首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Primordial germ cells can be induced at both the anterior and ventral region of the Drosophila egg by transplanted posterior polar plasm. Two questions arise from these results: (1) Is fertilization required for germ plasm to be functional, and (2) at what stage during oogenesis does the posterior polar plasm become established as a germ-cell determinant?Polar plasm from unfertilized eggs and from oocytes at stage 10 to 14 of Drosophila melanogaster was implanted into the anterior region of cleavage embryos. Some injected embryos were analyzed at the ultrastructural level during blastoderm formation. Polar plasm from unfertilized eggs and from oocytes of stages 13 and 14 was found to be integrated into several anterior cells that resembled morphologically normal pole cells. The formation of such cells, however, could not be detected in embryos injected with polar plasm from oogenetic stages 10 to 12. Experimentally induced pole cells proved to be capable of differentiating into functional germ cells when cycled through the germ line of genetically different host embryos. About 5% of the flies developing from these embryos produced progeny that originated from the induced pole cells. Germ-line mosaicism in those flies also could be detected histochemically in their gonads. No germ cells were recovered with polar plasm transplants from oogenetic stages 10 to 12.The results show that posterior polar plasm of the unfertilized egg is functional in germ-cell determination, and that prior to egg maturation this cytoplasm has already acquired its determinative ability. This is the first demonstration that specific developmental information stored in the cytoplasm can be traced back to a particular region of the oocyte.  相似文献   

3.
Abstract

The preservation of mammalian germ plasm by freezing has become an integral part of animal breeding, medicine, agriculture, reproductive biology and embryology. Considerable understanding of the physical‐chemical and physiological phenomena involved in cryopreservation of sperm, eggs and embryos has been achieved. This understanding has resulted in substantial improvements in the efficiency and efficacy of methods used to cryopreserve germ plasm. In addition, many of these methods have become integrated directly into the practice of animal breeding, and have contributed directly to the international trade in animal genetics. Development of these methods has been derived from close cooperation and interaction between the research and industrial communities. As the powerful techniques of molecular biology are focused on fundamental and applied aspects of embryology and reproductive biology, there are new problems regarding the cryobiology of germ cells to be solved.  相似文献   

4.
Genetic and germ plasm stocks worth conserving   总被引:3,自引:0,他引:3  
The relative costs and benefits of genetic stock collections and germ plasm collections are discussed. The status of national and international collections is compared with the needs of plant breeders and geneticists. There is an international need for germ plasm systems that emphasize the use and employment of materials rather than acquisition and storage. For base collections to function, they must provide for regeneration, characterization, documentation, and evaluation of their materials. The quality of a germ plasm system should be judged on the basis of the quality of the materials available to scientists. Adequate quantities of high-quality seed that are of known provenience, spanning the range of known genetic diversity, promptly delivered, and well described constitute the minimum that should be expected. All too often such minimal requirements are not met.  相似文献   

5.
Germ cells are essential for the maintenance of a species, and in most organisms a specific germ cell lineage is established early during embryogenesis. In flies, worms and frogs a morphologically distinct germ plasm assembles in the egg and signals present in this cytoplasm are necessary for the establishment of the germ cell fate. Although the molecular nature of the germ cell signal remains unknown, genes involved in the process of germ cell determination, proliferation and survival have recently been identified.  相似文献   

6.
In some species such as flies, worms, frogs and fish, the key to forming and maintaining early germ cell populations is the assembly of germ plasm, microscopically distinct egg cytoplasm that is rich in RNAs, RNA-binding proteins and ribosomes. Cells which inherit germ plasm are destined for the germ cell lineage. In contrast, in mammals, germ cells are formed and maintained later in development as a result of inductive signaling from one embryonic cell type to another. Research advances, using complementary approaches, including identification of key signaling factors that act during the initial stages of germ cell development, differentiation of germ cells in vitro from mouse and human embryonic stem cells and the demonstration that homologs of germ plasm components are conserved in mammals, have shed light on key elements in the early development of mammalian germ cells. Here, we use FRET (Fluorescence Resonance Energy Transfer) to demonstrate that living mammalian germ cells possess specific RNA/protein complexes that contain germ plasm homologs, beginning in the earliest stages of development examined. Moreover, we demonstrate that, although both human and mouse germ cells and embryonic stem cells express the same proteins, germ cell-specific protein/protein interactions distinguish germ cells from precursor embryonic stem cells in vitro; interactions also determine sub-cellular localization of complex components. Finally, we suggest that assembly of similar protein complexes may be central to differentiation of diverse cell lineages and provide useful diagnostic tools for isolation of specific cell types from the assorted types differentiated from embryonic stem cells.  相似文献   

7.
Small grains in the USDA World Collection total about 44,500 accessions. This constitutes a valuable, growing, and much used gene bank. It contains only a few duplicates, but many individual genes are represented over and over. Therefore, the probability of adding altogether new genes to the bank is diminishing, and only as truly exotic, untapped gene pools are discovered in the world is the trend altered. It is feared that agricultural improvement and increased utilization and grazing of natural areas is erasing forever some rich, but unknown, gene centers. Future generations may, therefore, have to do without needed genes that we have now and do not know how to preserve. They would have to wait until nature evolved them, or they would have to find and use ways to induce the genes by directed evolutionary processes.  相似文献   

8.
This report presents data from ultrastructural and morphometric studies on the germinal-body-like structures, nuage, nuage-mitochondrial clusters and chromatoid bodies in 4.5-day embryo cells and spermatogenic cells of the laboratory mouse Mus musculus. In the 4.5-day embryo cells the germinal-body-like structures that, according to previous data, arise by condensation of mitochondria in Graafian oocytes, were found not to undergo any ultrastructural alterations. In spermatogonia the germinal-body-like structures presumably were transformed into nuage that functioned as 'intermitochondrial cement' binding the mitochondrial clusters. In primary spermatocytes mitochondria aggregated by nuage were found with large vacuoles containing membraneous conglomerates that were obviously excreted by organelles into the cytoplasm. The chromatoid bodies that arose in spermatocytes and finally disintegrated in the posterior part of late spermatids seemed not to be implicated in the pathway of the germinal-body-like structure. The dispersion of chromatoid bodies was noted to be accompanied by excretion of membraneous conglomerates by late spermatid mitochondria. The spermatozoa were not found to contain either the germinal-body-like structures or any other germ-plasm-related structures.  相似文献   

9.
Summary Thirty inbred lines representing a wide range of early-maturing European elite germ plasm of maize (Zea mays L.) were assayed for RFLPs using 203 clone-enzyme combinations (106 DNA clones with restriction enzymes EcoR1 and HindIII). The genetic materials comprised 14 flint, 12 dent, and 4 lines of miscellaneous origin. Objectives were to (1) characterize the genetic diversity for RFLPs in these materials, (2) compare the level of genetic diversity found within and between the flint and the dent heterotic groups, and (3) examine the usefulness of RFLPs for assigning inbreds to heterotic groups. All but two DNA clones yielded polymorphism with at least one restriction enzyme. A total of 82 and 121 clone-enzyme combinations gave single-banded and multiple-banded RFLP patterns, respectively, with an average of 3.9 and 7.7 RFLP patterns per clone-enzyme combination across all 30 inbreds, respectively. Genetic similarity (GS) between lines, estimated from RFLP data as Dice's similarity coefficient, showed considerable variation (0.32 to 0.58) among unrelated inbreds. The mean GS for line combinations of type flint x dent (0.41) was significantly smaller than for unrelated flint lines (0.46) and dent lines (0.46), but there was considerable variation in GS estimates of individual line combinations within each group. Cluster and principal coordinate analyses based on GS values resulted in separate groupings of flint and dent lines in accordance with phylogenetic information. Positioning of lines of miscellaneous origin was generally consistent with expectations based on known breeding behavior and pedigrees. Results from this study corroborated that RFLP data can be used for assigning inbreds to heterotic groups and revealing pedigree relationships among inbreds.  相似文献   

10.
Statistical genetic considerations for maintaining germ plasm collections   总被引:2,自引:0,他引:2  
One objective of the regeneration of genetic populations is to maintain at least one copy of each allele present in the original population. Genetic diversity within populations depends on the number and frequency of alleles across all loci. The objectives of this study on outbreeding crops are: (1) to use probability models to determine optimal sample sizes for the regeneration for a number of alleles at independent loci; and (2) to examine theoretical considerations in choosing core subsets of a collection. If we assume that k-1 alleles occur at an identical low frequency of p0 and that the kth allele occurs at a frequency of 1-[(k-1)p0], for loci with two, three, or four alleles, each with a p0 of 0.05, 89–110 additional individuals are required if at least one allele at each of 10 loci is to be retained with a 90% probability; if 100 loci are involved, 134–155 individuals are required. For two, three, or four alleles, when p0 is 0.03 at each of 10 loci, the sample size required to include at least one of the alleles from each class in each locus is 150–186 individuals; if 100 loci are involved, 75 additional individuals are required. Sample sizes of 160–210 plants are required to capture alleles at frequencies of 0.05 or higher in each of 150 loci, with a 90–95% probability. For rare alleles widespread throughout the collection, most alleles with frequencies of 0.03 and 0.05 per locus will be included in a core subset of 25–100 accessions.  相似文献   

11.
12.
13.
Cell fate is often determined by the intracellular localization of RNAs and proteins. In Drosophila oocytes, oskar (osk) RNA localization and the subsequent Osk synthesis at the posterior pole direct the assembly of the pole plasm, where factors for the germline and abdomen formation accumulate. osk RNA produces two isoforms, long and short Osk, which have distinct functions in pole plasm assembly. Short Osk recruits downstream components of the pole plasm, whose anchoring to the posterior cortex requires long Osk. The anchoring of pole plasm components also requires actin cytoskeleton, and Osk promotes long F-actin projections in the oocyte posterior cytoplasm. However, the mechanism by which Osk mediates F-actin reorganization remains elusive. Furthermore, although long Osk is known to associate with endosomes under immuno-electron microscopy, it was not known whether this association is functionally significant. Here we show that Rabenosyn-5 (Rbsn-5), a Rab5 effector protein required for the early endocytic pathway, is crucial for pole plasm assembly. rbsn-5(-) oocytes fail to maintain microtubule polarity, which secondarily disrupts osk RNA localization. Nevertheless, anteriorly misexpressed Osk, particularly long Osk, recruits endosomal proteins, including Rbsn-5, and stimulates endocytosis. In oocytes lacking rbsn-5, the ectopic Osk induces aberrant F-actin aggregates, which diffuse into the cytoplasm along with pole plasm components. We propose that Osk stimulates endosomal cycling, which in turn promotes F-actin reorganization to anchor the pole plasm components to the oocyte cortex.  相似文献   

14.
In zebrafish, primordial germ cells (PGCs) are determined by a specialized maternal cytoplasm, the germ plasm, which forms at the distal ends of the cleavage furrows in 4-cell embryos. The germ plasm includes maternal mRNAs from the germline-specific genes such as vasa and nanos1, and vegetally localized dazl RNA is also incorporated into the germ plasm. However, little is known about the distributions and assembly mechanisms of germ plasm components, especially during oogenesis. Here we report that the germ plasm RNAs vasa, nanos1, and dazl co-localize with the mitochondrial cloud (MC) and are transported to the vegetal cortex during early oogenesis. We found that a mitochondrial cloud localization element (MCLE) previously identified in the 3' untranslated region (3'UTR) of Xenopus Xcat2 gene can direct RNA localization to the vegetal cortex via the MC in zebrafish oocytes. In addition, the RNA-binding protein Hermes is a component of the MC in zebrafish oocytes, as is the case in Xenopus. Moreover, we provide evidence that the dazl 3'UTR possesses at least three types of cis-acting elements that direct multiple steps in the localization process: MC localization, anchorage at the vegetal cortex, and localization at the cleavage furrows. Taken together, the data show that the MC functions as a conserved feature that participates in transport of the germ plasm RNAs in Xenopus and zebrafish oocytes. Furthermore, we propose that the germ plasm components are assembled in a stepwise and spatiotemporally-regulated manner during oogenesis and early embryogenesis in zebrafish.  相似文献   

15.
Summary Soybean RFLP markers have been primarily developed and genetically mapped using wide crosses between exotic and adapted genotypes. We have screened 38 soybean lines at 128 RFLP marker loci primarily to characterize germ plasm structure but also to evaluate the utility of RFLP markers identified in unadapted populations. Of these DNA probes 70% detected RFLPs in this set of soybean lines with an average polymorphism index of 0.30. This means that only 1 out of 5 marker loci was informative between any particular pair of adapted soybean lines. The variance associated with the estimation of RFLP genetic distance (GDR) was determined, and the value obtained suggested that the use of more than 65–90 marker loci for germ plasm surveys will add little precision. Cluster analysis and principal coordinate analysis of the GDR matrix revealed the relative lack of diversity in adapted germ plasm. Within the cultivated lines, several lines adapted to Southern US maturity zones also appeared as a separate group. GDR data was compared to the genetic distance estimates obtained from pedigree analysis (GDP). These two measures were correlated with r = 0.54 for all 38 lines, but the correlation increased to r = 0.73 when only adapted lines were analyzed.  相似文献   

16.
Inverted Xenopus eggs have reduced numbers of primordial germ cells (PGCs). The extent of the reduction varies from spawning to spawning. Histologic examination revealed that PGC counts were lowest in inverted eggs which displayed the greatest amount of shift in the vegetal mass of large yolk platelets, although the germ plasm itself always remained localized in the egg's original vegetal hemisphere. Even at blastulation the germ plasm continued to be localized in the egg's original vegetal hemisphere. In many cases, however, it was confined to the periphery of the embryo, which probably accounts for the reduced PGC number in some tadpoles. In other cases it may have been dispersed and therefore not detectable in histologic analyses. Although the altered site of involution in inverted embryos did not influence PGC development, subsequent cell movement patterns apparently did. Those embryos which displayed the largest degree of pattern reversal at the tail-bud stage also exhibited the most extreme reduction in PGC numbers. A brief cold shock (4 degrees C, 10 min) prior to first cleavage leads to a further reduction in PGC numbers in inverted embryos, probably as a result of the displacement of the germ plasm away from its original vegetal pole location.  相似文献   

17.
Abstract. Inverted Xenopus eggs have reduced numbers of primordial germ cells (PGCs). The extent of the reduction varies from spawning to spawning. Histologic examination revealed that PGC counts were lowest in inverted eggs which displayed the greatest amount of shift in the vegetal mass of large yolk platelets, although the germ plasm itself always remained localized in the egg's original vegetal hemi-sphere. Even at blastulation the germ plasm continued to be localized in the egg's original vegetal hemisphere. In many cases, however, it was confined to the periphery of the embryo, which probably accounts for the reduced PGC number in some tadpoles. In other cases it may have been dispersed and therefore not detectable in histologic analyses.
Although the altered site of involution in inverted embryos did not influence PGC development, subsequent cell movement patterns apparently did. Those embryos which displayed the largest degree of pattern reversal at the tail-bud stage also exhibited the most extreme reduction in PGC numbers. A brief cold shock (4° C, 10 min) prior to first cleavage leads to a further reduction in PGC numbers in inverted embryos, probably as a result of the displace-ment of the germ plasm away from its original vegetal pole location.  相似文献   

18.
In the unfertilized egg, germ plasm is widely distributed throughout the vegetal subcortex in small islets. Following fertilization or artificial activation, the location and organization changes, and by the 4- to 8-cell stage the germ plasm forms a small number of large patches overlying the vegetal pole. We distinguish three processes that produce these changes. The first of these is aggregation which involves the islets moving towards the vegetal pole to form large patches by coalescence. This phase requires microtubules but does not depend on cleavage or dynamic microfilaments. The second phase is ingression during which the patches of germ plasm move to the interior of the egg. The movement is due to a flow of cytoplasm from the vegetal pole internally and the cytoplasmic current does not require either microtubules or dynamic microfilaments. In the third phase, the germ plasm is trapped in the vegetal hemisphere by microtubular arrays--in normal development, the mitotic spindle.  相似文献   

19.
20.
The incorporation of exotic germ plasm into breeding populations can broaden and diversify the genetic base of adapted genotypes. To more effectively utilize the genetic resources existing in Sorghum bicolor (L.) Moench, a rapid and efficient method of incorporating exotic genotypes into adapted populations is needed. Therefore, this study was conducted to compare the effectiveness of backcrossing to a broad-based population versus backcrossing to an inbred line for developing improved lines from adapted x exotic crosses. A wild sorghum, a cultivated landrace, and a converted sorghum line were crossed to an inbred line (CK60) and a broad-based population (KP9B). After two generations of backcrossing to the respective adapted parent, 50 F2 lines were derived from each of the backcross generations of every mating and evaluated at three test environments. Backcrossing to an inbred line (CK60) gave fewer high-yielding segregates and generated less genetic variation than backcrossing to a population (KP9B). Also, the number of agronomically acceptable lines derived from each CK60 mating was fewer than that derived from the corresponding mating with KP9B. Overall, the use of a broad-based population as an adapted recurrent parent for introgressing exotic genotypes may provide good opportunities for developing suitable inbred lines from adapted x exotic backcrosses.Contribution no. 93-499-J from the Kansas Agricultural Experiment Station  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号