首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A radioenzymatic assay has been developed for the sensitive determination of plasma catecholamines in perchloric acid extracts using α-methyldopamine as an internal standard. With 25 μl of plasma extract in a total volume of 40 μl the assay gives blank values equivalent to approcximately 2 femtomoles (fmole) for epinephrine (E), norepinephrine (NE), 6 fmole for α-methyldopamine (MeDA) and approximately 15 femtomoles for dopamine (DA). Recoveries of 25 dpm/fmole NE, 40 dpm/fmole E, 56 dpm/fmole DA and 80 dpm/fmole MeDA have been obtained. The assay is linear to at least 1 picomole catecholamine (CA) and shows less than 0.5% crossover between E, NE and DA and a 4.7% crossover of αMeDA into DA. The interassay variability was ± 7% for DA, ± 4% for E and ±3% for NE.  相似文献   

2.
Abstract: The effect of (±)-8-hydroxy-2-(di- n -propylamino)tetralin (8-OH-DPAT), a selective serotonin 5-HT1A agonist, on levels of extracellular norepinephrine (NE), dopamine (DA), and 5-HT (measured simultaneously) was investigated by microdialysis in the ventral tegmental area (VTA) of freely moving rats, and their behavioral activity was monitored. At 50 µg/kg s.c., 8-OH-DPAT reduced 5-HT levels but enhanced NE and DA levels in VTA dialysate. These effects were not altered by pretreatment with systemic idazoxan (5 mg/kg i.p.), a selective α2 antagonist, or local sulpiride (10 µ M ), a selective D2/D3 antagonist. At 500 µg/kg s.c., 8-OH-DPAT further enhanced or more persistently reduced dialysate NE or 5-HT content but had little effect on dialysate DA content. Its DA level-increasing effect could be seen dramatically with local infusion of cocaine (30 µ M ) and, to a lesser extent, sulpiride (10 µ M ). Depletion of endogenous 5-HT with p -chlorophenylalanine attenuated both the 5-HT level-reducing and DA level-enhancing effects of 8-OH-DPAT without affecting its maximal NE effect and the locomotor-stimulatory effect. Partial depletion of endogenous NE with N -(2-chloroethyl)- N -ethyl-2-bromobenzylamine failed to change the monoamine response but diminished the locomotion induced by 8-OH-DPAT. These results suggested that (a) the low dose of 8-OH-DPAT may act at presynaptic 5-HT1A receptors to modulate 5-HT and DA release, while acting at postsynaptic 5-HT1A receptors to modulate NE release; (b) the high dose of 8-OH-DPAT may activate D2 receptors to offset its DA level-increasing effect; and (c) the locomotor-stimulatory effect of 8-OH-DPAT might be mediated primarily by postsynaptic 5-HT1A receptors and the NE system.  相似文献   

3.
Abstract: Male Sprague-Dawley rats (325–350 g) were anesthetized with urethane (1.5 g/kg i.p.) and treated with physiological saline, Aspartame (APM; 552 μmol/kg), or tyrosine (Tyr; 552 μmol/kg). Ganglionic transmission and the synthesis of dopamine (DA) and norepinephrine (NE) were measured in the superior cervical ganglion (SCG) following electrical stimulation of the cervical sympathetic trunk (CST). When the CST was stimulated with single pulses, neither APM nor Tyr affected the synthesis of NE or DA. However, in response to low- (5 Hz, 20 s) and high- (20 Hz, 20 s) frequency pulses, the metabolism of DA was increased (p > 0.05), but to the same extent after saline, APM, or Tyr. In rats stimulated with similar low- and high-frequency pulses, the synthesis of NE was increased significantly (p > 0.05) after Tyr, but not after APM or saline. In saline-treated controls, ganglionic transmission was not changed in response to single pulses, or low- or high-frequency stimulation. However, after treatment with APM, ganglionic transmission was depressed significantly (p > 0.01) in response to high-frequency stimulation (single: 0.46 ± 0.09 mV; low: 0.39 ± 0.07 mV; high: 0.27 ± 0.07 mV). After treatment with Tyr, ganglionic transmission was depressed significantly (p > 0.05) in response to both low- and high-frequency stimulation (single: 0.44 ± 0.04 mV; low: 0.22 ±0.12 mV; high: 0.26 ± 0.07 mV). In the nonstimulated SCG, l-3,4-dihydroxyphenylalanine (25 mg/kg) caused a rapid, significant (p > 0.01) increase in the synthesis and metabolism of DA, but not of NE. Treatment with nialamide (200 mg/kg i.p.) followed by electrical stimulation (15 Hz, 15 min) of the CST caused a significant (p > 0.05) increase of both NE and DA in the stimulated SCG. It is concluded that there are both similarities and differences in the regulation of the synthesis of NE and in the modulation of ganglionic transmission after the administration of the precursors APM and Tyr. The results indicate that caution is needed in comparing the neurochemical and neurophysiological effects of different catecholamine precursors.  相似文献   

4.
The quantitative estimation of total dopamine (DA), noradrenaline (NE), serotonin (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) content in the whole brain tissue of normal Nile grass rat, Arvicanthis niloticus, gives and average of 631 +/- 12 ng DA/g, 366 +/- 12 ng NE/g, 617 +/- 15 ng 5-HT/g and 431 +/- 10 ng 5-HIAA/g fresh brain tissue. The effect of barbitone sodium and thiopental sodium on the total DA, NE, 5-HT and 5-HIAA content in the brain tissue of the Nile grass rat, Arvicanthis niloticus, was studied. The total DA, NE, 5-HT and 5-HIAA contents were determined 5 hr after i.p. injection of different doses of barbitone sodium (20, 40 and 80 mg/ml/100 g body wt) and thiopental sodium (5, 10 and 20 mg/ml/100 g body wt). The effect of different time intervals (1, 10, 30 min, 1, 2.5, 5, 8, 16, 24 and 48 hr) on the total brain DA, NE, 5-HT and 5-HIAA content was investigated after i.p. injection of 40 mg of barbitone sodium and 10 mg of thiopental sodium/ml/100 g body wt. Both barbitone sodium and thiopental sodium caused an increase in DA, NE and 5-HT content and a decrease in 5-HIAA content in the brain tissue of Arvicanthis niloticus. The increase in the whole brain contents of DA, NE and 5-HT after the administration of barbitone sodium and thiopental sodium may be due either to inhibition of transmitter release by an action at the monoamine nerve terminal or to effects causing a decrease in nerve impulse flow. On the other hand, the decrease in 5-HIAA may be due to the decrease in the turnover of 5-HT.  相似文献   

5.
Metrifonate effects on acetylcholine and biogenic amines in rat cortex   总被引:1,自引:0,他引:1  
The effect of systemic and local administration of metrifonate (MTF), a long-acting cholinesterase inhibitor (ChEl) on extracellular levels of acetylcholine (ACh), norepinephrine (NE), dopamine (DA) and serotonin (5-HT) was investigated in the rat cortex by using transcortical microdialysis. Metrifonate (20, 40, and 80 mg/kg, s.c.) increased ACh levels in a dose-dependent manner above the baseline. Two consecutive administrations (80 mg/kg) enhanced ACh levels producing two similar patterns of elevation. A significant increase in NE was also seen at 80 mg/kg. Systemic administration (20 mg/kg) of MTF produced a significant increase of DA levels. Local cortical perfusion of MTF through the probe caused a significant but slow increase of ACh as well as an increase of NE levels. Compared to NE, the elevation of DA was more rapid and more longlasting. The cortical levels of 5-HT were not modified by MTF given by either route. These results support the concept of MTF being a potential drug for treatment of Alzheimer disease (AD).  相似文献   

6.
A new synthetic agent R, S-2-amino-1(2-amino-4, 5-dihydroxyphenyl) propane dihydrobromide, also referred to as α-methyl-6-aminodopamine (α-Me-6-ADA), has been found to produce acute (one day) and longer-term (seven day) depletion of norepinephrine (NE) levels in mouse brain and peripheral tissues. A 100 mg/kg dose of α-Me-6-ADA (i.v., free base) produced greater than 85% depletion of NE in the heart and spleen at one day and one week after treatment. Intracranially, α-Me-6-ADA (100 μg i.vtr.) depleted NE in the telencephalon and brain stem by 79% and 21% respectively at seven days. In addition DA was depleted by 45% in the ipsilateral striatum. The α-Me-6-ADA appears to have a relative selectivity for noradrenergic nerves, as an intracranial dose of 10 μg, which decreased NE in mouse whole brain by 52% at one day, failed to alter the DA content. These data suggest that α-Me-6-ADA may be a neurotoxin.  相似文献   

7.
β-Endorphin (amino acid sequence 61–91 of β-lipotropin) administered intraventricularly at a dose of 13 n moles in rat induced akinesia and loss of corneal reflex. Apomorphine (20 mg/kg) which had been injected subcutaneously 20 minutes after the administration of β-endorphin fully reversed akinesia and elicited characteristic stereotyped behavior. During complete disappearance of akinesia, the corneal reflex was found to be still absent. Apomorphine (5 mg/kg) only partially reversed akinesia. Pretreatment with α-methyl-p-tyrosine (α-MT, 250 mg/kg) potentiated the effect of β-endorphin upon muscle rigidity. In a biochemical study, rats received β-endorphin (15 n moles) 60 minutes before sacrifice. Concentrations of dopamine (DA) and norepinephrine (NE) were not altered in any brain regions. A significant increase in concentrations of 5-hydroxytryptamine was obtained in the midbrain. In a DA and NE turnover study, rats received α-MT (250 mg/kg) 4 hours prior to β-endorphin and were sacrificed 60 minutes later. β-Endorphin partially corrected the decreased concentrations of DA induced by α-MT in the midbrain. A similar tendency toward correction of the decreased DA concentrations was observed in the striatum. The concentrations of NE decreased by α-MT in the midbrain, striatum and hypothalamus were not modified by β-endorphin  相似文献   

8.
The effect of subcutaneous injections of saline (0.9% NaCl, 10–40 μl/g b. wt) to 5- and 20-day old rats on the concentrations of tyrosine (Tyr) and tryptophan (Trp) in the serum and the brain and on the levels of biogenic amines and their metabolites in the developing brain at 6 h p.i. is described. At day 5 the concentration of Tyr in the blood was decreased (dose-dependent), but the brain concentrations of Tyr and of its amine-metabolites, dopamine (DA), norepinephrine (NE), homovanillic acid (HVA) and dihydroxyphenylacetate (DOPAC) were unaffected. In contrast, in the 20-day old rat, serum Tyr was unaffected by the saline injections, but the Tyr concentration in the brain decreased markedly at the highest saline dose. The concentrations of NE (only at maximum dose) and of DA (independent on the amount of saline injected) were elevated in the brains of saline injected 20-day old rats. The concentrations of Trp and indoles were more affected at day 5 than at day 20: slightly decreased concentration of Trp in the serum but markedly increased concentrations of brain Trp (only at maximum dose), elevated serotonin (5-HT, independent on the amount of saline injected) and 5-hydroxyindoleacetic acid (5-HIAA, at maximum dose) in the brain. If the maximum dose of 40 μl/g body weight was injected to suckling rats repeatedly during the whole suckling period (in 12 h intervals), some effects caused by one single injection of 40 μl/g disappeared (Tyr—depletion in blood or brain, increase in brain NE, DA and Trp), but other additional effects appeared (decreased DA and increased DOPAC, decreased 5-HT and 5-HIAA). The results show that saline injections do cause characteristic, age-dependent alterations of precursor availability as well as of the rate of synthesis and degradation of catecholamine and 5-HT. Repeated treatments have different effects than one single treatment on the precursor availability and the metabolism of monoamines. These alterations must be taken into account if the effects of certain “specific” treatments are compared and discussed in relation to saline “controls”.  相似文献   

9.
In our recent studies on nicotine-induced changes in neurotransmitters in brain areas associated with cognitive function using a nicotine dose of 0.5 mg/kg administered subcutaneously to conscious freely moving rats, we found changes in dopamine, norepinephrine, and serotonin, and their metabolites, in the areas examined. For the present report we examined changes in these neurotransmitters following administration of lower nicotine doses, to test regional differences in nicotine response and possible threshold levels for some effects of nicotine. The doses used were 0.15 mg/kg and 0.03 mg/kg nicotine administered subcutaneously. Nicotine levels in the brain reached peak values in less than 10 min and decreased with a half-life of about 60 min (0.15 mg/kg) or 30 min (0.03 mg/kg) to values below detection limits (1 ng/g), by the later time points of the 0.03 mg/kg experiments. Nicotine-induced dopamine (DA) increase (and increase in DA metabolites) and decrease in 5-HT levels at 0.15 mg/kg were significant in the cortex, less so in the hippocampus. Norepinephrine (NE) increase at 0.15 mg/kg was much less significant than found previously at 0.5 mg/kg. At a low nicotine dose (0.03 mg/kg), the significant changes observed were a decrease in 5-HT in the hippocampus and small increases of DA and NE in the prefrontal cortex and of NE in the medial temporal cortex. In the nucleus accumbens DA, NE, and 5-HT and their metabolites in the ventral tegmental area, mostly DA and metabolites were increased. We conclude that in areas of cognitive function nicotine-induced DA changes are more concentration dependent than changes in NE or 5-HT, and that there are regional differences in neurotransmitter changes induced by nicotine, with NE changes detectable only in the cortex and 5-HT changes only in the hippocampus at a low nicotine dose, indicating significant regional variation in sensitivity to nicotine-induced neurotransmitter changes in brain areas associated with cognitive function. The decrease in 5-HT shows that nicotine also has indirect effects caused by neurotransmitters released by nicotine. The effects of low nicotine dose are more significant in areas of reward function, indicating differences in sensitivity between cognitive and reward functions.  相似文献   

10.
Arabic gum (AG) is a naturally occurring compound that has been proposed to possess potent antioxidant activity. In this study, the possible effects whereby AG could protect against cardiotoxicity induced by doxorubicin (DOX) in mice were carried out. Administration of single dose of DOX (15 mg/kg, i.p.) induced cardiotoxicity 72 h, manifested biochemically by a significant elevation of serum creatine kinase (CK) (EC 2.7.3.2). In addition, cardiotoxicity was further confirmed by the significant increase in lipid peroxides measured as malondialdehyde (MDA). Administration of AG (25 g/kg) orally for 5 days before and 72 h after DOX injection produced a significant protection against cardiotoxicity induced by DOX. This was evidenced by significant reductions in serum CK and cardiac lipid peroxides. The effect of AG was examined on the superoxide anion radical generated by enzymatic and nonenzymatic methods. The results indicate that AG is a potent superoxide scavenger. The superoxide scavenging effect of AG may explain, at least in part, the protective effect of AG against cardiotoxicity induced by DOX.  相似文献   

11.
The present investigation was designed to determine the effect of hallucinogens on the facilitating action of serotonin (5-HT) and norepinephrine (NE) in the facial nucleus. Intravenous administration of d-lysergic acid diethylamide (LSD, 5–10 μg/kg), mescaline (0.5–1.0 mg/kg), or psilocin (0.5–1.0 mg/kg) had no effect by themselves on the glutamate-induced excitation of facial motoneurons. In contrast, the facilitation of facial neuron excitation by iontophoretically applied 5-HT and NE was enhanced 6–10 fold by these hallucinogens. The LSD-enhanced responses to 5-HT and NE continued for at least 4 hours after administration of the hallucinogen. Iontophoretic application of LSD or mescaline (low currents) also markedly potentiated the facilitating effect of 5-HT and NE. Higher currents of LSD (15–40 nA) temporarily antagonized the response to 5-HT. The nonhallucinogen ergot derivatives lisuride and methysergide failed to potentiate the facilitating effects of 5-HT or NE. These observations suggest that hallucinogens potentiate the effect of monoamines on facial motoneurons by increasing the sensitivity of 5-HT and NE receptors. A novel mechanism regarding the psychedelic effects of hallucinogens is discussed.  相似文献   

12.
S Pradhan  S N Roy  S N Pradhan 《Life sciences》1978,22(19):1737-1743
Effects of cocaine were investigated on spontaneous motor activity (SMA) and stereotypy as well as on the concentrations of norepinephrine (NE), dopamine (DA), serotonin (5-HT) and acetylcholine (ACh) in the discrete brain areas, such as the caudate nucleus (CN), diencephalon-midbrain (DM) and pons-medulla (PM) in rats up to 90–120 min following its injection in single doses (15–20 mg/kg, i.p.). After cocaine administration, the SMA was increased usually reaching its peak between 10–20 min, and then decreased gradually. Stereotypy and its components gradually increased to their maximum at about 50–60 min and remained at that level during rest of 120 min sessions. NE levels slightly increased in the DM and PM at 10 min post-drug after which they were decreased at 20 min. DA levels in the CN and DM were increased markedly at 20 min post-drug and decreased at 40 min. 5-HT levels in DM and PM decreased gradually up to 20 min, then began to increase. ACh level in the CN was gradually increased at 40 min and then decreased. It appears that cocaine-induced hyperactivity and stereotypy followed release of NE and DA after their accumulation in the respective brain areas.  相似文献   

13.
Abstract: In the current study we examined the effects of coadministration of a serotonin 5-HT1A antagonist, (±)-1-(1 H -indol-4-yloxy)-3-(cyclohexylamino)-2-propanol maleate (LY 206130), and a dual 5-HT and norepinephrine (NE) uptake inhibitor, duloxetine, on extracellular levels of NE, 5-HT, dopamine (DA), 5-hydroxyindoleacetic acid, and 3,4-dihydroxyphenylacetic acid in rat hypothalamus microdialysates. LY 206130 (3.0 mg/kg, s.c.) alone significantly increased NE and DA levels by 60 and 34%, respectively, without affecting 5-HT levels. Duloxetine administration at 4.0 mg/kg, i.p. alone produced no significant changes in levels of 5-HT, NE, or DA. In contrast, when LY 206130 and duloxetine were coadministered at 3.0 mg/kg, s.c. and 4.0 mg/kg, i.p., respectively, 5-HT, NE, and DA levels increased to 5.7-, 4.8-, and threefold over their respective basal levels. These data demonstrate that antagonism of somatodendritic 5-HT1A autoreceptors and concomitant inhibition of 5-HT and NE uptake with duloxetine may promote synergistic increases in levels of extracellular 5-HT, NE, and DA in hypothalamus of conscious, freely moving rats.  相似文献   

14.
Chemical immobilization is often needed for safe and effective capture and handling of wildlife. We evaluated medetomidine (125, 150, 175, or 200 μg/kg; for synergistic effects and relaxation) mixed with ketamine (1.5 mg/kg; for relatively shorter recovery) and tiletamine-zolazepam (1.0 mg/kg; for rapid induction) in 22 female white-tailed deer (Odocoileus virginianus) at the University of Georgia Whitehall Deer Research Facility in Athens, Georgia, USA, on 14-15 and 21 May 2009. Deer were weighed before treatment, hand-injected intramuscularly (IM) while restrained in a squeeze chute, and released into a pen for monitoring. We measured rectal temperature, respiration rate, heart rate, hemoglobin saturation (using pulse oximetry), and arterial blood gases at 0, 10, and 20 min postimmobilization. We found no differences in induction time with different doses of medetomidine. Deer became laterally recumbent for all treatments combined at a median of 4.2 (2.6-21.3) min and were approachable by a median of 4.8 (3.5-21.8) min. Twelve of the 22 deer had rectal temperatures >40 C at time 0 and were treated with a cold-water enema. Hemoglobin saturation, estimated using pulse oximetry, was 79.5, 82.0, and 82.3% at times 0, 10, and 20, respectively. We injected atipamezole (0.35 mg/kg, IM) for reversal. Recovery occurred sooner and was more consistent for 125 and 150 μg/kg medetomidine whereby deer stood with minimal sedation to moderate ataxia within 60-90 min after atipamezole administration. We recommend using 150 μg of medetomidine with ketamine (1.5 mg/kg) and tiletamine-zolazepam (1.0 mg/kg) to provide effective and safe chemical immobilization of white-tailed deer.  相似文献   

15.
Wei R  Cheng L  Zheng M  Cheng R  Meng F  Deng C  Zhong Z 《Biomacromolecules》2012,13(8):2429-2438
Reduction-sensitive reversibly core-cross-linked micelles were developed based on poly(ethylene glycol)-b-poly(N-2-hydroxypropyl methacrylamide)-lipoic acid (PEG-b-PHPMA-LA) conjugates and investigated for triggered doxorubicin (DOX) release. Water-soluble PEG-b-PHPMA block copolymers were obtained with M(n,PEG) of 5.0 kg/mol and M(n,HPMA) varying from 1.7 and 4.1 to 7.0 kg/mol by reversible addition-fragmentation chain transfer (RAFT) polymerization. The esterification of the hydroxyl groups in the PEG-b-PHPMA copolymers with lipoic acid (LA) gave amphiphilic PEG-b-PHPMA-LA conjugates with degrees of substitution (DS) of 71-86%, which formed monodispersed micelles with average sizes ranging from 85.3 to 142.5 nm, depending on PHPMA molecular weights, in phosphate buffer (PB, 10 mM, pH 7.4). These micelles were readily cross-linked with a catalytic amount of dithiothreitol (DTT). Notably, PEG-b-PHPMA(7.0k)-LA micelles displayed superior DOX loading content (21.3 wt %) and loading efficiency (90%). The in vitro release studies showed that only about 23.0% of DOX was released in 12 h from cross-linked micelles at 37 °C at a low micelle concentration of 40 μg/mL, whereas about 87.0% of DOX was released in the presence of 10 mM DTT under otherwise the same conditions. MTT assays showed that DOX-loaded core-cross-linked PEG-b-PHPMA-LA micelles exhibited high antitumor activity in HeLa and HepG2 cells with low IC(50) (half inhibitory concentration) of 6.7 and 12.8 μg DOX equiv/mL, respectively, following 48 h incubation, while blank micelles were practically nontoxic up to a tested concentration of 1.0 mg/mL. Confocal laser scanning microscope (CLSM) studies showed that DOX-loaded core-cross-linked micelles released DOX into the cell nuclei of HeLa cells in 12 h. These reduction-sensitive disassemblable core-cross-linked micelles with excellent biocompatibility, superior drug loading, high extracellular stability, and triggered intracellular drug release are promising for tumor-targeted anticancer drug delivery.  相似文献   

16.
Prolyl oligopeptidase (PREP, EC 3.4.21.26) inhibitors have potential as cognition enhancers, but the mechanism of action behind the cognitive effects remains unclear. Since acetylcholine (ACh) and dopamine (DA) are known to be associated with the regulation of cognitive processes, we investigated the effects of two PREP inhibitors on the extracellular levels of ACh and DA in the rat striatum using in vivo microdialysis. KYP-2047 and JTP-4819 were administered either as a single systemic dose (50 μmol/kg~17 mg/kg i.p.) or directly into the striatum by retrodialysis via the microdialysis probe (12.5, 37.5 or 125 μM at 1.5 μl/min for 60 min). PREP inhibitors had no significant effect on striatal DA levels after systemic administration. JTP-4819 significantly decreased ACh levels both after systemic (by ~25%) and intrastriatal (by ~30-50%) administration. KYP-2047 decreased ACh levels only after intrastriatal administration by retrodialysis (by ~40-50%) when higher drug levels were reached, indicating that higher brain drug levels are needed to modulate ACh levels than to inhibit PREP. This result does not support the earlier hypothesis that the positive cognitive effects of PREP inhibitors in rodents would be mediated through the cholinergic system. In vitro specificity studies did not reveal any obvious off-targets that could explain the observed effect of KYP-2047 and JTP-4819 on ACh levels, instead confirming the concept that these compounds have a high selectivity towards PREP.  相似文献   

17.
Recent reports about tyrosine hydroxylase and alpha 1-adrenoceptors in epileptic foci have suggested increased regional catecholaminergic activity, which may serve a compensatory, inhibitory role. We measured levels of catechols, including the precursor 3,4-dihydroxyphenylalanine (DOPA) and the catecholamines dopamine (DA) and norepinephrine (NE), in surgically removed foci identified by electrocorticography and in nonepileptogenic sites from 23 patients with intractable temporal lobe epilepsy. The following values (mean +/- 1 SD) were obtained: DOPA = 142 +/- 60 ng/g of protein in the focus vs. 115 +/- 39 ng/g in the nonfocus (p less than 0.01); DA = 168 +/- 85 vs. 106 +/- 54 ng/g (p less than 0.001); and NE = 267 +/- 117 vs. 181 +/- 80 ng/g (p less than 0.001). The results are consistent with increased catecholaminergic activity in epileptic foci.  相似文献   

18.
Close intraarterial infusion of lithium chloride (2 and 4 mEq/kg) transiently suppressed evoked postganglionic potentials in the superior cervical ganglion of the cat; lower doses (0.5 and 1 mEq/kg) had no effect on transmission. Potentiation of the ganglionic inhibitory effect of norepinephrine (NE) occurred at plasma concentrations of lithium equivalent to those found to be therapeutic in man. Concurrent administration of lithium (1 mEq/kg) and doxepin (25 mcg/kg) produced greater facilitation of the ganglionic suppressant effect of NE than either lithium or doxepin alone. Rubidium chloride (0.1, 0.5 and 1 mEq/kg) produced temporary blockade of ganglionic transmission; lower doses (0.05 and 0.075 mEq/kg) did not exhibit a ganglioplegic effect. Reduction of the ganglionic inhibitory activity of NE was observed at each dose level of rubidium. Administration of doxepin (25 mcg/kg) immediately after rubidium (0.075 mEq/kg) significantly reduced the inhibitory effect of the cation on NE activity. These results suggest that, in the cat superior cervical ganglion, lithium may block NE uptake and rubidium may promote NE release.  相似文献   

19.
Lead remains a considerable occupational and public health problem, which is known to cause a number of adverse effects in both man and animals. Here, the neuroprotective effect of flaxseed oil (1,000 mg/kg) on lead acetate (20 mg/kg) induced alternation in monoamines and brain oxidative stress was examined in rats. The levels of lead, dopamine (DA), norepinephrine (NE), serotonin (5-HT), lipid peroxidation, nitrite/nitrate (NO), and glutathione (GSH) were determined; also, the activity of acetylcholinesterase (AChE) and Na(+)-K(+)-ATPase were estimated on different brain regions of adult male albino rats. The level of lead was markedly elevated in different brain regions of rats. This leads to enhancement of lipid peroxidation and NO production in brain with concomitant reduction in AChE activity and GSH level. In addition, the levels of DA, NE, and 5-HT were decreased in the brain. These findings were associated with BAX over expression. Treatment of rats with flaxseed oil induced a marked improvement in most of the studied parameters as well as the immunohistochemistry features. These data indicated that dietary flaxseed oil provide protection against lead-induced oxidative stress and neurotoxic effects.  相似文献   

20.
Wang  Qilin  Sun  Wendong  Hao  Xuexi  Li  Tianliang  Su  Ling  Liu  Xiangguo 《Cancer cell international》2012,12(1):1-8

Background

Breast cancer is the most common cancer in the Arab world and it ranked first among Saudi females. Doxorubicin (DOX), an anthracycline antibiotic is one of the most effective anticancer agents used to treat breast cancer. chronic cardiotoxicity is a major limiting factor of the use of doxorubicin. Therefore, our study was designed to assess the role of a natural product resveratrol (RSVL) on sensitization of human breast cancer cells (MCF-7) to the action of DOX in an attempt to minimize doxorubicin effective dose and thereby its side effects.

Methods

Human breast cancer cell line MCF-7, was used in this study. Cytotoxic activity of DOX was determined using (sulforhodamine) SRB method. Apoptotic cells were quantified after treatment by annexin V-FITC- propidium iodide (PI) double staining using flow-cytometer. Cell cycle disturbance and doxorubicin uptake were determined after RSVL or DOX treatment.

Results

Treatment of MCF-7 cells with 15 μg/ml RSVL either simultaneously or 24 h before DOX increased the cytotoxicity of DOX, with IC50 were 0.056 and 0.035 μg/ml, respectively compared to DOX alone IC50 (0.417 μg/ml). Moreover, flow cytometric analysis of the MCF-7 cells treated simultaneously with DOX (0.5 μg/ml) and RSVL showed enhanced arrest of the cells in G0 (80%). On the other hand, when RSVL is given 24 h before DOX although there was more increased in the cytotoxic effect of DOX against the growth of the cells, however, there was decreased in percentage arrest of cells in G0, less inhibition of DOX-induced apoptosis and reduced DOX cellular uptake into the cells.

Conclusion

RSVL treatment increased the cytotoxic activity of DOX against the growth of human breast cancer cells when given either simultaneously or 24 h before DOX.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号