruit pulps was much less than that observed with mitochondria from preclimacteric and climacteric fruit. Glyoxylate stimulated the oxidation of caprylic, lauric, myristic and palmitic acids and inhibited the activity of isocitrate dehydrogenase in vitro.  相似文献   

19.
Summary The glyoxylic acid fluorescence histochemical method for the visualization of neuronal monoamines has been applied to fresh or glyoxylic acid-perfused brain tissue, sectioned with the Vibratome intrument. This technique demonstrates the central noradrenaline and dopamine neuron systems with a sensitivity and richness in details that is superior to the standard Falck-Hillarp formaldehyde method, as observed in the following three ways: First, the entire axon, including the non-terminal portions, became fluorescent; second, more extensive terminal systems were detected in certain brain regions ; third, due to the absence of diffusion, the delicate dopamine-containing fibres in e. g. the caudate nucleus and the median eminence had a distinct fluorescence. It is concluded that the glyoxylic acid method applied to Vibratome sections should be ideal for precise and detailed neuroanatomical studies on central catecholamine neuron systems.  相似文献   

20.
T Waris  S Partanen 《Histochemistry》1975,41(4):369-372
Fluorescence induced by aqueous solution of glyoxylic acid and formaldehyde-induced fluorescence of catecholamines were compared for the demonstration of peripheral adrenergic nerves in stretch preparations. Glyoxylic acid was better than formaldehyde for the demonstration of the adrenergic nerves. On the other hand, the formaldehyde was better than glyoxylic acid for the demonstration of biogenic amines in cell bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号