首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The chromatographic conditions for separation of N,N′-bislysyl(?-N)adipamidine and N-lysyl(?-N)adipamidinic acid, which were the products of acid hydrolysis of proteins treated with adipimidate esters, from other amino acids on an amino acid analyzer were established including their ninhydrin color values. Kinetics of decomposition of these lysine derivatives under the conditions of total acid hydrolysis of protein are also reported.  相似文献   

2.
Cation-π interactions, where protein aromatic residues supply π systems while a positive-charged portion of phospholipid head groups are the cations, have been suggested as important binding modes for peripheral membrane proteins. However, aromatic amino acids can also insert into membranes and hydrophobically interact with lipid tails. Heretofore there has been no facile way to differentiate these two types of interactions. We show that specific incorporation of fluorinated amino acids into proteins can experimentally distinguish cation-π interactions from membrane insertion of the aromatic side chains. Fluorinated aromatic amino acids destabilize the cation-π interactions by altering electrostatics of the aromatic ring, whereas their increased hydrophobicity enhances membrane insertion. Incorporation of pentafluorophenylalanine or difluorotyrosine into a Staphylococcus aureus phosphatidylinositol-specific phospholipase C variant engineered to contain a specific PC-binding site demonstrates the effectiveness of this methodology. Applying this methodology to the plethora of tyrosine residues in Bacillus thuringiensis phosphatidylinositol-specific phospholipase C definitively identifies those involved in cation-π interactions with phosphatidylcholine. This powerful method can easily be used to determine the roles of aromatic residues in other peripheral membrane proteins and in integral membrane proteins.  相似文献   

3.
Summary The effect of oxygen derived free radicals (OFR) on aromatic and sulphur containing amino acids has been investigated, both in their free form and within protein backbones. Aerated amino acids and proteins in solution were exposed to three discrete OFR generating systems; (1) gamma radiation in the presence or absence of formate (2) photolysis by UV light at 254 and 366 nm, and (3) site specific modification by H2O2 in the presence of CuII ions.A sensitive reverse-phase HPLC technique with dual detection systems (UV absorbance and fluorescence monitoring) was developed to analyse the products of amino acid oxidation. OFR denatured amino acids were chromatographed by this procedure, and all radical species generated, with the exception of the superoxide anion, resulted in the formation of identifiable fluorescent metabolites of tryptophan, kynurenines. The identity of peaks was confimed by spiking with authentic material and scanning absorption spectroscopy. After complete proteolytic hydrolysis, OFR treated proteins were also analysed by this technique; again the dose dependent production of kynurenines was detected in IgG, lens crystallins and albumin. Bityrosine was not detected in any of the proteins studied using this procedure, however, several novel unidentified fluorophores were detected in proteolytic hydrolysates, possibly the product of two different amino acid radicals.Immunoglobulin G isolated from the sera of normals and rheumatoid arthritis (RA) patients was examined for the presence of one specific tryptophan metabolite, N-formyl kynurenine. Significantly elevated levels of this metabolite were detected in rheumatoid sera, suggesting increased OFR activity in RA.These results have demonstrated firstly, that specific oxidised products of amino acids are retained in the protein backbone after exposure to OFR generating systems. Secondly, in aerated solution, oxidised tryptophan residues confer the major new visible fluorescence in non-haem proteins, not tyrosine products. In addition, this work has demonstrated that the measurement of a specific product of an oxidised amino acid can be applied to biological macromolecules, and may be important in implicating free radical reactions in certain disease processes.  相似文献   

4.
Tissue transglutaminase (TG2) catalyzes the Ca2+-dependent posttranslational modification of proteins via formation of isopeptide bonds between their glutamine and lysine residues. Although substrate specificity of TG2 has been studied repeatedly at the sequence level, no clear consensus sequences have been determined so far. With the use of the extensive structural information on TG2 substrate proteins listed in TRANSDAB Wiki database†, a slight preference of TG2 for glutamine and lysine residues situated in turns could be observed. When the spatial environment of the favored glutamine and lysine residues was analyzed with logistic regression, the presence of specific amino acid patterns was identified. By using the occurrence of the predictor amino acids as selection criteria, several polypeptides were predicted and later identified as novel in vitro substrates for TG2. By studying the sequence of TG2 substrate proteins lacking available crystal structure, the strong favorable influence on substrate selection of the presence of substrate glutamine and lysine residues in intrinsically disordered regions could also be revealed. The collected structural data have provided novel understanding of how this versatile enzyme selects its substrates in various cell compartments and tissues.  相似文献   

5.
The halophilic Archaeon Halorubrum lacusprofundi, isolated from the perennially cold and hypersaline Deep Lake in Antarctica, was recently sequenced and compared to 12 Haloarchaea from temperate climates by comparative genomics. Amino acid substitutions for 604 H. lacusprofundi proteins belonging to conserved haloarchaeal orthologous groups (cHOGs) were determined and found to occur at 7.85% of positions invariant in proteins from mesophilic Haloarchaea. The following substitutions were observed most frequently: (a) glutamic acid with aspartic acid or alanine; (b) small polar residues with other small polar or non-polar amino acids; (c) small non-polar residues with other small non-polar residues; (d) aromatic residues, especially tryptophan, with other aromatic residues; and (e) some larger polar residues with other similar residues. Amino acid substitutions for a cold-active H. lacusprofundi β-galactosidase were then examined in the context of a homology modeled structure at residues invariant in homologous enzymes from mesophilic Haloarchaea. Similar substitutions were observed as in the genome-wide approach, with the surface accessible regions of β-galactosidase displaying reduced acidity and increased hydrophobicity, and internal regions displaying mainly subtle changes among smaller non-polar and polar residues. These findings are consistent with H. lacusprofundi proteins displaying amino acid substitutions that increase structural flexibility and protein function at low temperature. We discuss the likely mechanisms of protein adaptation to a cold, hypersaline environment on Earth, with possible relevance to life elsewhere.  相似文献   

6.
A nonenzymatic reaction of reducing sugars with the free amino group located at the N terminus of the polypeptide chain or in the lysine side chain results in glycation of proteins. The fragments of glycated proteins obtained by enzymatic hydrolysis could be considered as the biomarkers of both the aging process and diabetes mellitus. Here we propose a new method for the identification of peptide-derived Amadori products in the enzymatic digest of glycated proteins. The products of enzymatic hydrolysis of the model protein ubiquitin were incubated with H218O under microwave activation. We observed that at these conditions the Amadori compounds selectively exchange one oxygen atom in the hexose moiety. The characteristic isotopic pattern of Amadori products treated with H218O allows fast and convenient identification of this group of compounds, whereas nonglycated peptides are not susceptible to isotopic exchange.  相似文献   

7.
The specificity of the alkaline proteinase from Aspergillus sojae was investigated. In the specificity studies with synthetic substrates, the enzyme hydrolyzed the peptide linkages involving the carboxyl group of leucine, tyrosine, phenylalanine, arginine and lysine. In the hydrolysis of natural proteins, the enzyme liberated relatively large peptides and traces of free amino acids, suggesting that the enzyme is of a typical endo-type.

N- and C-Terminal amino acid residues appearing during time course digestion of various proteins were determined. Considering the influence of amino acid composition of substrates on the frequencies of appearance of the terminal amino acids, it was estimated that the susceptibility of peptide bonds of substrate to the enzyme depends mainly on the carboxyl side residues, and, to far less extent, on the amino side residues of the peptide bonds. The enzyme showed relatively high specificity for lysine, tyrosine, histidine, arginine and phenylalanine residues at the carboxyl side of the susceptible linkages.  相似文献   

8.
A number of metal-catalyzed oxidation (MCO) systems mediate the oxidative inactivation of enzymes. This oxidation is accompanied by conversion of the side chains of some amino acid residues to carbonyl derivatives (for review, see Stadtman, E. R. (1986) Trends Biochem. Sci. 11, 11-12). To identify the amino acid residues which are sensitive to MCO oxidation, several enzymes/proteins and amino acid homopolymers were exposed to various MCO systems. The carbonyl groups which were formed were converted to their corresponding 3H-labeled hydroxy derivatives. After acid hydrolysis, the labeled free amino acids were separated by ion exchange chromatography. Each protein or polymer gave rise to several different labeled amino acids. The elution profiles of the labeled amino acids obtained from preparations of Escherichia coli glutamine synthetase which had been oxidized by MCO systems comprised of either Fe(II)/O2 or ascorbate/Fe(II)/O2 both in the presence and absence of EDTA were qualitatively the same. From a comparison of the elution profiles of labeled amino acids from various proteins with those obtained from homopolymers, it is evident that the side chains of histidine, arginine, lysine, and proline are particularly sensitive to oxidation by the MCO systems. This conclusion is supported also by direct amino acid analysis of acid hydrolysates which shows that the oxidation of glutamine synthetase, enolase, and phosphoglycerate kinase is associated with the loss of at least 1 histidine residue per subunit. From the results of studies with homopolymers, it is apparent that glutamic semialdehyde is a major product of both proline and arginine residues. In addition, hydroxyproline and unlabeled glutamic acid were identified among the hydrolysis products of oxidized poly-L-proline, and unlabeled aspartic acid was identified as a product of poly-L-histidine oxidation.  相似文献   

9.
The Cu(II) complexes of tridentate amino acids and related amines in alkaline solution were studied by EPR spectroscopy. Line shapes, g∥ and A∥ of each amino acid complex were compared with those of the corresponding amine complex. The results indicate that aromatic amino acids, monoaminodicarboxylic amino acids, arginine, methionine, and lysine bind to Cu(II) via the amino and carboxyl α groups. On the other hand cysteine, 2-3-diaminopropionic acid and hydroxy amino acids appear to be coordinated through the α-amino group and the third potentially binding group. Evidence is presented for the formation of mixed complexes in the cases of histidine and 2-4-diaminobutyric acid, whereas a glycine-like complex with apical coordination of the δ-amino groups is proposed for the ornithine-Cu(II) complex.  相似文献   

10.
Reactions of human plasma α1-antitrypsin (α1-AT) with reagents known to modify the lysyl residues [citraconic anhydride, acetic anhydride, 2,4,6-trinitrobenzenesulfonic acid (TNBS)] and arginyl residues [1,2-cyclohexanedione (CHD) and phenylglyoxal (PGO)] in proteins have been studied. Native and modified human plasma α1-AT preparations were tested for their inhibitory activities against trypsin and α-chymotrypsin. TNBS was utilized to modify and quantitate free amino groups (?-NH2 groups of lysine residues) in human plasma α1-AT. The number of lysine residues determined by the TNBS spectrophotometric procedure agreed well with that found by amino acid analyses. Both the trypsin-inhibitory and chymotrypsin-inhibitory activities of α1-AT were destroyed by modification with TNBS. CHD was employed to modify the arginyl residues of α1-AT. Neither the trypsin-inhibitory nor the chymotrypsin-inhibitory activity of α1-AT was affected by modification of its arginyl residues. Amino acid analyses of the CHD-treated α1AT revealed that only the arginine residues were modified. PGO was also utilized for the modification of the arginyl residues in α1-AT. Both the trypsininhibitory and chymotrypsin-inhibitory activities of α1-AT were destroyed after modification. However, amino acid analyses showed that not only the arginyl, but also the lysyl residues of the PGO-treated inhibitor were modified. The side reaction of PGO with the lysyl residues could explain the loss of inhibitory activities. Reaction of a α1-AT with citraconic anhydride resulted in an extensive modification of the amino groups accompanied by a 100% loss in inhibitory activity against both trypsin and α-chymotrypsin. Comparable results were observed when acetic anhydride was utilized as the acylating reagent. With the exception of the citraconylated α1AT, all of the other chemically modified α1-AT derivatives studied presently retained their immunological reactivities against antisera to native α1-AT. Regeneration of about 60% of the PGO-blocked arginyl residues in α1-AT did not lead to any recovery of the proteinase inhibitory activities. Full recovery of trypsin-inhibitory and immunological activities were achieved when about 50% of the citraconylated amino groups were deblocked. The CHD-treated α1-AT still retained the capacity to form complexes with both trypsin and chymotrypsin. On the other hand, the other chemically modified α1-AT derivatives have completely lost the ability to form complexes with the enzymes. Recovery of the ability to form complexes with the enzymes was, however, recovered when about 50% of the citraconylyl groups was removed from the α1-AT molecule. Based on these modification studies, it is concluded that α1-AT is a lysyl inhibitor type (i.e., the reactive site is Lys-X bond) and that the interaction of α1-AT with trypsin or chymotrypsin very likely involves or requires the same site as in the case of the soybean trypsin inhibitor (Kunitz).  相似文献   

11.
Allysine is the most important precursor of physiologically essential cross-links formation in collagen and elastin and is formed by enzymatic oxidative deamination of lysine residues. Because it is a highly reactive aldehyde, many cross-linking amino acid residues may arise from its reaction with other allysine residues or lysine or even histidine residues. We purified and isolated an allysine bisphenol derivative, 1-amino-1-carboxy-5,5-bis-p-hydroxyphenylpentane (ACPP), from the reaction products of phenol and allysine residue of bovine ligamentum nuchae by acid hydrolysis in 6 M HCl. The structure of ACPP was verified by UV, fast atom bombardment-MS, 1H- and 13C-nuclear magnetic resonance spectroscopies. The optimal reaction condition for ACPP synthesis accompanied by hydrolysis of such proteins was investigated and an ion-paired high-performance liquid chromatographic method for determination of allysine as ACPP was also developed.  相似文献   

12.
Posttranslational modifications (PTMs) of proteins determine their structure-function relationships, interaction partners, as well as their fate in the cell and are crucial for many cellular key processes. For instance chromatin structure and hence gene expression is epigenetically regulated by acetylation or methylation of lysine residues in histones, a phenomenon known as the ‘histone code’. Recently it was shown that these lysine residues can furthermore be malonylated, succinylated, butyrylated, propionylated and crotonylated, resulting in significant alteration of gene expression patterns. However the functional implications of these PTMs, which only differ marginally in their chemical structure, is not yet understood. Therefore generation of proteins containing these modified amino acids site specifically is an important tool. In the last decade methods for the translational incorporation of non-natural amino acids using orthogonal aminoacyl-tRNA synthetase (aaRS):tRNAaaCUA pairs were developed. A number of studies show that aaRS can be evolved to use non-natural amino acids and expand the genetic code. Nevertheless the wild type pyrrolysyl-tRNA synthetase (PylRS) from Methanosarcina mazei readily accepts a number of lysine derivatives as substrates. This enzyme can further be engineered by mutagenesis to utilize a range of non-natural amino acids. Here we present structural data on the wild type enzyme in complex with adenylated ε-N-alkynyl-, ε-N-butyryl-, ε-N-crotonyl- and ε-N-propionyl-lysine providing insights into the plasticity of the PylRS active site. This shows that given certain key features in the non-natural amino acid to be incorporated, directed evolution of this enzyme is not necessary for substrate tolerance.  相似文献   

13.
Formation equilibria of copper(II) complexes of 2-(aminomethyl)-benzimidazole (AMBI) and the ternary complexes Cu(AMBI)L (L = amino acid, amide, dicarboxylic acid or DNA constituents) have been investigated. Ternary complexes of amino acids or amides are formed by a simultaneous mechanism. Amino acids form the complex Cu(AMBI)L, whereas amides form two complex species Cu(AMBI)L and Cu(AMBI)(LH−1). The ternary complexes of copper(II) with AMBI and dicarboxylic acids or DNA units are formed by a stepwise mechanism, whereby binding of copper(II) to AMBI is followed by ligation of the dicarboxylic acids or DNA components. The values of Δ log K indicate that the ternary complexes containing aromatic amino acids are significantly more stable than the complexes containing alkyl- and hydroxyalkyl-substituted amino acids. This may be taken as an evidence for a stacking interaction between the aromatic moiety of AMBI and the aromatic side chains of the bio-active ligands. The solid complexes Cu(AMBI)L where L = 1,1-cyclobutanedicarboxylic acid (CBDCA) and malonic acid were separated and identified by elemental analysis and infrared spectroscopy and magnetic moment. The decomposition course and steps for the isolated complexes were analyzed and the kinetic parameters of the non-isothermal decomposition were calculated. The hydrolysis of glycine methyl ester (MeGly) is catalyzed by the Cu(AMBI)2+ complex. The kinetic data is fitted assuming that the hydrolysis reaction proceeds in two steps. The first step, involving coordination of the amino acid ester by the amino and carbonyl groups, is followed by rate-determining attack by OH ion. The second step involves the equilibrium formation of the hydroxo-complex Cu(AMBI)(MeGly)(OH) followed by intramolecular OH attack.  相似文献   

14.
The cytokine LIGHT is a promising candidate for cancer therapy. However, the therapeutic effect of LIGHT as a systemic anticancer agent is currently insufficient because of its instability and its binding to nonfunctional soluble decoy receptor 3 (DcR3), which is overexpressed in various tumors. Modification of proteins with polyethylene glycol (PEGylation) can improve their in vivo stability, but PEGylation may occur randomly at all lysine residues and the NH2-terminus; therefore, PEGylated proteins are generally heterogeneous and have decreased bioactivity. In this study, we attempted to create a lysine-deficient LIGHT mutant that could be PEGylated site-specifically and would have lower affinity for DcR3. We prepared phage libraries expressing LIGHT mutants in which all the lysine residues were replaced with other amino acids. A lysine-deficient LIGHT mutant [mLIGHT-Lys(−)] was isolated by panning against lymphotoxin β receptor (LTβR). mLIGHT-Lys(−) could be site-specifically PEGylated at its NH2-terminus, yielding molecular uniformity and in vitro bioactivity equal to that of non-PEGylated, wild-type LIGHT. Furthermore, mLIGHT-Lys(−) was not trapped by the nonfunctional DcR3, despite binding to its functional receptors. These results suggest that mLIGHT-Lys(−) might be a useful candidate for cancer therapy.  相似文献   

15.
This paper presents stable carboxypeptidase A (CPA)-glyoxyl derivatives, to be used in the controlled hydrolysis of proteins. They were produced after immobilizing-stabilizing CPA on cross-linked 6% agarose beads, activated with low and high concentrations of aldehyde groups, and different immobilization times. The CPA-glyoxyl derivatives were compared to other agarose derivatives, prepared using glutaraldehyde as activation reactant. The most stabilized CPA-glyoxyl derivative was produced using 48 h of immobilization time and high activation grade of the support. This derivative was approximately 260-fold more stable than the soluble enzyme and presented approximately 42% of the activity of the soluble enzyme for the hydrolysis of long-chain peptides (e.g., cheese whey proteins previously hydrolyzed with immobilized trypsin and chymotrypsin) and of the small substrate N-benzoylglycyl-l-phenylalanine (hippuryl-l-Phe). These results were much better than those achieved using the conventional support, glutaraldehyde-agarose. Amino acid analysis of the products of the acid hydrolysis of CPA (both soluble and immobilized) showed that approximately four lysine residues were linked on the glyoxyl agarose beads, suggesting the existence of an intense multipoint covalent attachment between the enzyme and the support. The maximum temperature of hydrolysis was increased from 50 degrees C (soluble enzyme) to 70 degrees C (most stable CPA-glyoxyl derivative). The most stable CPA-glyoxyl derivative could be efficiently used in the hydrolysis of long-chain peptides at high temperature (e.g., 60 degrees C), being able to release 2-fold more aromatic amino acids (Tyr, Phe, and Trp) than the soluble enzyme, under the same operational conditions. This new CPA derivative greatly increased the feasibility of using this protease in the production of protein hydrolysates that must be free of aromatic amino acids.  相似文献   

16.
Amino acid analyses of irradiated bovine superoxide dismutase solutions showed that only a few types of residues are destroyed by H and Br2? radicals and confirmed the indications obtained from work on free amino acids. Furthermore destruction of lysine - unexpected on the basis of data obtained in free solutions of amino acids exposed to Br2? - was observed in the copper-containing protein. Different extent of amino acid losses were observed depending on pH and presence or absence of copper. Correlation of these losses with residual enzymic activity permitted identification of some vital residues.  相似文献   

17.
When lysozyme was treated with Cu(II) and H2O2 at pH 7.4, the protein underwent polymerization as well as changes in its fluorescent characteristics. Upon prolonged incubation, most of the protein aggregates were degraded into smaller peptides. Amino acid analysis indicated that the basic amino acid residues were most susceptible to the oxidation. Tryptophan residues were converted to N-formylkynurenine and kynurenine, and lysine residues were deaminated to form α-aminoadipic acid δ-semi- aldehyde. During Cu(II)H2O2 treatment, the formation of carbonyl groups was accompanied by the loss of free amino groups in the protein. Succinylation of free amino groups protected lysine residues from oxidation by Cu(II)H2O2, but failed to prevent polymerization. The studies with the modified lysozyme suggest that Cu(II)H2O2 can oxidize various amino acid residues in addition to lysine to generate different types of carbonyl compounds and these carbonyl compounds may be responsible for the formation of crosslinks in the polymerization process.  相似文献   

18.
During aerobic autolysis and in commercial curing, the bulk proteins of tobacco leaves become coupled with quinic acid, presumably in consequence of coupling of chlorogenic acid congeners with lysine ε-NH2 groups. Quinic acid derivatives, prepared from acid hydrolysates of such altered proteins, were identified by GC-MS. Such proteins were also hydrogenated over Rh/Al2O3 with a view to stabilizing the hypothetical linkages. Difficulties in removing contaminant Al had to be overcome. Evidence was then obtained (by GLC of derivatives) for several components, in acid hydrolysates of hydrogenated altered proteins, which were neither normal hydrogenation products of the common amino acids nor derivatives of quinic acid. Details of the chromatograms and mass spectra of quinic acid derivatives are provided in a supplementary publications.  相似文献   

19.
The significance of thermal polyamino acids (proteinoids) as abiotic predecessors of proteins is reviewed on the basis of new experimental results. Most proteinoids yield only 50% to 80% amino acid upon acid hydrolysis. They contain 40% to 60% less peptide links than typical proteins, whereas their average nitrogen content is like that of proteins. The arrangement of amino acid residues is nonrandom. The degree of nonrandomness is difficult to determine because unusual crosslinks disturb most of the sequencing methods typically applied, in protein chemistry. The products obtained in a polymerization experiment are heterogeneous. They can be separated into a limited number of related fractions by chromatography or electrophoresis and other separation methods applied in protein chemistry. Their molecular weights are typically between 400 and 10 000. The number of free NH2-groups, is usually smaller than in comparable proteins A significant fraction of NH2-groups yields imidazole-type bases during the thermal polymerization. Optically active amino acids racemize during the same process. So far no helicity could be detected. Proteinoids are thus clearly distinct from proteins However, many of them exhibit weak catalytic activities and tend to undergo self-assembly into microstructures. Their properties of which only a few have been mentioned still support their role as possible candidates for ancestors of first proteins.  相似文献   

20.
Fourteen genes encoding putative secondary amino acid transporters were identified in the genomes of Lactococcus lactis subsp. cremoris strains MG1363 and SK11 and L. lactis subsp. lactis strains IL1403 and KF147, 12 of which were common to all four strains. Amino acid uptake in L. lactis cells overexpressing the genes revealed transporters specific for histidine, lysine, arginine, agmatine, putrescine, aromatic amino acids, acidic amino acids, serine, and branched-chain amino acids. Substrate specificities were demonstrated by inhibition profiles determined in the presence of excesses of the other amino acids. Four knockout mutants, lacking the lysine transporter LysP, the histidine transporter HisP (formerly LysQ), the acidic amino acid transporter AcaP (YlcA), or the aromatic amino acid transporter FywP (YsjA), were constructed. The LysP, HisP, and FywP deletion mutants showed drastically decreased rates of uptake of the corresponding substrates at low concentrations. The same was observed for the AcaP mutant with aspartate but not with glutamate. In rich M17 medium, the deletion of none of the transporters affected growth. In contrast, the deletion of the HisP, AcaP, and FywP transporters did affect growth in a defined medium with free amino acids as the sole amino acid source. HisP was essential at low histidine concentrations, and AcaP was essential in the absence of glutamine. FywP appeared to play a role in retaining intracellularly synthesized aromatic amino acids when these were not added to the medium. Finally, HisP, AcaP, and FywP did not play a role in the excretion of accumulated histidine, glutamate, or phenylalanine, respectively, indicating the involvement of other transporters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号