首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
No information exists on the identification of primordial germ cells (PGCs) in the super‐order Protacanthopterygii, which includes the Salmonidae family and Atlantic salmon (Salmo salar L.), one of the most commercially important aquatic animals worldwide. In order to identify salmon PGCs, we cloned the full‐length cDNA of vasa, dead end (dnd), and lymphocyte antigen 75 (ly75/CD205) genes as germ cell marker candidates, and analyzed their expression patterns in both adult and embryonic stages of Atlantic salmon. Semi‐quantitative RT‐PCR results showed that salmon vasa and dnd were specifically expressed in testis and ovary, and vasa, dnd, and ly75 mRNA were maternally deposited in the egg. vasa mRNA was consistently detected throughout embryogenesis while dnd and ly75 mRNA were gradually degraded during cleavages. In situ analysis revealed the localization of vasa and dnd mRNA and Ly75 protein in PGCs of hatched larvae. Whole‐mount in situ hybridization detected vasa mRNA during embryogenesis, showing a distribution pattern somewhat different to that of zebrafish; specifically, at mid‐blastula stage, vasa‐expressing cells were randomly distributed at the central part of blastodisc, and then they migrated to the presumptive region of embryonic shield. Therefore, the typical vasa localization pattern of four clusters during blastulation, as found in zebrafish, was not present in Atlantic salmon. In addition, salmon PGCs could be specifically labeled with a green fluorescence protein (GFP) using gfp‐rt‐vasa 3′‐UTR RNA microinjection for further applications. These findings may assist in understanding PGC development not only in Atlantic salmon but also in other salmonids. Mol. Reprod. Dev. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Primordial germ cells (PGCs), progenitors of gametes, are specified very early in embryonic development and undergo an active migration to the site where the future gonads will form. While the developmental pattern of PGCs during embryogenesis has been documented in few model teleost fishes, there is currently no information available for any representative of Superorder Paracanthopterygii. This includes Atlantic cod (Gadus morhua), which is a historically important food fish in both fisheries and aquaculture industries. In the present study, we cloned and characterized vasa and nanos3 and used them as germ cell markers in Atlantic cod. Sequencing results showed prospective vasa and nanos3 mRNA contained the domains used to describe their respective protein family. Furthermore, phylogenetic analysis using the amino acid sequence placed Atlantic cod Vasa distinct from representatives of three other taxonomic Superorders. Atlantic cod Nanos3 was placed with other homologues from the Nanos3 subfamily. Expression of both genes was detected from the first cleavage division; both were specifically expressed in Atlantic cod PGCs from the 32-cell stage. While nanos3 expression ceased during early somitogenesis, vasa was strongly expressed throughout embryonic development. Using vasa as a marker, we described the Atlantic cod PGC migration pattern. We demonstrated that Atlantic cod PGCs migrate ventral to the trunk mesoderm. With the exception of Pacific herring (Clupea pallasii), PGCs in other described teleost fishes migrate lateral to the trunk. The results from this study are the first step toward understanding germ line formation in Atlantic cod.  相似文献   

5.
Germ cells of diverse animal species have a unique membrane-less organelle called germ plasm (GP). GP is usually associated with mitochondria and contains RNA binding proteins and mRNAs of germ genes such as vasa. GP has been described as the mitochondrial cloud (MC), intermitochondrial cement (IC) and chromatoid body (CB). The mechanism underlying varying GP structures has remained incompletely understood. Here we report the analysis of GP through light and electron microscopy by using Vasa as a marker in adult male germ cells of the fish medaka (Oryzias latipes). Immunofluorescence light microscopy revealed germ cell-specific Vasa expression. Vasa is the most abundant in mitotic germ cells (oogonia and spermatogonia) and reduced in meiotic germ cells. Vasa in round spermatids exist as a spherical structure reminiscent of CB. Nanogold immunoelectron microscopy revealed subcellular Vasa redistribution in male germ cells. Vasa in spermatogonia concentrates in small areas of the cytoplasm and is surrounded by mitochondria, which is reminiscent of MC. Vasa is intermixed with mitochondria to form IC in primary spermatocytes, appears as the free cement (FC) via separation from mitochondria in secondary spermatocyte and becomes condensed in CB at the caudal pole of round spermatids. During spermatid morphogenesis, Vasa redistributes and forms a second CB that is a ring-like structure surrounding the dense fiber of the flagellum in the midpiece. These structures resemble those described for GP in various species. Thus, Vasa identifies GP and adopts varying structures via dynamic reorganization at different stages of germ cell development.  相似文献   

6.
Vasa is a highly conserved ATP-dependent RNA helicase expressed mainly in germ cells. The vasa gene plays a crucial role in the development of germ cell lineage and has become an excellent molecular marker in identifying germ cells in teleosts. However, little is known about the structure and function of the vasa gene in flatfish. In this study, the vasa gene (Csvasa) was isolated and characterized in half-smooth tongue sole (Cynoglossus semilaevis), an economically important flatfish in China. In the obtained 6425-bp genomic sequence, 23 exons and 22 introns were identified. The Csvasa gene encodes a 663-amino acid protein, including highly conserved domains of the DEAD-box protein family. The amino acid sequence also shared a high homology with other teleosts. Csvasa expression was mainly restricted to the gonads, with little or no expression in other tissues. Real-time quantitative polymerase chain reaction analysis revealed that Csvasa expression levels decreased during embryonic and early developmental stages and increased with the primordial germ cell proliferation. A typical sexually dimorphic expression pattern of Csvasa was observed during early development and sex differentiation, suggesting that the Csvasa gene might play a differential role in the proliferation and differentiation of male and female primordial germ cells (PGCs). Csvasa mRNA expression levels in neomales were significantly lower than those in normal males and females, indicating that the Csvasa gene might be implicated in germ cell development after sex reversal by temperature treatment. In addition, medaka (Oryzias latipes) PGCs could be transiently labeled by microinjection of synthesized mRNA containing the green fluorescence protein gene and 3′-untranslated region of Csvasa, which confirmed that the Csvasa gene has the potential to be used as a visual molecular marker of germ cells and laid a foundation for manipulation of PGCs in tongue sole reproduction.  相似文献   

7.
The vasa gene, first identified in Drosophila, is a key determinant for germline formation in eukaryotes. Homologs of vasa have been identified and linked to germline development, in many invertebrates and vertebrates. Here, we analyze the distribution of Vasa in early germ cells (oogonia and oocytes) and previtellogenic ovarian follicles of the lizard Podarcis sicula. During most of its previtellogenic growth, the oocyte in this lizard species is structurally and functionally integrated through intercellular bridges with special follicle cells called pyriform cells. The pyriform cells function similarly to Drosophila nurse cells, but are somatic in origin. In the oogenesis of P. sicula, Vasa is initially highly detected in the oogonia, but its levels decrease in early stage oocytes before the onset of pyriform cell differentiation. In the later stages of oogenesis, the high level of Vasa is related with the nurse function of the pyriform follicle cells. These observations suggest that cells of somatic origin are engaged in the synthesis of Vasa in the oogenesis of this lizard.  相似文献   

8.
Germ cells are a population of cells that do not differentiate to form somatic tissue but form the egg and sperm that ensure the reproduction of the organism. To understand how germ cells form, holds a key for identifying what sets them apart from all other cells of the organism. There are large differences between embryos regarding where and when germ cells form but the expression of Vasa protein is a common trait of germ cells. We studied the role of vasa during germ cell formation in the crustacean Parhyale hawaiensis. In a striking difference to the posterior specification of the group of germ cells in the arthropod model Drosophila, all germ cells in Parhyale originate from a single germ line progenitor cell of the 8-cell stage. We found vasa RNA ubiquitously distributed from 1-cell to 16-cell stage in Parhyale and localized to the germ cells from 32-cell stage onwards. Localization of vasa RNA to the germ cells is controlled by its 3′UTR and this could be mimicked by fluorescently labeled 3′UTR RNA. Vasa protein was first detectable at the 100-cell stage. MO-mediated inhibition of vasa translation caused germ cells to die after gastrulation. This means that in Parhyale Vasa protein is not required for the initial generation of the clone of germ cells but is required for their subsequent proliferation and maintenance. It also means that the role of vasa changed substantially during an evolutionary switch in the crustaceans by Parhyale from the specification of a group of germ cells to that of a single germ line progenitor. This is the first functional study of vasa in an arthropod beyond Drosophila.  相似文献   

9.
vasa is essential for germline development. However, the precise processes in which vasa involves vary considerably in diverse animal phyla. Here we show that vasa is required for primordial germ cell (PGC) migration in the medakafish. vasa knockdown by two morpholinos led to the PGC migration defect that was rescued by coinjection of vasa RNA. Interestingly, vasa knockdown did not alter the PGC number, identity, proliferation and motility even at ectopic locations. We established a cell culture system for tracing PGCs at the single cell level in vitro. In this culture system, control and morpholino-injected gastrulae produced the same PGC number and the same time course of PGC survival. Importantly, vasa-depleted PGCs in culture had similar motility and locomotion to normal PGCs. Expression patterns of wt1a, sdf1b and cxcr4b in migratory tissues remained unchanged by vasa knockdown. By chimera formation we show that PGCs from vasa-depleted blastulae failed to migrate properly in the normal environment, whereas control PGCs migrated normally in vasa-disrupted embryos. Furthermore, ectopic PGCs in vasa-depleted embryos also retained all the PGC properties examined. Taken together, medaka vasa is cell-autonomously required for PGC migration, but dispensable to PGC proliferation, motility, identity and survival.  相似文献   

10.
11.
12.
The translational regulator nanos is required for the survival and maintenance of primordial germ cells during embryogenesis. Three nanos homologs are present in the genome of the sea urchin Strongylocentrotus purpuratus, all of which are expressed with different timing in the small micromere lineage. This lineage is set-aside during embryogenesis and contributes to constructing the adult rudiment. Small micromeres lacking Sp-nanos1 and Sp-nanos2 undergo an extra division and are not incorporated into the coelomic pouches. Further, these cells do not accumulate Vasa protein even though they retain vasa mRNA. Larvae that develop from Sp-nanos1 and 2 knockdown embryos initially appear normal, but do not develop adult rudiments; although they are capable of eating, over time they fail to grow and eventually die. We conclude that the acquisition and maintenance of multipotency in the small micromere lineage requires nanos, which may function in part by repressing the cell cycle and regulating other multipotency factors such as vasa. This work, in combination with other recent results in Ilyanassa and Platynereis dumerilii, suggests the presence of a conserved molecular program underlying both primordial germ cell and multipotent cell specification and maintenance.  相似文献   

13.
Isolation and characterization of a Bombyx vasa-like gene   总被引:4,自引:0,他引:4  
  相似文献   

14.
15.
16.
The vasa gene is a reliable germline marker to study the origin and development of germ cells and gonads, although the gene product (mRNA or protein) varies between different species. However, there has been little study on vasa genes in holothuroids to date. Here we determined the expression characteristics of the Apostichopus japonicus vasa gene (Aj-vasa) during gametogenesis in the ovary and testis using in situ hybridization and immunohistochemistry. During oogenesis, the expression pattern of Aj-vasa coincided at the mRNA and protein levels. Intensive signals in oogonia decreased gradually with the development of oocytes. Interestingly, the pattern was different during spermatogenesis. The Aj-vasa mRNA level was the highest in spermatogonia, reduced in spermatocytes, low in spermatids and absent in spermatozoa, but the Aj-VASA protein was restricted to spermatogonia and early spermatocytes. These expression characteristics of Aj-vasa persisted in both male and female gonads throughout the reproductive cycle. Our findings show that Aj-vasa mRNA is a good marker for studying the origin and migration of germline cells; moreover, Aj-VASA is a useful tool to identify spermatogonia in A. japonicus. Our findings indicate that Aj-vasa is vital in the development and differentiation of germ cells.  相似文献   

17.
Germ cells are set aside early with somatic cells and take roles for reproduction of species from one generation to the next generation. Vasa, a member of DEAD family is well documented as germ cell marker in the animal kingdom. Rare minnow, Gobiocypris rarus, is an emerging model fish in China to study development and toxicology, etc. A suitable germ cell marker will benefit the studies of the factors that may influence germ cell development. Here, we report the cloning and characterization of G. rarus vasa named Grvas whose protein product has the typical characteristics of Vasa proteins. RT-PCR results showed that Grvas is expressed specifically in the gonads of male and female, it is maternally deposited into the eggs for embryos and is continuously expressed in the embryos from the zygote to larvae and adult. Grvas mRNA and/or protein is restricted to the germ cells of ovary and testis. Temporal expression of Grvas mRNA is similar to that of zebrafish vasa during embryogenesis. Grvas signals are coincident with primordial germ cells. These results mean that a germ cell marker, Grvas is isolated from rare minnow and its expression is exclusively in germ cells.  相似文献   

18.
19.
The Vasa family of proteins comprises several conserved DEAD box RNA helicases important for mRNA regulation whose exact function in the germline is still unknown. In Caenorhabditis elegans, there are six known members of the Vasa family, and all of them are associated with P granules. One of these proteins, VBH‐1, is important for oogenesis, spermatogenesis, embryo development, and the oocyte/sperm switch in this nematode. We decided to extend our previous work in C. elegans to sibling species Caenorhabditis remanei to understand what is the function of the VBH‐1 homolog in this gonochoristic species. We found that Cre‐VBH‐1 is present in the cytoplasm of germ cells and it remains associated with P granules throughout the life cycle of C. remanei. Several aspects between VBH‐1 and Cre‐VBH‐1 function are conserved like their role during oogenesis, spermatogenesis, and embryonic development. However, Cre‐vbh‐1 silencing in C. remanei had a stronger effect on spermatogenesis and spermatid activation than in C. elegans. An unexpected finding was that silencing of vbh‐1 in the C. elegans caused a decrease in germ cell apoptosis in the hermaphrodite gonad, while silencing of Cre‐vbh‐1 in C. remanei elicited germ cell apoptosis in the male gonad. These data suggest that VBH‐1 might play a role in germ cell survival in both species albeit it appears to have an opposite role in each one. genesis 1–18 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

20.
Germ cell sequestering in Animalia is enlightened by either, launching true germ line along epigenetic or preformistic modes of development, or by somatic embryogenesis, where no true germ line is set aside. The research on germ line-somatic tissue segregation is of special relevancy to colonial organisms like botryllid ascidians that reconstruct, on a weekly basis, completely new sets of male and female gonads in newly formed somatic tissues. By sequencing and evaluating expression patterns of BS-Vasa, the Botryllus schlosseri orthologue of Vasa, in sexually mature and asexual colonies during blastogenesis, we have demonstrated that the BS-Vasa mRNA and protein are not expressed exclusively in germ cell lineages, but appeared in cells repeatedly emerging de novo in the colony, independently of its sexual state. In addition, we recorded an immediate Vasa response to cellular stress (UV irradiation) indicating additional functions to its germ line assignments. To confirm germ lineage exclusivity, we examined the expression of three more stem cell markers (BS-Pl10, Bl-piwi and Oct4). Vasa co-expression with Pl10 and Oct4 was detected in germ line derivatives and with Bl-piwi in somatic tissues. Presumptive primordial germ cells (PGC-like cells), that are Vasa+/Pl10+/Oct4+ and 6-12 μm in diameter, were first detected in wrapped-tail embryos, in oozooids, in sexual/asexual colonies, within a newly identified PGC niche termed as ‘budlet niche’, and in circulating blood borne cells, indicating epigenetic embryogenesis. Alternatively, BS-Vasa co-expression with piwi orthologue, an omnipresent bona fide stemness flag, in non germ line cell populations, may indicate germ cell neogenesis (somatic embryogenesis) in B. schlosseri. Both alternatives are not necessarily mutually exclusive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号