首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Leishmania, arginase is responsible for the production of ornithine, a precursor of polyamines required for proliferation of the parasite. In this work, the activation kinetics of immobilized arginase enzyme from L. (L.) amazonensis were studied by varying the concentration of Mn2+ applied to the nickel column at 23 °C. The intensity of the binding of the enzyme to the Ni2+ resin was directly proportional to the concentration of Mn2+. Conformational changes of the enzyme may occur when the enzyme interacts with immobilized Ni2+, allowing the following to occur: (1) entrance of Mn2+ and formation of the metal bridge; (2) stabilization and activation of the enzyme at 23 °C; and (3) an increase in the affinity of the enzyme to Ni2+ after the Mn2+ activation step. The conformational alterations can be summarized as follows: the interaction with the Ni2+ simulates thermal heating in the artificial activation by opening a channel for Mn2+ to enter.  相似文献   

2.
The possible role of fructosyl transferase in the biosynthesis of fructosans in Agave americana was investigated. This enzyme was extracted from A. americana stem and purified 17.5-fold by salt fractionation and DEAE-cellulose chromatography. The optimum conditions for the enzyme were pH 6. 1, temperature 37°, substrate concentration 20% and Km 3.6 × 10?1 M; Ag+, Pb 2+, Hg2+, Al3+, Sn2+, CN? acted as inhibitors and Ca2+, Mg2+, Co2+ and Li+ actemd as activators. Only sugars of the type F ~ R (R-aidose), e.g. sucrose and raffinose acted as substrates for the enzyme. The donor acceptor specificity of the enzyme was studied extensively. Sugars sucrose. None of the intermediates of fructosan biosynthesis from sucrpse acted as fructose donors. The possible acceptors from sucrose and raffinose. The enzyme was capable of building up oligosaccharides up to FIOG from sucrose. None of the intermediates of fructosan biosynthesis from sucrose acted as fructose donors. The possible mechanism of fructosan biosynthesis from sucrose is discussed.  相似文献   

3.
Behm C. A. and Bryant C. 1982. Phosphoenolpyruvate carboxykinase from Fasciola hepatica. International Journal for Parasitology12: 271–278. The kinetic properties of a partially purified preparation of phosphoenolpyruvate carboxykinase (PEPCK) from F. hepatica were examined. The pH optimum for the carboxylation reaction is 5.8–6.2. The enzyme is more active with Mn2+ than Mg2+ and the Mn2+ saturation curve was sigmoid. Apparent Km values for the substrates GDP, IDP, PEP and HCO3? were determined and found to be in the same range as those reported for other helminths except that the enzyme is less sensitive to low PEP concentrations. GTP and ATP at 0.5 and 1.0 mM inhibit the enzyme; the GTP inhibition was greater in the presence of Mg2+ than Mn2+ and was competitive with GDP. It was concluded that the activity of PEPCK from F. hepatica is controlled by the concentration of reactants and the ambient pH, that the accumulation of GTP is a sensitive mechanism for inhibiting the carboxylation reaction and that PEPCK activity in the cytosol is likely to be favoured over that of pyruvate kinase except when pH is high and PEP concentration low.  相似文献   

4.
CopA, a thermophilic ATPase from Archaeoglobus fulgidus, drives the outward movement of Cu+ across the cell membrane. Millimolar concentration of Cys dramatically increases (≅ 800%) the activity of CopA and other PIB-type ATPases (Escherichia coli ZntA and Arabidopsis thaliana HMA2). The high affinity of CopA for metal (≅ 1 μM) together with the low Cu+-Cys KD (< 10− 10M) suggested a multifaceted interaction of Cys with CopA, perhaps acting as a substitute for the Cu+ chaperone protein present in vivo. To explain the activation by the amino acid and further understand the mechanism of metal delivery to transport ATPases, Cys effects on the turnover and partial reactions of CopA were studied. 2-20 mM Cys accelerates enzyme turnover with little effect on CopA affinity for Cu+, suggesting a metal independent activation. Furthermore, Cys activates the p-nitrophenyl phosphatase activity of CopA, even though this activity is metal independent. Cys accelerates enzyme phosphorylation and the forward dephosphorylation rates yielding higher steady state phosphoenzyme levels. The faster dephosphorylation would explain the higher enzyme turnover in the presence of Cys. The amino acid has no significant effect on low affinity ATP Km suggesting no changes in the E1 ↔ E2 equilibrium. Characterization of Cu+ transport into sealed vesicles indicates that Cys acts on the cytoplasmic side of the enzyme. However, the Cys activation of truncated CopA lacking the N-terminal metal binding domain (N-MBD) indicates that activation by Cys is independent of the regulatory N-MBD. These results suggest that Cys is a non-essential activator of CopA, interacting with the cytoplasmic side of the enzyme while this is in an E1 form. Interestingly, these effects also point out that Cu+ can reach the cytoplasmic opening of the access path into the transmembrane transport sites either as a free metal or a Cu+-Cys complex.  相似文献   

5.
ATPase was purified from an alkalophilic Bacillus. The enzyme has a molecular weight of 410,000 and consists of five types of subunits of molecular weights of 60,000 (α), 58,000 (β), 34,000 (γ), 14,000 (δ), and 11,000 (?). The subunit structure is suggested to be α3β3γδ?. The enzyme is activated by Mg2+ and Ca2+. The pH optima of the enzyme with 0.1 and 2.0 mm Mg2+ are 9 and 6, and those with 1 and 10 mm Ca2+ are 8–9 and 7, respectively. Ca2+-ATPase hydrolyzes only ATP, whereas Mg2+-ATPase hydrolyzes GTP and, to a lesser extent, ATP. The values of V and Km of the enzyme with ATP in the presence of 10 mm Ca2+ or 0.6 mm Mg2+ at pH 7.2 are 17 or 0.5 units/mg protein and 1.2 or 0.3 mm, respectively. The enzyme with Mg2+ is appreciably activated by HCO?3. Relationship of the ATPase to the active transport system in the bacterium is suggested.  相似文献   

6.
Some properties of a preparation of an enzyme, lunularic acid decarboxylase, from the liverwort Conocephalum conicum are described. The enzyme is normally bound and could be solubilized with Triton X-100; at least some of the bound decarboxylase activity appears to be associated with chloroplasts. For lunularic acid the enzyme has Km 8.7 × 10?5 M (pH 7.8 and 30°). Some substrate analogues have been tested but no other substrate was found. Pinosylvic acid is a competitive inhibitor for the enzyme, Ki 1.2 × 10?4 M (pH 7.8 and 30°). No product inhibition was observed. Lunularic acid decarboxylase activity has also been observed with a cell-free system from Lunularia cruciata.  相似文献   

7.
Acid invertase activity in germinating lettuce seeds is first observed after 15 hr germination, from when it rises steadily at least till 30 hr of germination. The enzyme was purified about 500-fold using ammonium sulphate fractionation followed by isoelectric focussing. Labelling the enzyme with 35SO4 or leucine-14C during development of its activity, followed by purification suggests that acid invertase is synthesized de novo during germination. The possible significance of acid invertase in the metabolism of the seed is discussed.  相似文献   

8.
J. Wilms  J. Lub  R. Wever 《BBA》1980,589(2):324-335
1. The steady-state oxidation of ferrocytochrome c by dioxygen catalyzed by cytochrome c oxidase, is inhibited non-competitively towards cytochrome c by methanethiol, ethanethiol, 1-propanethiol and 1-butanethiol with Ki values of 4.5, 91, 200 and 330 μM, respectively.2. The inhibition constant Ki of ethanethiol is found to be constant between pH 5 and 8, which suggests that only the neutral form of the thiol inhibits the enzyme.3. The absorption spectrum of oxidized cytochrome c oxidase in the Soret region shows rapid absorbance changes upon addition of ethanethiol to the enzyme. This process is followed by a very slow reduction of the enzyme. The fast reaction, which represents a binding reaction of ethanethiol to cytochrome c oxidase, has a k1 of 33 M?1 · s?1 and dissociation constant Kd of 3.9 mM.4. Ethanethiol induces fast spectral changes in the absorption spectrum of cytochrome c, which are followed by a very slow reduction of the heme. The rate constant for the fast ethanethiol reaction representing a bimolecular binding step is 50 M?1 · s?1 and the dissociation constant is about 2 mM. Addition of up to 25 mM ethanethiol to ferrocytochrome c does not cause spectral changes.5. EPR (electron paramagnetic resonance) spectra of cytochrome c oxidase, incubated with methanethiol or ethanethiol in the presence of cytochrome c and ascorbate, show the formation of low-spin cytochrome a3-mercaptide compounds with g values of 2.39, 2.23, 1.93 and of 2.43, 2.24, 1.91, respectively.  相似文献   

9.
The characterization and partial purification of an enzyme from Amaranthus tricolor which decolourizes betacyanin are described. The enzyme occurs in greatest amounts in the roots and in 3.5-4-day-old seedings. Preparation from an acetone powder of roots results in a more active and more stable enzyme than that obtained from crude buffer extraction. The activity is in the 130 000 g supernatant from sucrose-buffer extraction. It has a pH optimum of 3.4 Km towards amaranthin of 3.1 × 10?6 M and towards betanin of 3.5 × 10?6 M, and is inhibited by lack of oxygen, and by azide, diethyldithiocarbamate, thiourea, dithiothreitol and cysteine. The product of the reaction has the spectral and electrophoretic properties of betalamic acid. The possibility of enzymic decolourization of betacyanin during acetic acid extraction used for assay of the pigment in the Amaranthus bioassay for cytokinins needs to be recognized.  相似文献   

10.
About 68–86% of the cysteine synthase activity in leaf tissue of white clover (Trifolium repens) and peas (Pisum sativum cultivar Massey Gem) was associated with chloroplasts. The enzymes from white clover and peas were purified ca 66 and 12-fold respectively. For clover, the Km values determined by calorimetric and S2? ion electrode methods were: S2? 0.51 and 0.13 mM; O-acetylserine (OAS), 3.5 and 2.O mM respectively. The analogous values for the pea enzyme were: S2?, 0.24 and 0.06 mM; OAS, 3.1 and 0.24 mM. Both enzymes were inhibited by cystathionine and cysteine. Pretreatment with cysteine inactivated the enzyme, but addition of pyridoxal phosphate caused partial reactivation. Isolated pea chloroplasts (70–75 % intact) catalysed OAS-dependent assimilation of sulphide at a mean rate of 88 μmol/mg Chl/hr. About 85 % of the OAS-dependent sulphide assimilated was recovered as cysteine. The rates were unaffected by light and 2 μM DCMU. Sonicating the chloroplasts enhanced the rate by 1.3–2 fold. Cysteine synthase activity was associated with the chloroplast stroma. Similar results were obtained for clover chloroplasts except that both the intactness and the rates were lower.  相似文献   

11.
Streptococcus mutans Ingbritt (serotype c) was found to secrete basic glucosyltranserase (sucrose: 1,6-α-D-glucan 3-α- and 6-α- glucosyltransferase). The enzyme preparation obtained by ethanol fractionation, DEAE Bio-Gel A chromatography, chromatofocusing and preparative isoelectric focusing was composed of three isozymes with slightly different isoelectric points (pI 8.1–8.4). The molecular weight was estimated to be 151 000 by SDS-polyacrylamide gel electrophoresis. The specific activity of the enzyme was 9.8 IU per mg of protein and the optimum pH was 6.5. The enzyme was activated 2.4-fold by commercial dextran T10, and had Km values of 7.1 μM for the dextran and 4.3 mM for sucrose. Glucan was de novo synthesized from sucrose by the enzyme and found to be 1,6- α-D-glucan with 17.7% of 1,3,6-branching structure by a gas-liquid chromatography-mass spectroscopy.  相似文献   

12.
Cell-free extracts have been prepared from Papaver somniferum which catalyze the reduction of codeinone-[16-3H] to codeine. The methodology for examining this conversion has pointed to conditions for exploring the preparation of suitable enzyme extracts. P. bracteatum also yielded a cell-free system which reduced codeinone to codeine, both of which are foreign to this species.  相似文献   

13.
A new sequence specific endonuclease, MraI has been purified from Micrococcus radiodurans. This enzyme cleaves bacteriophage λ DNA at three sites, adenovirus type 2 DNA at more than 12 sites and has a unique site on ΦX174 DNA. It has no sites on SV40, PM2 and pBR322 DNA. The three sites on phage λ DNA are different from those cleaved by SmaI, XmaI and XorII. The sites of cleavage are located at 0.424, 0.447 and 0.834 fractional lengths on the physical map of λ DNA. MraI is shown to be an isoschizomer of SacII and SstII recognizing the palindromic nucleotide sequence ′5-CCGC↓GG-3′. The enzyme shows an absolute requirement of Mg2+, but is active in the absence of added 2-mercaptoethanol. The enzyme shows activity at a broad range of temperature and pH with an optimum at 45°C and pH 7.0. MraI represents the first restriction enzyme from a bacterium whose DNA lacks modified methylated bases.  相似文献   

14.
A prenyltransferase activity (EC 2.5.1.1) has been partially purified from the flavedo of Citrus sinensis with 30–40-fold purification and 35–60 % yield. The enzyme catalyses the condensation of IPP with DMAPP or GPP. The products are neryl and geranyl pyrophosphate as well as (2E,6E)- and (2Z,6E)-farnesyl pyrophosphate. The two C15-products are predominant. The E- and Z-synthetase activities are partially dissociated during the purification procedure, as well as by heat or ageing. Preparations devoid of Z-synthetase were obtained. Mg2 + is required for full activity. Mn2 + or Co2 + can replace Mg2 +. The ratio of E/Z-products formed is different for each cation. Mg2 + complexes of allylic substrates or of products protect the enzyme against heat-inactivation and against inactivation by DTNB. The results are interpreted in terms of two or more prenyltransferases stereoselective for the synthesis of E- and Z-products.  相似文献   

15.
S-adenosylmethionine synthetase was studied from bloodstream forms of Trypanosoma brucei brucei, the agent of African sleeping sickness. Two isoforms of the enzyme were evident from Eadie Hofstee and Hanes-Woolf plots of varying ATP or methionine concentrations. In the range 10–250 μM the Km for methionine was 20 μM, and this changed to 200 μM for the range 0.5–5.0 mM. In the range 10–250 μM the Km for ATP was 53 μM, and this changed to 1.75 mM for the range 0.5–5.0 mM. The trypanosome enzyme had a molecular weight of 145 kDa determined by agarose gel filtration. Methionine analogs including selenomethionine, L-2-amino-4-methoxy-cis but-3-enoic acid and ethionine acted as competitive inhibitors of methionine and as weak substrates when tested in the absence of methionine with [14C]ATP. The enzyme was not inducible in procyclic trypomastigotes in vitro, and the enzyme half-life was > 6 h. T. b. brucei AdoMet synthetase was inhibited by AdoMet (Ki 240 μM). The relative insensitivity of the trypanosome enzyme to control by product inhibition indicates it is markedly different from mammalian isoforms of the enzyme which are highly sensitive to AdoMet. Since trypanosomes treated with the ornithine decarboxylase antagonist DL-α-difluoromethylornithine accumulate AdoMet and dcAdoMet (final concentration ≈ 5 mM), this enzyme may be the critical drug target linking inhibition of polyamine synthesis to disruption of AdoMet metabolism.  相似文献   

16.
Dipeptidyl peptidase IV (EC 3.4.14.—) from Streptococcus mitis ATCC 9811 was purified to a specific activity of 56.2 units/mg protein by a series of column chromatographic techniques. The purified enzyme was apparently homogeneous as judged by disc gel electrophoresis. Gel filtration on a calibrated column indicated an apparent molecular weight of 120,000 for the native enzyme. Gel electrophoresis of the denatured enzyme in the presence of sodium dodecyl sulfate in a constant acrylamide concentration resulted in the appearance of a single component for which a molecular weight of 53,000 was calculated. The purified enzyme has an optimum pH between 6.0 and 8.7 and an isoelectric point of 4.0. The Km value toward glycylprolyl-p-nitroanilide is about 6.0 × 10?5m. Substrate specificity studies indicated that the purified enzyme hydrolyzes specifically N-terminal X-proline from X-Pro-p-nitroanilides. Inhibition of this enzyme was achieved with Hg2+, Pb2+, Zn2+, EDTA, and diisopropyl phosphorofluoridate, but not with N-ethyl-maleimide and sulfhydryl inhibitors.  相似文献   

17.
In Escherichia coli three major alkaline phosphatase isozymes are formed by molecular conversions depending on physiological conditions. A chromosomal gene, iap, is responsible for alkaline phosphatase isozyme conversion and is assumed to code for a proteolytic enzyme removing the arginine residue(s) from the N-terminal position of alkaline phosphatase subunits. A chromosomal fragment which complemented the Iap? phenotype was cloned into pBR322 by a shotgun method. Transducing phage λiap was constructed in vitro from the chromosomal fragment containing the iap gene and λtna DNA. The integration site of the phage on chromosome was identified as the iap locus by PI transduction, which meant that the cloned chromosomal DNA contained authentic iap gene.The restriction map of the hybrid plasmid was constructed. Based upon this information, several iap deletion plasmids as well as smaller iup+ plasmids were constructed. Analysis of the phenotypes conferred by these plasmids enabled us to locate iap gene within a 2-kb segment of the cloned DNA.The cells carrying the iap+ plasmid showed very efficient isozyme conversion even in medium containing arginine, an inhibitor for the isozyme conversion. This indicates overproduction of the iap gene product.  相似文献   

18.
Isocitrate lyase was partially purified from germinating spores of the fern Anemia phyllitidis. The enzyme requires Mg2+ and thiol compounds for maximal activity and has a pH optimum between 6.5 and 7.5. The Km of the enzyme for threo-Δs-isocitrate is 0.5 mM. Succinate inhibits the enzyme non-competitively (Ki. 1.8 mM). The increase of isocitrate lyase activity is closely correlated with the induction of the germination process. The fall of enzyme activity during germination is associated with the decline in triglyceride reserves.  相似文献   

19.
Pullulan 4-glucanohydrolase, a novel pullulan-hydrolyzing enzyme from Aspergillus niger, was highly purified by means of acetone precipitation, chromatography on P-cellulose and DEAE-cellulose, and gel filtration on Sephadex G-150. More than 430-fold purification was achieved through these procedures from crude extract of wheat bran culture. The enzyme can liberate a large amount of isopanose and a small amount of tetrasaccharide from pullulan. The optimum pH of the enzyme action on pullulan was 3.0–3.5 and the optimum temperature was 40 °C at pH 3.5. The enzyme activity remained intact after heating at 50 °C for 30 min at pH 3.7–4.5. The enzyme was stable at pH 2.0–8.0 on storage at 5 °C for 24 hr. The purified enzyme attacked reducing end α-1,4-glucosidic linkages adjacent to α-1,6-glucosidic linkages in pullulan, 63-α-glucosylmaltotriose, 62-α-maltosylmaltose and panose, to liberate isopanose, isomaltose and maltose, isopanose and glucose, and isomaltose and glucose, respectively. The molecular weight of the enzyme determined by gel filtration on Bio-Gel P-150 was about 74,000.  相似文献   

20.
Transient changes in cyclic AMP levels accompany the light-growth response of the sporangiophore of Phycomyces blakesleeanus. Furthermore growth is regulated by endogenous hormones. Since adenylate cyclase may perform a role in these events, some properties of the enzyme from the sporangiophores of Phycomyces blakesleeanus are reported here. The enzyme is mostly particulate and activity is dependent on a divalent cation possibly Mg2+; Mn2+ and Ca2+ are inhibitory. Its Km is 0.5 mM and the pH optimum is 7.8. Low levels of GTP markedly enhance activity. Nueleoside triphosphates, including ATP at high concentrations, are inhibitory while AMP and ADP and to a lesser extent IMP increase activity. Ouabain, NaF, and alloxan also inhibit Phycomyces cyclase. Pyruvate, imidazole, nucleoside monophosphates other than AMP and IMP, histamine, glucagon, octopamine, γ-aminobutyric acid and norepinephrine have little or no effect. However, high concentrations of epinephrine and dopamine tripled activity. The effect of dopamine was shown to be saturable. Adenylate cyclase extracted in the dark was significantly activated upon simultaneous exposure to light and substrate. An inference is made that sensory transduction in Phycomyces may involve adenylate cyclase, although the interaction may or may not be a direct one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号