首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A collagen was isolated from squid skin, a processing waste product. The biofunctional activities of enzymatic squid skin collagen hydrolysates were determined to produce a value-added material. Five low-molecular-mass hydrolysate fractions, F1 (>30 kD), F2 (10–30 kD), F3 (3–10 kD), F4 (1–3 kD), and F5 (<1 kD), were manufactured from its enzymatic hydrolysate by ultrafiltration. Fraction F3 had the strongest antihyaluronidase inhibitory activity. Gly, Val, and Pro were major amino acids in F3, while Met, Tyr, and His were minor ones. The molecular mass of F3 was in the range of 3.4 to 10 kD. F3 exhibited copper chelating ability in a concentration-dependent manner. The ferrous chelating ability of F3 was almost 50% at 200 µg/mL. F3 also inhibited tyrosinase activity by 39.65% at 1 mg/mL. Furthermore, F3 had stronger hydroxyl radical scavenging activity (IC50 = 149.94 µg/mL) than ascorbic acid (IC50 = 212.94 µg/mL). Therefore, the squid collagen hydrolysate can be utilized as a nutraceutical or cosmeceutical agent.  相似文献   

2.
Summary Nine cultures of fibroblast cell types and 13 epithelial-like cell types were maintained for 1 week in media supplemented with L-asborbic acid (50 μg per ml). All fibroblast-like cultures produced extracellular fibers that stained positively by a silver-impregnation reticulin stain. Nine of the 13 epithelial-like cultures produced fibers that stained positively for reticulin. Nearly all cultures not supplemented with ascorbic acid showed no fiber staining. Those few lines that stained positively for reticulin in the absence of ascorbic-acid supplementation demonstrated only slight reticulin formation. Reticulin from one fibroblast culture and one epithelial culture was examined by electron microscopy, and the silver-impregnated fibrils were morphologically identical to collagen. The reticulin was digestible with collagenase, providing further evidence that the silver-impregnation reticulin stain identifies collagen in culture. The demonstration of collagen can be performed easily in histology laboratories using Formalin-fixed cells, and provides a means of assaying a functional property of cells in culture which is characteristic of connective tissue fibroblasts in general as well as certain specialized epithelia.  相似文献   

3.
Vidal BC  Mello ML 《Biopolymers》2005,78(3):121-128
The optical anisotropies (linear dichroism or LD and birefringence) of crystalline aggregates of the sulfonic azo-dye Ponceau SS and of dye complexed with chicken tendon collagen fibers were investigated in order to assess their polarizing properties and similarity to liquid crystals. In some experiments, the staining was preceded by treatment with picric acid. Crystalline fibrous aggregates of the dye had a negative LD, and their electronic transitions were oriented perpendicular to the filamentary structures. The binding of Ponceau SS molecules to the collagen fibers altered the LD signal, with variations in the fiber orientation affecting the resulting dichroic ratios. The long axis of the rod-like dye molecule was assumed to be bound in register, parallel to the collagen fiber. Picric acid did not affect the oriented binding of the azo dye to collagen fibers. There were differences in the optical anisotropy of Ponceau SS-stained tendons from 21-day-old and 41-day-old chickens, indicating that Ponceau SS was able to distinguish between different ordered states of macromolecular aggregation in chicken tendon collagen fibers. In the presence of dichroic rod-like azo-dye molecules such as Ponceau SS, collagen also formed structures with a much higher degree of orientation. The presence of LD in the Ponceau SS-collagen complex even in unpolarized light indicated that this complex can act as a polarizer.  相似文献   

4.
ABSTRACT

We analysed the data of swordtip squid Uroteuthis edulis caught in the eastern Tsushima Strait, from April to September between 2012 and 2018, to consider the relationships among mantle length and body and gonad weights, associated with the estimated seasonal migratory routes and itineraries improved by the quantitative results of the tracer experiments. Our analyses have enabled us to reveal the characteristics of kensaki-type squid and the reasons for their appearance. We identified the kensaki-type U. edulis as male individuals, caught mainly in April–June, with long slender bodies, probably adapted to empirical duration of the cold sea water temperature in the Sea of Amakusa. Researchers and fishermen have referred to the seasonal migrating group including such males as a spring-migrating group. However, the females belonging to the spring-migrating group had no kensaki-type characteristics. Moreover, contrary to that achieved by the males, the female squid had acquired greater maturation in the spring than in any other seasons. These data demonstrated that the females continued to grow to maturation even in the cold sea waters, implying a different female strategy for reproduction from that of male squid. We are concerned that the commercially valuable kensaki-type squid may decrease in the future because the water temperature in the northern East China Sea is gradually rising, probably due to global climate change.  相似文献   

5.
Regional differences in the structure of the plasma membrane and acrosome membrane of squid spermatozoa were studied by freeze-fracture and thin section electron microscopy. In regions of close apposition the plasma membrane and acrosome membrane are adjoined to one another by regularly spaced linkages. These linkage sites, overlie a set of fibers located at the inner face of the acrosomal membrane. The acrosomal fibers terminate in a layer of granular material located at the base of the acrosome. Detergent treatment of sperm releases the fibers and granular material as an interconnected complex. Freeze-fracture replicas reveal a random arrangement of intramembranous particles in the plasma membrane over the sperm head and linear aggregates of intramembranous particles in the acrosomal membrane. Several regional differences in the structure of the flagellar plasma membrane are present. The thickness of the glycocalyx is progressively reduced distally along the flagellum. Freeze-fracture replicas show evenly spaced linear arrays of intramembranous particles which extend parallel t o the flagellar long axis. Examination of spermatozoa extracted to disrupt flagellar geometry suggest that the dense fiber-doublet microtubule complexes are attached to the plasma membrane. The possible functional role of these membrane differentiations and their relationship t o membrane structures in mammalian spermatozoa are discussed.  相似文献   

6.
Aclassic model for tissue morphogenesis is the formation of ligament-like straps between explants of fibroblasts placed in collagen gels. The patterns arise from mechanical forces exerted by cells on their substrates (Harris et al., 1981). However, where do such straps come from, and how are slow local movements of cells transduced into dramatic long-distance redistributions of collagen? We embedded primary mouse skin and human periodontal ligament fibroblasts in collagen gels and measured the time course of patterning by using a novel computer algorithm to calculate anisotropy, and by tracking glass beads dispersed in the gel. As fibroblasts began to spread into their immediate environments, a coordinated rearrangement of collagen commenced throughout the gel, producing a strap on a time scale of minutes. Killing of cells afterwards resulted in a partial relaxation of the matrix strain. Surprisingly, relatively small movements of collagen molecules on the tensile axis between two pulling explants induced a much larger concomitant compression of the gel perpendicular to the axis, organizing and aligning fibers into a strap. We propose that this amplification is due to the geometry of the collagen matrix, and that analogous amplified movements may drive morphological changes in other biological meshes, both outside and inside the cell.  相似文献   

7.
8.
The collagen model peptide with sequence (Pro-Hyp-Gly)4-Pro-Gly-(Pro-Hyp-Gly)5 contains a central Gly-Pro-Gly interruption in the consensus collagen sequence. Its high-resolution crystal structure defines the molecular consequences of such an interruption for the collagen triple-helical conformation, and provides insight into possible structural and biological roles of similar interruptions in the -Gly-X-Y- repeating pattern found in non-fibrillar collagens. The peptide (denoted as the Hyp minus peptide or Hyp-) forms a rod-like triple helix structure without any bend or kink, and crystallizes in a quasi-hexagonal lattice. The two Pro-Hyp-Gly zones adopt the typical triple-helical collagen conformation with standard Rich and Crick II hydrogen bonding topology. Notably, the central zone containing the Gly-Pro-Gly interruption deviates from the standard structure in terms of hydrogen bonding topology, torsion angles, helical, and superhelical parameters. These deviations are highly localized, such that the standard features are regained within one to two residues on either side. Conformational variations and high temperature factors seen for the six chains of the asymmetric unit in the zone around the interruption point to the presence of a local region of considerable plasticity and flexibility embedded within two highly rigid and ordered standard triple-helical segments. The structure suggests a role for Gly-X-Gly interruptions as defining regions of flexibility and molecular recognition in the otherwise relatively uniform repeating collagen conformation.  相似文献   

9.
Isolated squid stellate nerves and giant fiber lobes were incubated for 8 hr in Millipore filtered sea water containing [3H]uridine. The electrophoretic patterns of radioactive RNA purified from the axoplasm of the giant axon and from the giant fiber lobe (cell bodies of the giant axon) demonstrated the presence of RNA species with mobilities corresponding to tRNA and rRNA. The presence of labeled rRNAs was confirmed by the behavior of the large rRNA component (31S) which, in the squid, readily dissociates into its two constituent moyeties (17S and 20S). Comparable results were obtained with the axonal sheath and the stellate nerve. In all the electrophoretic patterns, additional species of radioactive RNA migrated between the 4S and the 20S markers, i.e. with mobilities corresponding to presumptive mRNAs. Chromatographic analysis of the purified RNAs on oligo(dT)cellulose indicated the presence of labeled poly(A)+ RNA in all tissue samples. Radioactive poly(A)+ RNA represented approximately 1% of the total labeled RNA in the axoplasm, axonal sheath and stellate nerve, but more than 2% in the giant fiber lobe. The labeled poly(A)+ RNAs of the giant fibre lobe showed a prevalence of larger species in comparison to the axonal sheath and stellate nerve. In conclusion, the axoplasmic RNAs synthesized by the isolated squid giant axon appear to include all the major classes of axoplasmic RNAs, that is rRNA, tRNA and mRNA.Special Issue dedicated to Prof. Holger Hydén.  相似文献   

10.
Summary The effects of the calcium antagonist D-600 (methoxyverapamil) on the excitatory inward sodium current,I Na, of internally perfused squid giant axons were studied under voltageclamp conditions. We observed little or no effect of the drug when it was added to the external solution at concentrations of 10–200 M. Furthermore, it did not produce a frequency, or use-dependent block ofI Na when repetitive voltage-clamp pulses were used at rates of 2–5Hz. However, it did produce use-dependent blockade ofI Na when it was placed internally at a concentration of 200 M. These results in conjunction with other studies suggest that D-600 is a selective blocker of calcium channels in squid axons when the drug is placed in the external solution. Its effects, when placed in the internal solution, are similar to those of permanently charged local anesthetic derivatives, which also produce use-dependent block ofI Na.  相似文献   

11.
The symbiosis between marine bioluminescent Vibrio bacteria and the sepiolid squid Euprymna is a model for studying animal-bacterial Interactions. Vibrio symbionts native to particular Euprymna species are competitively dominant, capable of outcompeting foreign Vibrio strains from other Euprymna host species. Despite competitive dominance, secondary colonization events by invading nonnative Vibrio fischeri have occurred. Competitive dominance can be offset through superior nonnative numbers and advantage of early start host colonization by nonnatives, granting nonnative vibrios an opportunity to establish beachheads in foreign Euprymna hosts. Here, we show that nonnative V. fischeri are capable of rapid adaptation to novel sepiolid squid hosts by serially passaging V. fischeri JRM200 (native to Hawaiian Euprymna scolopes) lines through the novel Australian squid host E. tasmanica for 500 generations. These experiments were complemented by a temporal population genetics survey of V. fischeri, collected from E. tasmanica over a decade, which provided a perspective from the natural history of V. fischeri evolution over 15,000-20,000 generations in E. tasmanica. No symbiont anagenic evolution within squids was observed, as competitive dominance does not purge V. fischeri genetic diversity through time. Instead, abiotic factors affecting abundance of V. fischeri variants in the planktonic phase sustain temporal symbiont diversity, a property itself of ecological constraints imposed by V. fischeri host adaptation.  相似文献   

12.
Alkaline phosphatase (ALP) is anchored to the outer leaflet of the lipid bilayer via phosphatidylinositol (PI) and ALP activity has been localized in the plasma membrane of numerous tissues. In the periodontal ligament ALP activity is found in the collagen fibers in addition to the plasma membrane of the osteoblasts and fibroblasts. In this study, we examined the distribution of ALP activity in the periodontal ligament of rat molars and also examined whether the bond between ALP and collagen fibers is dependent on PI by using phosphatidylinositol-specific phospholipase C (PI-PLC). ALP activity was distributed in the periodontal ligament. The activity mirrored the distribution of collagen fibers in the periodontal ligament. Cytochemical analysis also demonstrated that ALP activity was located not only in the plasma membrane of fibroblasts, but also in the collagen fiber bundles and fibrils in the periodontal ligament. After treatment with PI-PLC, the loss of ALP activity in the periodontal ligament was observed histochemically, and the loss of ALP activity in the fibroblasts as well as in the collagen fiber bundles and fibrils was observed cytochemically. These results strongly indicate that the bond between ALP and the collagen fibers is also dependent on PI.  相似文献   

13.
Type I collagen is the fundamental component of the extracellular matrix. Its α1 gene is the direct descendant of ancestral fibrillar collagen and contains 57 exons encoding the rod-like triple-helical COL domain. We trace the evolution of the COL domain from a primordial collagen 18 residues in length to its present 1014 residues, the limit of its possible length. In order to maintain and improve the essential structural features of collagen during evolution, exons can be added or extended only in permitted, non-random increments that preserve the position of spatially sensitive cross-linkage sites. Such sites cannot be maintained unless the twist of the triple helix is close to 30 amino acids per turn. Inspection of the gene structure of other long structural proteins, fibronectin and titin, suggests that their evolution might have been subject to similar constraints.  相似文献   

14.
The thermal helix-coil transition in UV irradiated collagen solution, collagen film and pieces of rat tail tendon (RTT) were compared. Their thermal stability’s were determined by differential scanning calorimeter (DSC) and by viscometric measurements. The denaturation temperatures of collagen solution, film and pieces of RTT were different. The helix-coil transition occur near 40°C in collagen solution, near 112°C in collagen film, and near 101°C in pieces of RTT. After UV irradiation the thermal helix-coil transition of collagen samples were changed. These changes depend on the degree of hydratation.  相似文献   

15.
The growth of the European squid Loligo vulgaris in northwest Portuguese waters is described and the influences of gender and hatching season analysed, based on statolith readings from individuals of a wide range of sizes. Male and female growth follows different models, males attaining a higher length-at-age than females. Males display increasing growth rates irrespective of the hatching season, but the length-at-age is higher in animals hatched during the warm season. Females may exhibit asymptotic growth or not, depending upon the environmental conditions to which they are exposed through their life cycle. Although growth rates after hatching are lower in females hatched during the cold season, favourable feeding and temperature conditions during the following spring and summer months contribute not only to increase growth rates but also to delay sexual maturation. The higher length-at-age of squid hatching in the warm season, observed in both genders, provides evidence that the temperature close to hatching has a significant impact on the size of juveniles and subadults. However, there is also strong evidence that throughout their life, environmental conditions continue to play an important role in growth rates and in defining the shape of growth.  相似文献   

16.
Lin AC  Goh MC 《Proteins》2002,49(3):378-384
The ultrastructure of fibrous long spacing (FLS) collagen fibrils has been investigated by performing both atomic force microscopy (AFM) and transmission electron microscopy (TEM) on exactly the same area of FLS collagen fibril samples. These FLS collagen fibrils were formed in vitro from type I collagen and alpha1-acid glycoprotein (AAG) solutions. On the basis of the correlated AFM and TEM images obtained before and after negative staining, the periodic dark bands observed in TEM images along the longitudinal axis of the FLS collagen fibril correspond directly to periodic protrusions seen by AFM. This observation is in agreement with the original surmise made by Gross, Highberger, and Schmitt (Gross J, Highberger JH, Schmitt FO, Proc Natl Acad Sci USA 1954;40:679-688) that the major repeating dark bands of FLS collagen fibrils observed under TEM are thick relative to the interband region. Although these results do not refute the idea of negative stain penetration into gap regions proposed by Hodge and Petruska (Petruska JA, Hodge AJ. Aspects of protein structure. Ramachandran GN, editor. New York: Academic Press; 1963. p. 289-300), there is no need to invoke the presence of gap regions to explain the periodic dark bands observed in TEM images of FLS collagen fibrils.  相似文献   

17.
Summary The immunohistochemical distribution of the basement membrane (BM) proteins, laminin and type IV collagen, and interstitial type III collagen was investigated in 12 fetal spleens at the 15th–38th gestational weeks (g.w.) and in spleens of 8 infants from term to 4 years. The results were compared with the distribution of the same proteins in adult human spleen. BM proteins were found to be abundantly present in the red pulp of all spleens during the whole of development. The content of type III collagen gradually decreased with advancing age and, in adult spleen, there were only occasional positively staining fibers in Billroth's cords. This finding indicates that the composition of reticular fibers in the red pulp of spleen is different from the reticular fibers elsewhere in lymphoreticular tissue. Early signs of ring fiber formation in the walls of venous sinuses were detectable at the 15th–19th g.w., although their more complete development occurred relatively late from the 36th g.w. onwards. Ring fibers contained both laminin and type IV collagen in all the investigated spleens. They never stained for type III collagen. The developing white pulp was positive for BM proteins, but showed no staining for type III collagen at the 15th g.w. At later ages, the white pulp stained similarly for both BM proteins and type III collagen.  相似文献   

18.
Summary The effects of fatty acids on the ionic currents of the voltage-clamped squid giant axon were investigated using intracellular and extracellular application of the test substances. Fatty acids mainly suppress the Na current but have little effect on the K current. These effects are completely reversed after washing with control solution. The concentrations required to suppress the peak inward current by 50% and Hill number were determined for each fatty acid. ED50 decreased about 1/3 for each increase of one carbon atom. The standard free energy was –3.05 kJ mole–1 for CH2. The Hill number was 1.58 for 2-decenoic acid. The suppression effect of the fatty acids depends on the number of carbon atoms in the compounds and their chemical structure. Suppression of the Na current was clearly observed when the number of carbon atoms exceeded eight. When fatty acids of the same chain length were compared, 2-decenoic acid had strong inhibitory activity, but sebacic acid had no effect at all on the Na channel. The currents were fitted to equations similar to those proposed by Hodgkin and Huxley (J. Physiol. (London) 117:500–544, 1952) and the changes in the parameters of these equations in the presence of fatty acids were calculated. The curve of the steady-state activation parameter (m ) for the Na current against membrane potential and the time constant of activation ({ie113-1}) were shifted 20 mV in a depolarizing direction by the application of fatty acids. The time constant for inactivation ({ie113-2}) was almost no change by application of the fatty acids. The time constant for activation ({ie113-3}) of K current was shifted 20 mV in a depolarizing direction by the application of the fatty acids.  相似文献   

19.
A new generation of entirely biodegradable and bioactive composites with polylactic acid (PLA) or poly‐ε‐caprolactone (PCL) as the matrix and bioplastic flax fibers as reinforcement were analyzed. Bioplastic fibers contain polyhydroxybutyrate and were obtained from transgenic flax. Biochemical analysis of fibers revealed presence of several antioxidative compounds of hydrophilic (phenolics) and hydrophobic [cannabidiol (CBD), lutein] nature, indicating their high antioxidant potential. The presence of CBD and lutein in flax fibers is reported for the first time. FTIR analysis showed intermolecular hydrogen bonds between the constituents in composite PLA+flax fibers which were not detected in PCL‐based composite. Mechanical analysis of prepared composites revealed improved stiffness and a decrease in tensile strength. The viability of human dermal fibroblasts on the surface of composites made of PLA and transgenic flax fibers was the same as for cells cultured without composites and only slightly lower (to 9%) for PCL‐based composites. The amount of platelets and Escherichia coli cells aggregated on the surface of the PLA based composites was significantly lower than for pure polymer. Thus, composites made of PLA and transgenic flax fibers seem to have bacteriostatic, platelet anti‐aggregated, and non‐cytotoxic effect. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2012  相似文献   

20.
Kinematic data of high spatial and temporal resolution, acquired from image sequences of adult long-finned squid, Loligo pealei, during steady swimming in a flume, were used to examine the role of fins and the coordination between fin and jet propulsion in squid locomotion. Fin shape and body outlines were digitized and used to calculate fin wave speed, amplitude, frequency, angle of attack, body deformation, speed, and acceleration. L. pealei were observed to have two fin gait patterns with a transition at 1.4-1.8 mantle lengths per second (Lm s-1) marked by alternation between the two patterns. Fin motion in L. pealei exhibited characteristics of both traveling waves and flapping wings. At low speeds, fin motion was more wave-like; at high speeds, fin motion was more flap-like and was marked by regular periods during which the fins were wrapped tightly against the mantle. Fin cycle frequencies were dependent on swimming speed and gait, and obvious coordination between the fins and jet were observed. Fin wave speed, angle of attack, and body acceleration confirmed the role of fins in thrust production and revealed a role of fins at all swimming speeds by a transition from drag-based to lift-based thrust when fin wave speed dropped below swimming speed. Estimates of peak fin thrust were as high as 0.44-0.96 times peak jet thrust in steady swimming over the range of swimming speeds observed. Fin downstrokes generally contributed more to thrust than did upstrokes, especially at high speeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号