首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ATX II is a toxin extracted from tentacles of Anemonia sulcata. It was known that this protein displays neurotoxic effects on frog isolated neuromuscular preparation (Fig. 1, 2) and that muscular contractures observed with ATX II are blocked by d-tubocurarine (Fig. 3) or on a 40-days-denervated gastrocnemius (Fig. 4). Part of these experiments has already appeared. 1. These effects of ATX II depend on calcium concentration in the bathing medium, as is the case for transmitter release. The same results were observed when we substituted strontium to calcium. 2. On an intact sciatic sartorius preparation, ATX II does not act on the amplitude of the miniature endplate potentials (mepps, Fig. 6). The muscular action potential is not modified by this toxin. 3. ATX II increases the frequency of the mepps (Fig. 5). The evoked transmitter release (quantal content) after ATX II is also largely increased (Fig. 7). 4. In conclusion, it is suggested that ATX II acts indirectly on the muscle through an increase in acetylcholine release from the motor nerve terminals.  相似文献   

2.
The venom secreted from glands appended to the jaws of Glycera convoluta, a Polychaete Annelid, increases the spontaneous quantal release of transmitter from nerve terminals. The component that is biologically active on vertebrate cholinergic nerve terminals has recently been shown to be a high molecular weight protein. In the present work, the crude extract from the venom apparatus was shown to be toxic for mammals and crustaceans. It was fractionated by gel filtrations and ion exchange chromatographies. The biologically active component at frog neuromuscular junctions, α-glycerotoxin, was purified more than 1,000-fold. It is distinct from the components that are toxic for crustaceans. Purified α-glycerotoxin is a globular protein of 300,000 ± 20,000 mol wt. It has a Stokes radius of 65 Å and a sedimentation coefficient of 11 S. By its molecular properties, α-glycerotoxin appears distinct from other neurotoxins such as α-latrotoxin, which also trigger transmitter release.  相似文献   

3.
The venom glands of snakes of the families Elapidae and Viperidae are thought to have evolved from Duvernoy's gland of colubrid ancestors. In highly venomous snakes elements of the external adductor musculature of the jaw insert fibers directly onto the capsule of the venom gland. These muscles, upon contraction, cause release of contents by increasing intraglandular pressure. In Thamnophis sirtalis, a colubrid, there is no direct connection between Duvernoy's gland and the adductor musculature. The anatomical arrangement of the gland, skull, adductor muscles, and the integument is such that contraction of the muscles may facilitate emptying of the gland. This hypothesis was tested by electrical stimulation of the muscles, which resulted in significantly greater release of secretion than elicited by controls. The results suggest a possible early step in the evolution of a more intimate association between venom glands and adductor musculature in highly venomous snakes.  相似文献   

4.
In a rat phrenic nerve-hemidiaphragm preparation, calcitonin gene-related peptide (CGRP) increased the twitch contraction induced by nerve or transmural stimulation dose dependently. Either electrical or high K+ stimulation of the phrenic nerve caused release of a CGRP-like immunoreactive substance (CGRP-LIS) in a Ca2(+)-dependent manner. Electrical stimulation of the phrenic nerve also increased the cyclic AMP content in diaphragm. This increase was not observed in Ca2(+)-free medium and was blocked by antiserum against CGRP. These results indicate that excitation of the motor nerve causes release of CGRP-LIS at nerve terminals and that the released CGRP-LIS increases the cyclic AMP content of skeletal muscles and potentiates twitch contraction.  相似文献   

5.
The effects of atraxin, a neurotoxic protein from the venom glands of the funnel-web spider (Atrax robustus), have been studied in anaesthetized monkeys. At doses of 70 and 80 micrograms kg-1 i.v., atraxin caused respiratory disturbances (dyspnoea and apnoea), and profound alterations in heart rate and blood pressure. These doses also caused salivation, lachrymation, skeletal muscle fasciculation and an elevation in body temperature. Concurrent increases in firing were recorded from the phrenic nerve and from respiratory and other skeletal muscles. It is concluded that atraxin produces the same syndrome in primates as that observed with whole milked male funnel-web venom.  相似文献   

6.
A neurotoxin able to increase the spontaneous release of transmitter was found in the venom glands of the polychaete annelid Glycera convoluta. We studied the effect of this venom on the frog cutaneous pectoris muscle, where its application produced a prolonged (20-h), high-frequency discharge of miniature potentials. After 5 h of action, the initial store was renewed several times but no detectable ultrastructural changes were observed. After 19 h of sustained activity, nerve terminals with their normal vesicular contents were infrequent; others were fragmented and contained swollen mitochondria, abnormal inclusions, and vesicles of various sizes. In the noncholinergic crayfish neuromuscular preparation, the venom triggered an important increase in spontaneous quantal release that subsided in 1 h. An activity higher than that in resting conditions then persisted for many hours. This high electrical activity was not accompanied by any detectable structural modifications after 3 h. In the torpedo electric organ preparation, the venom elicited a burst of activity that returned to control levels in 1 h. The release of ACh (evaluated by the efflux of radioactive acetate) paralleled the high electrical activity. No morphological changes or significant depletion of tissue stores were detected. The venom of Glycera convoluta appears to enhance considerably the release of transmitter without impairing its turnover. The venom effect is Ca++ dependent and reversible by washing, at least during the first hour of action. Because the high rate of transmitter release appears dissociated from the later-occurring structural modifications, it is possible that the venom mimics one component of the double mode of action proposed for black widow spider venom.  相似文献   

7.
《The Journal of cell biology》1983,97(6):1737-1744
The crude extract of venom glands of the polychaete annelid Glycera convoluta triggers a large Ca2+-dependent acetylcholine release from both frog motor nerve terminals and Torpedo electric organ synaptosomes. This extract was partially purified by Concanavalin A affinity chromatography. The biological activity was correlated in both preparations to a 300,000-dalton band, as shown by gel electrophoresis. This confirmed previous determinations obtained with chromatographic methods. This glycoprotein binds to presynaptic but not postsynaptic plasma membranes isolated from Torpedo electric organ. Pretreatment of intact synaptosomes by pronase abolished both the binding and the venom- induced acetylcholine release without impairing the high K+-induced acetylcholine release. Pretreatment of nerve terminal membranes by Concanavalin A similarly prevented the binding and the biological response. Binding to Torpedo membranes was still observed in the presence of EGTA. An antiserum directed to venom glycoproteins inhibited the neurotoxin so we could directly follow its binding to the presynaptic membrane. Glycera convoluta neurotoxin has to bind to a ectocellularly oriented protein of the presynaptic terminal to induce transmitter release.  相似文献   

8.
The crude venom of the marine gastropod Conus geographus (L) has been separated into three lethal constituents and their actions at the mammalian neuromuscular junction examined.Chromatography of the venom of Sephadex G-50 gave one toxic fraction, which was resolved by ion exchange chromatography on SP-Sephadex into three toxic components. These components were individually purified by diafiltration and Sephadex G-15 chromatography to give Toxins I,II and III. Toxins I and II in concentrations greater than 5 ug/ml reduced the amplitude of end-plate potentials and miniature end-plate potentials; Toxin I also blocked the depolarization of muscle fibres produced by carbachol; neither toxin affected the generation of action potentials in muscle fibres. Toxin III in concentrations greater than 5 ug/ml rapidly and reversibly blocked the generation of action potentials in muscle fibres; it had no effect on resting membrane potential nor on the amplitude of epps or mepps. It also slowly blocked the compound action potential recorded from isolated sciatic nerves but this was not reversible in the experiments. The rate at which this toxin blocked action potentials was increased by stimulation of the preparation. It is suggested that Toxin III acts by blocking the inward movement of sodium during activity. Toxin III appeared to be a nonadeca or eicosa peptide possibly having a cystine residue in the N-terminal position.  相似文献   

9.
A beta-bungarotoxin was isolated from the venom of Bungarus multicinctus by column chromatography on Sephadex G-50 and SP-Sephadex. The toxin produced presynaptic effects on neuromuscular transmission with characteristics similar to those described by others. In a sympathetic ganglion, the toxin increased spontaneous acetylcholine (ACh) release and decreased ACh release evoked by preganglionic nerve stimulation. The toxin did not block the response of isolated ileum to cholinergic nerve stimulation, did not block the release of noradrenaline from the adrenergic nerve terminals of a nictitating membrane preparation, and did not alter the responses of smooth and cardiac muscle preparations to noradrenaline. It is suggested that the specificity of beta-bungarotoxin for certain nerve terminals is related either to selective binding of the toxin or to the selective presence of a necessary substrate for its action. An attempt to show selective binding of 125I-toxin to cholinergic nerve terminals in skeletal muscle was not successful.  相似文献   

10.
Facilitation of transmitter release by neurotoxins from snake venoms   总被引:1,自引:0,他引:1  
Toxins C13S1C3 and C13S2C3 from green mamba venom (Dendroaspis angusticeps) acted like dendrotoxin to increase acetylcholine release in response to nerve stimulation in the chick biventer cervicis preparation. Proteins B and E from black mamba venom (Dendroaspis polylepis) had no prejunctional facilitatory activity. All four proteins are trypsin inhibitor homologues. Binding of a prejunctional facilitatory toxin (Polylepis toxin I) to motor nerves was rapid and did not require the presence of Ca2+ or nerve stimulation. Binding was not prevented by protease inhibitors that lacked facilitatory actions. Prejunctional facilitatory toxins also augmented transmitter release in the chick oesophagus and the mouse vas deferens preparations. The effects were rapid in onset and could wane spontaneously. 125I-labelled dendrotoxin bound specifically to rat brain synaptosomes with a KD of about 3 nM. Binding was prevented by native dendrotoxin but not by beta-bungarotoxin or atropine. It is concluded that prejunctional facilitatory toxins affect transmitter release at many types of nerve endings in addition to motor nerve terminals. From consideration of the structures of active and inactive molecules, it is thought that binding of the active toxins may involve several exposed lysine residues.  相似文献   

11.
The venom glands of the annelid Glycera convoluta contain a neurotoxin which triggers ACh release from frog motor terminals and Torpedo synaptosomes. This neurotoxin binds to presynaptic, but not postsynaptic plasma membranes prepared from Torpedo electric organ. The binding site is an ectocellularly oriented protein. The binding does not require Ca. It is inhibited by pretreatment of the membrane by Concanavalin A. The toxin induced ACh release is Ca-dependent and inhibited by D 600.  相似文献   

12.
The effects of the venoms of the spiders Latrodectus mactans tredecimguttatus (black widow) and Latrodectus mactans hasselti (red back) on sensory nerve terminals in muscle spindles were studied in the mouse. A sublethal dose of venom was injected into tibialis anterior and extensor digitorum longus muscles of one leg. After survival from 30 minutes to 6 weeks muscles were examined in serial paraffin sections impregnated with silver or by electron microscopy. Sensory endings became swollen, some within 30 minutes, while over the next few hours there was progressive degeneration of annulospiral endings. By 24 hours every spindle identified by light or electron microscopy was devoid of sensory terminals. Degenerated nerve endings were taken up into the sarcoplasm of intrafusal muscle fibres. Regeneration of sensory axons began within 24 hours, new incomplete spirals were formed by 5 days and by 1 week annulospiral endings were almost all normal in appearance. Intrafusal motor terminals underwent similar acute degenerative and regenerative changes. These experiments show that intrafusal sensory and motor terminals are equally affected by Latrodectus venoms. Sensory nerve fibres possess a capacity for regeneration equal to that of motor fibres and reinnervate intrafusal muscle fibres close to their original sites of innervation.  相似文献   

13.
Since cannabinoid receptors inhibit excitatory synaptic transmission by reducing glutamate release, we have examined whether this might occur through the direct inhibition of presynaptic Ca2+ channels. In cerebrocortical nerve terminals, activation of cannabinoid receptors with WIN55,212-2 reduces the KCl-evoked release of glutamate. However, this inhibition is attenuated when N- and P/Q-type Ca2+ channels are blocked. Through Ca2+ imaging in single nerve terminals, we found that WIN55,212-2 reduced the influx of Ca2+ both in nerve terminals that contain N-type Ca2+ channels and those that contain P/Q-type Ca2+ channels. Thus, cannabinoid receptors modulate the two major Ca2+ channels coupled to glutamate release in the cerebral cortex.  相似文献   

14.
The presence and release of endogenous catecholamines in rat and guinea pig hippocampal nerve terminals was studied by fluorimetric HPLC analysis. In isolated nerve terminals (synaptosomes) the levels and breakdown of endogenous catecholamines were determined and the release process was characterized with respect to its kinetics and Ca2+ and ATP dependence. Endogenous noradrenaline and dopamine, but not adrenaline, were detected in isolated hippocampal nerve terminals. For dopamine both the levels and the amounts released were more than 100-fold lower than those for noradrenaline. In suspension, released endogenous catecholamines were rapidly broken down. This could effectively be blocked by monoamine oxidase inhibitors, Ca(2+)-free conditions, and glutathione. The release of both noradrenaline and dopamine was highly Ca2+ and ATP dependent. Marked differences were observed in the kinetics of release between the two catecholamines. Noradrenaline showed an initial burst of release within 10 s after K+ depolarization. The release of noradrenaline was terminated after approximately 3 min of K+ depolarization. In contrast, dopamine release was more gradual, without an initial burst and without clear termination of release within 5 min. It is concluded that both catecholamines are present in nerve terminals in the rat hippocampus and that their release from (isolated) nerve terminals is exocytotic. The characteristics of noradrenaline release show several similarities with those of other classical transmitters, whereas dopamine release characteristics resemble those of neuropeptide release in the hippocampus but not those of dopamine release in other brain areas. It is hypothesized that in the hippocampus dopamine is released from large, dense-cored vesicles, probably colocalized with neuropeptides.  相似文献   

15.
Sato T  Okada Y  Toda K 《Chemical senses》2004,29(8):651-657
Electrical stimulation of the frog glossopharyngeal (GP) nerve evoked slow hyperpolarizing potentials (HPs) in taste cells. This study aimed to clarify whether slow HPs were postsynaptically induced in taste cells. The slow HPs were recorded intracellularly with a microelectrode. When Ca2+ concentration in the blood plasma was decreased to approximately 0.5 mM, the amplitude of slow HPs reduced and their latency lengthened. When the Ca2+ concentration was increased to approximately 20 mM, the amplitude of slow HPs increased and their latency shortened. Addition of Cd2+ to the plasma greatly reduced the amplitude of slow HPs and lengthened their latency. These data suggest that the slow HPs are dependent on presynaptic activities in the GP nerve terminals in the taste disk. Of various antagonists injected intravenously for blocking receptors of neurotransmitter biogenic amines and peptides, only antagonists for substance P blocked the slow HPs at 2-4 mg/kg body wt. Application of substance P of 2 mg/kg to the plasma induced hyperpolarizing responses in taste cells, whose amplitude was the same as that of the slow HPs induced by GP nerve stimulation. Application of a nonselective cation channel antagonist, flufenamic acid, to the plasma blocked the slow HPs. These results suggest that the slow HPs are generated by closing the nonselective cation channels in the postsynaptic membrane of taste cells following possible release of substance P from the GP nerve terminals in the taste disk.  相似文献   

16.
We have studied the effects of 25 mM potassium, electrical stimulation of the phrenic nerve, and crude black widow spider venom on the ultrastructure, electrophysiology, and acetylcholine (ACh) contents of mouse diaphragms. About 65% of the ACh in diaphragms is contained in a depletable store in the nerve terminals. The rest of the ACh is contained in a nondepletable store that may correspond to the store that remains in denervated muscles and includes, in addition, ACh in the intramuscular branches of the phrenic nerve. About 4% of the ACh released from the depletable store at rest is secreted as quanta and may come from the vesicles, while 96% is secreted in a nonquantized form and comes from an extravesicular pool. The size of the extravesicular pool is uncertain: it could be less than 10%, or as great as 50%, of the depletable store. K causes a highly (but perhaps not perfectly) selective increase in the rate of quantal secretion so that quanta account for about 50% of the total ACh released from K- treated diaphragms. K, or electrical stimulation of the phrenic nerve, depletes both the vesicular and extravesicular pools of ACh when hemicholinium no. 3 (HC-3) is present. However, most of the vesicles are retained under these conditions so that the diaphragms are able to increase slightly their rates of release of ACh when K is added. Venom depletes the terminals of their vesicles and abolishes the release of quanta of ACh. It depletes the vesicular pool of ACh (since it depletes the vesicles), but may only partially deplete the extravesicular pool (since it reduces resting release only 10--40%). The rate of release of ACh from the residual extravesicular pool does not increase when 25 mM K is added. Although we cannot exclude the possibility that stimulation may double the rate of release of ACh from the extravesicular pool, our results are compatible with the idea that the ACh released by stimulation comes mainly from the vesicles and that, when synthesis is inhibited by HC-3, ACh may be exchanged between the extravesicular pool and recycled vesicles.  相似文献   

17.
Venom from the lethal Australian spider, Atrax robustus, causes fasciculation of muscles in vivo and in isolated diaphragms in mice. Spontaneous end-plate potentials were recorded in muscle fibres exposed to the venom and associated spontaneous electrical activity could also be recorded from the phrenic nerve. It was proposed that the venom produces muscle fasciculation by causing abnormal, spontaneous, repetitive firing of motor nerves. The mechanism of this action was investigated in aplysia neurones. The venom produced abnormal, spontaneous, repetitive inward currents in voltage clamped neurones and changed the current-voltage characteristics of the surface membrane. It is suggested that the basic mode of action of Funnel-web venom is to change the electrical field in nerve membrane.  相似文献   

18.
Acetylcholinesterase (AChE) in skeletal muscle is concentrated at neuromuscular junctions, where it is found in the synaptic cleft between muscle and nerve, associated with the synaptic portion of the myofiber basal lamina. This raises the question of whether the synaptic enzyme is produced by muscle, nerve, or both. Studies on denervated and regenerating muscles have shown that myofibers can produce synaptic AChE, and that the motor nerve may play an indirect role, inducing myofibers to produce synaptic AChE. The aim of this study was to determine whether some of the AChE which is known to be made and transported by the motor nerve contributes directly to AChE in the synaptic cleft. Frog muscles were surgically damaged in a way that caused degeneration and permanent removal of all myofibers from their basal lamina sheaths. Concomitantly, AChE activity was irreversibly blocked. Motor axons remained intact, and their terminals persisted at almost all the synaptic sites on the basal lamina in the absence of myofibers. 1 mo after the operation, the innervated sheaths were stained for AChE activity. Despite the absence of myofibers, new AChE appeared in an arborized pattern, characteristic of neuromuscular junctions, and its reaction product was concentrated adjacent to the nerve terminals, obscuring synaptic basal lamina. AChE activity did not appear in the absence of nerve terminals. We concluded therefore, that the newly formed AChE at the synaptic sites had been produced by the persisting axon terminals, indicating that the motor nerve is capable of producing some of the synaptic AChE at neuromuscular junctions. The newly formed AChE remained adherent to basal lamina sheaths after degeneration of the terminals, and was solubilized by collagenase, indicating that the AChE provided by nerve had become incorporated into the basal lamina as at normal neuromuscular junctions.  相似文献   

19.
1. Longitudinal muscles of the rectum of the skate are first briefly excited and then inhibited by stimulation of the sympathetic nerve fibres. 2. ATP, adrenalin and noradrenalin also produce inhibition. 3. 5HT is strongly excitatory but acetylcholine is only excitatory above 1 microM. 4. The rectum contracts strongly to mechanical stimulation; the response is not blocked by TTX. 5. The inhibitory actions of sympathetic stimulation or ATP were not blocked by guanethidine, propranalol, antazoline, theophylline or bee venom (apamin). 6. ATP continued to produce inhibition after the nerve response was blocked by TTX. 7. The urinary bladder gives slow rhythmic contractions, which are inhibited by nerve stimulation and by adrenalin but ATP has no action. 8. 5HT is strongly excitatory but acetylcholine has little action.  相似文献   

20.
Synapses with complex nerve terminals consisting of several terminal arbors of a single axon divided by myelin segments were investigated using histological and electrophysiological techniques during experiments on the cutaneous-pectotoralis muscles of different aged frogs. Numbers of synapses with complex nerve terminals were shown to increase during the postnatal developmental process. The relationship between the complexity of nerve terminals, summated length of terminals, and size of muscle fiber is described. Some terminal arborizations at complex nerve terminals originate from nodes of Ranvier; these are marked by low quantal secretion and a distinctive pattern of sodium current decay along the path of the terminals. The causes and mechanisms governing increased complexity of nerve endings in phasic muscles are discussed, together with transmitter release patterns at these endings. It is postulated that growth and myelination processes occur in parallel at the nerve terminal.A. A. Ukhtomskii Physiological Institute, Leningrad State University; S. A. Kurashov Medical Institute, RSFSR Ministry of Health, Kazan'. V. I. Ul'yanov State University, Kazan'. Translated from Neirofiziologiya, Vol. 22, No. 1, pp. 99–107, January–February, 1990.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号