首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this work was to discover the effects of lowering the temperature from 25° to 2° on the metabolism of glucose [U-14C] by tubers of Solanum tuberosum. Isotope was applied to tubers via a 50-μl hole made with a capillary pipette. Tubers were incubated for 2 hr, the pulse; then the glucose- [U-14C] was replaced with glucose, and incubation was continued for 18 hr, the chase. The detailed distribution of 14C was determined at the end of the pulse and at the end of the chase at 2°, and compared with those found at 25°. Lowering the temperature reduced the proportion of metabolized 14C that entered the respiratory pathways. At 2°, but not at 25°, hexose phosphates were the most heavily labelled fraction after the pulse: during the chase at 2° much of this label was metabolized to sucrose. We conclude that lowering the temperature preferentially restricts glycolysis and diverts hexose phosphates to sucrose. We suggest that this is an important cause of cold-inducing sweetening of the tubers and is due to cold-lability of key glycolytic enzymes.  相似文献   

2.
Storage of tubers of Solanum tuberosum at 10° or 2° for 15 days did not alter significantly the maximum catalytic activities of sucrose phosphate synthetase, sucrose synthetase, glucose-6-phosphate dehydrogenase, aldolase, and glyceraldehydephosphate dehydrogenase. The temperature coefficients of phosphofructokinase, glyceraldehydephosphate dehydrogenase, and pyruvate kinase from the tubers were shown to be higher between 2° and 10° than between 10° and 25°. The rate of sugar accumulation at 2° exceeded the activity of sucrose synthetase but was less than that of sucrose phosphate synthetase. It is suggested that sucrose accumulation at 2° is catalysed by sucrose phosphate synthetase, is not due to changes in the maximum catalytic activities of any of the above enzymes, but may be due, in part, to the susceptibility of key glycolytic enzymes to cold.  相似文献   

3.
We purified recombinant glucose-6-phosphate isomerase from Pyrococcus furiosus using heat treatment and Hi-Trap anion-exchange chromatography with a final specific activity of 0.39 U mg−1. The activity of the glucose-6-phosphate isomerase for l-talose isomerization was optimal at pH 7.0, 95°C, and 1.5 mM Co2+. The half-lives of the enzyme at 65°C, 75°C, 85°C, and 95°C were 170, 41, 19, and 7.9 h, respectively. Glucose-6-phosphate isomerase catalyzed the interconversion between two different aldoses and ketose for all pentoses and hexoses via two isomerization reactions. This enzyme has a unique activity order as follows: aldose substrates with hydroxyl groups oriented in the same direction at C2, C3, and C4 > C2 and C4 > C2 and C3 > C3 and C4. l-Talose and d-ribulose exhibited the most preferred substrates among the aldoses and ketoses, respectively. l-Talose was converted to l-tagatose and l-galactose by glucose-6-phosphate isomerase with 80% and 5% conversion yields after about 420 min, respectively, whereas d-ribulose was converted to d-ribose and d-arabinose with 53% and 8% conversion yields after about 240 min, respectively.  相似文献   

4.
The changes in glucose-1-phosphate, glucose-6-phosphate, fructose-6-phosphate, dihydroxyacetone phosphate, 3-phosphoglycerate, 2-phospho-glycerate, phosphoenol-pyruvate, pyruvate, adenosine mono-, di- and tri-phosphates, NAD and NADH, sugars and respiration of mature potato tubers (variety King Edward) caused by transfer from + 10° to + 2° and back to + 10° were followed throughout 4–8 weeks of storage. The results obtained showed a characteristic two phase pattern. In the case of the transfer from + 10° to + 2° a number of the phosphate esters showed wide individual variations in concentration during the first phase but only slow changes during the second phase when most of the phosphate esters tended to follow a common pattern. In the first phase the sugar concentration remained roughly constant, but in the second a considerable increase in both sucrose and respiration occurred. In the case of potatoes transferred from + 2° to + 10° the two phase character of the results was not so marked. In the case of potatoes transferred from + 10° to + 2° the changes in the phosphate esters in the first phase did not appear to be related to the conversion of starch to sucrose which only occurred to a significant extent in the second phase. Electron micrographs of potato tubers which had been stored at + 2° for 38 days (sugar content 2.4%) showed that the starch grains were still enclosed in a double membrane (amyloplast membrane). Analysis of starch grains prepared by a non-aqueous method from potato tubers stored at + 10° and + 2° indicated that a large part of the K, Na, Cl, citrate and glucose-6-phosphate was inside the amyloplast but that the sugar (storage at + 2°) was outside; sweetening therefore involved the transport of metabolites through the amyloplast membrane. Comparison with other treatments (anaerobiosis, cyanide, ethylene chlorhydrin) which cause sweetening suggested that the regulation of the starch-sugar interconversion was effected at the amyloplast membrane and possibly involved electron transfer. In the case of potatoes which sweetened due to senescence, electron micrographs showed that the amyloplast membranes were disintegrating.  相似文献   

5.
Two forms of glucose-6-phosphate dehydrogenase were separated by disc electrophoresis of potato tuber extracts. The slower moving enzyme has a MW of 260 000 the faster one of 130 000. Wounding of potato tubers enhances the relative activity of the slower moving enzyme. Addition of NADP+ to the cathode buffer during electrophoresis has the same effect as wounding, whereas addition of glucose-6-phosphate has an opposite effect. The role of the wound induced increase of the pyridine nucleotide level in the interconversion of the two forms of glucose-6-phosphate dehydrogenase is discussed.  相似文献   

6.
《Phytochemistry》1986,25(3):601-606
Phosphoenolpyruvate carboxylase (PEPC) was partially purified from young developing apple fruit, cultivars Golden Delicious and Cox's Orange Pippin. Freeze-drying of tissue reduced the yield of PEPC activity compared to samples stored at 4°. Activities measured by H14CO3 incorporation exceeded the spectrophotometric assay for the enzyme with coupled NADH-malate dehydrogenase (MDH) by up to 60%. The enzyme could be stored at −16° with glycerol and bovine serum albumin for several months without loss of activity. Thermal inactivation of PEPC occurred after heating to 75° for 3 min when MDH was still slightly active. Inhibition of PEPC activity by endogenous phenolics could be prevented by grinding in liquid nitrogen in the presence of polyvinylpyrrolidine and dithiothreitol. Apparent Km (PEP) and Vmax values compared more favourably with those obtained from a C3-species (spinach) than from a C4-species (maize). l-Malate (5 mM) inhibited fruit PEPC by 22%; this was decreased to 12% by addition of glucose-6-phosphate (2 mM). From kinetic and effector experiments PEPC in the apple fruit is concluded to be a non-C4 photosynthetic enzyme.  相似文献   

7.
The subcellular distribution of NADP+ and NAD+-dependent glucose-6-phosphate and galactose-6-phosphate dehydrogenases were studied in rat liver, heart, brain, and chick brain. Only liver particulate fractions oxidized glucose-6-phosphate and galactose-6-phosphate with either NADP+ or NAD+ as cofactor. While all of the tissues examined had NADP+-dependent glucose-6-phosphate dehydrogenase activity, only rat liver and rat brain soluble fractions had NADP+-dependent galactose-6-phosphate dehydrogenase activity. Rat liver microsomal and rat brain soluble galactose-6-phosphate dehydrogenase activities were kinetically different (Km's 0.5 mm and 10 mm, respectively, for galactose-6-phosphate), although their reaction products were both 6-phosphogalactonate. Rat brain subcellular fractions did not oxidize 6-phosphogalactonate with either NADP+ or NAD+ cofactors but phosphatase activities hydrolyzing 6-phosphogalactonate, galactose-6-phosphate and galactose-1-phosphate were found in crude brain homogenates. In addition, galactose-6-phosphate and 6-phosphogalactonate were tested as inhibitors of various enzymes, with largely negative results, except that 6-phosphogalactonate was a competitive inhibitor (Ki = 0.5 mM) of rat brain 6-phosphogluconate dehydrogenase.  相似文献   

8.
Onyia, G. O. C. and Gahan, P. B. 1985. A quantitative cytochemicalstudy of glutamate and glucose-6-phosphate dehydrogenase activitiesduring chilling injury in tubers of Dioscorea rotundala Poir.—J.exp. Bot. 36: 1249–1256. The response of glucose-6-phosphate dehydrogenase and glutamatedehydrogenase activities in healthy Jamaican Dioscorea rotundalatubers and those chilled at 3 ?C for 1,2,3,4, and 7 d at 70%r.h. were assessed by quantitative cytochemical assays. Bothenzymes in chill-damaged tuber tissues showed a substantiallyhigher activity than did those of the healthy tubers. An early,sharp increase in the response of the NADP-tetrazolium reductasesystem of damaged tuber tissue was significantly higher (P =0.001) than that of healthy tubers or those chilled but ableto recover. This response may be used as an early marker ofchilling injury in the yam tuber. Key words: Dioscorea rotundata Poir, quantitative cytochemistry, yam tuber, glucose-6-phosphate, dehydrogenase, glutamate dehydrogenase, NADPitetrazolium reductase  相似文献   

9.
The sorbitol-6-phosphate dehydrogenase (S6PDH) is a key enzyme for sorbitol synthesis and plays an important role in the alleviation of salinity stress in plants. Despite the huge significance, the structure and the mode of action of this enzyme are still not known. In the present study, sequence analysis, cloning, expression, activity assays and enzyme kinetics using various substrates (glucose-6-phosphate, sorbitol-6-phosphate and mannose-6-phosphate) were performed to establish the functional role of S6PDH protein from rice (Oryza sativa). For the structural analysis of the protein, a comparative homology model was prepared on the basis of percentage sequence identity and substrate similarity using the crystal structure of human aldose reductase in complex with glucose-6-phosphate and NADP+ (PDB ID: 2ACQ) as a template. Molecular docking was performed for studying the structural details of substrate binding and possible enzyme mechanism. The cloned sequence resulted into an active recombinant protein when expressed into a bacterial expression system. The purified recombinant protein was found to be active with glucose-6-phosphate and sorbitol-6-phosphate; however, activity against mannose-6-phosphate was not found. The K m values for glucose-6-phosphate and sorbitol-6-phosphate were found to be 15.9 ± 0.2 and 7.21 ± 0.5 mM, respectively. A molecular-level analysis of the active site of OsS6PDH provides valuable information about the enzyme mechanism and requisite enantioselectivity for its physiological substrates. Thus, the fundamental studies of structure and function of OsS6PDH could serve as the basis for the future studies of bio-catalytic applications of this enzyme.  相似文献   

10.
Liver cytosol preparations from fed rats are shown to form glucose-6-phosphate from glyceraldehyde-3-phosphate at a rate of 1.6 μmoles·min?1·g liver wet weight?1 in presence of 0.4 mM Mg2+. This rate is more than doubled by 30 μM EGTA and/or Mg2+-concentrations ≥2 mM. 48 hours starvation increases the rate of glucose-6-phosphate formation at 0.4 mM Mg2+ to 3.0 μmoles·min?1·g liver wet weight?1 and greatly diminishes the effect of EGTA and of higher Mg2+-concentrations. Inhibition of glucose-6-phosphate formation by Ca2+ and Zn2+ is shown to be more pronounced with cytosol from fed than from 48 hours starved rats.  相似文献   

11.
Glucose-6-phosphate dehydrogenases (G6PDs) are important enzymes widely used in bioassay and biocatalysis. In this study, we reported the cloning, expression, and enzymatic characterization of G6PDs from the thermophilic bacterium Thermoanaerobacter tengcongensis MB4 (TtG6PD). SDS-PAGE showed that purified recombinant enzyme had an apparent subunit molecular weight of 60 kDa. Kinetics assay indicated that TtG6PD preferred NADP+ (k cat/K m = 2618 mM?1 s?1, k cat = 249 s?1, K m = 0.10 ± 0.01 mM) as cofactor, although NAD+ (k cat/K m = 138 mM?1 s?1, k cat = 604 s?1, K m = 4.37 ± 0.56 mM) could also be accepted. The K m values of glucose-6-phosphate were 0.27 ± 0.07 mM and 5.08 ± 0.68 mM with NADP+ and NAD+ as cofactors, respectively. The enzyme displayed its optimum activity at pH 6.8–9.0 for NADP+ and at pH 7.0–8.6 for NAD+ while the optimal temperature was 80 °C for NADP+ and 70 °C for NAD+. This was the first observation that the NADP+-linked optimal temperature of a dual coenzyme-specific G6PD was higher than the NAD+-linked and growth (75 °C) optimal temperature, which suggested G6PD might contribute to the thermal resistance of a bacterium. The potential of TtG6PD to measure the activity of another thermophilic enzyme was demonstrated by the coupled assays for a thermophilic glucokinase.  相似文献   

12.
Potato (Solanum tuberosum L.) plants were transformed with antisense constructs to the genes encoding the -and -subunits of pyrophosphate: fructose-6-phosphate phosphotransferase (PEP), their expression being driven by the constitutive CaMV 35S promotor. (i) In several independent transformant lines, PFP expression was decreased by 70–90% in growing tubers and by 88–99% in stored tubers. (ii) The plants did not show any visual phenotype, reduction of growth or decrease in total tuber yield. However, the tubers contained 20–40% less starch than the wild type. Sucrose levels were slightly increased in growing tubers, but not at other stages. The rates of accumulation of sucrose and free hexoses when tubers were stored at 4° C and the final amount accumulated were the same in antisense and wild-type tubers. (iii) Metabolites were investigated at four different stages in tuber life history; growing (sink) tubers, mature tubers, cold-sweetening tubers and sprouting (source) tubers. At all stages, compared to the wild type, antisense tubers contained slightly more hexose-phosphates, two- to threefold less glycerate-3-phosphate and phosphoenolpyruvate and up to four-to fivefold more fructose-2,6-bisphosphate. (iv) There was no accumulation or depletion of inorganic pyrophosphate (PPi), or of UDP-glucose relative to the hexose-phosphates. (v) The pyruvate content was unaltered or only marginally decreased, and the ATP/ADP ratio did not change. (vi) Labelling experiments on intact tubers did not reveal any significant decrease in the unidirectional rate of metabolism of [U-14C]sucrose to starch, organic acids or amino acids. Stored tubers with an extreme (90%) reduction of PFP showed a 25% decrease in the metabolism of [U14-C] sucrose. (vii) Metabolism (cycling) of [U-14C]glucose to surcrose increased 15-fold in discs from growing antisense tubers, compared with growing wild-type tubers. Resynthesis of sucrose was increased by 10–20% when discs from antisense and wild-type tubers stored at 4° C (cold sweetening) were compared. The conversion of [U-14C]glucose to starch was decreased by about 30% and 50%, respectively. (viii) The randomisation of [1-13C]glucose in the glucosyl and fructosyl moieties of sucrose was decreased from 13.8 and 15.7% in the wild type to 3.6 and 3.9% in an antisense transformant. Simultaneously, randomisation in glucosyl residues isolated from starch was reduced from 14.4 to 4.1%. (ix) These results provide evidence that PFP catalyses a readily reversible reaction in tubers, which is responsible for the recycling of label from triose-phosphates to hexose-phosphates, but with the net reaction in the glycolytic direction. The results do not support the notion that PFP is involved in regulating the cytosolic PPi concentration. They also demonstrate that PFP does not control the rate of glycolysis, and that tubers contain exessive capacity to phosphorylate fructose-6-phosphate. The decreased concentration of phosphoenolpyruvate and glycerate-3-phosphate compensates for the decrease of PFP protein by stimulating ATP-dependent phosphofructokinase, and by stimulating fructose-6-phosphate,2-kinase to increase the fructose-2,6-bisphosphate concentration and activate the residual PFP. The decreased starch accumulation is explained as an indirect effect, caused by the increased rate of resynthesis (cycling) of sucrose in the antisense tubers.Abbreviations Fru1,6bisP fructose-1,6-bisphosphate - Fru2,6bisP fructose-2,6-bisphosphate - Fru6P fructose-6-phosphate - Glc1P glucose-1-phosphate - Glc6P glucose-6-phosphate - NMR nuclear magnetic resonance - 3PGA glycerate-3-phosphate - PEP phosphoenolpyruvate - PEP pyrophosphate: fructose-6-phosphate phosphotransferase - PFK phosphofructokinase - UDPGlc UDP glucose - WT wild type This research was supported by the Bundesministerium for Forschung and Technology (M.S., U.S.), the Canadian Research Council (S.C., D.D.), the Agricultural and Food Research Council (R.V.) and Sandoz Agro Ltd. (M.H., M.S.).  相似文献   

13.
In this paper, we investigated the properties of trehalose-6- phosphate synthase (SfTps1) inSaccharomycopsis fibuligera sdu a high-trehalose-accumulating strain. The purified SfTps1 showed a band on Native-PAGE and SDS-PAGE of about 66 kDa. The optimal pH and temperature of the purified enzyme were 6.6 and 37 °C, respectively. The enzyme was activated by Ca2+, K+ and Mg2+, inhibited by Mn2+, Cu2+, Fe3+, Hg2+ and Co2+. Iodoacetic acid, EDTA and PMSF had inhibitory effect on the enzyme activity. Km values of the enzyme for glucose-6-phosphate and UDP-glucose were 38.6 mM and 9.3 mM, respectively. The effects of various stress conditions on SfTps1 activity and trehalose content in this strain were also studied. Neither the activation of SfTps1 nor the change in trehalose content was observed under stress exposure ofSaccharomycopsis fibuligera cells. Our results indicate that the SfTps1 protein and trehalose metabolism in response to stress conditions inSaccharomycopsis fibuligera clearly differ from that ofSaccharomyces cerevisiae and most of other eukaryotes.  相似文献   

14.
The kinetics of 14C-labeling of compounds produced during photosynthesis by chloroplast preparations isolated from the green alga Caulerpa simpliciuscula were studied. After 10 minutes photosynthesis sucrose contained more 14C than any other product, and continued to accumulate radioactivity during the whole hour of incubation. Glucose-6-phosphate and alanine also behaved as end products and continued to accumulate label during the period. In these organelles, glucose-6-phosphate replaced triose phosphate as the main compound exported from the chloroplast during shorter periods of photosynthesis. When either glucose-6-phosphate or 3-phosphoglycerate was supplied to the isolated chloroplasts, they were metabolized, but were not converted to either sucrose or alanine. It is proposed that many of the differences in metabolism which distinguish these algal chloroplasts from those isolated from higher plants are due to their isolation in the form of cytoplasts, i.e. chloroplasts surrounded by a thin layer of extrachloroplastic material which is membrane-bound. The restriction of diffusion of intermediates from the chloroplast by this cytoplast membrane appears to be at least as important as the rather small amount of cytoplasm present in determining the properties observed.  相似文献   

15.
The neutral lipid accumulation in myo-inositol deficient Saccharomyces carlsbergensis results at least partly from an enhancement of acetyl CoA carboxylase activity due to the high level of fructose 1,6-bisphosphate which activates acetyl CoA carboxylase, and due to the low level of citrate which counteracts the activation [4].In an attempt to explore the effect of myo-inositol deficiency on the metabolic fluxes, various enzyme activities were compared between the myo-inositol supplemented and deficient cells. The activities of phosphofructokinase and ATP-citrate lyase increased by 74 and 83%, respectively, in the deficient cell, whereas those of aldolase and citrate synthase decreased by 65 and 27%, respectively. The activity of glucose-6-phosphate dehydrogenase was unchanged. Unlike acetyl CoA carboxylase, elimination of low molecular effectors had no influence on their activities.The thermostability of phosphofructokinase (at 53°C) increased, while that of aldolase (at 48°C) greatly decreased due to the deficiency. The thermostability of glucose-6-phosphate dehydrogenase (at 52°C) was also unchanged.  相似文献   

16.
Potato tuber worm (PTW), Phthorimaea operculella (Zeller), is a world-wide pest of potato. In rustic stores, PTW larvae can infest 100% of stored tubers. Treatment of tubers in rustic stores with the PTW granulovirus (PoGV) has been demonstrated to protect stored tubers. This is the first study to show the effects of PoGV for protection of tubers stored in refrigerated warehouse conditions. Tubers were treated by dipping in aqueous suspensions of PoGV or water. An estimated 0.0819 larval equivalents of virus or 1.88×109 viral occlusion bodies were deposited on each kilogram of tubers. They were held at 16°C for 11 days before lowering the temperature by 0.5°C per day until 10°C was reached. The tubers were stored at this temperature for 53 days. Mean numbers of infested tubers at the end of the assay was affected by both pre-infestation rate and virus treatment. Mean numbers of infested tubers in the control treatment was 3 tubers per chamber higher than in the virus treatment providing strong evidence that PoGV controlled larvae and minimized spread into un-infested tubers. Of the larvae that were retrieved in virus-treated infested tubers, the mean mortality was 87% compared to 37% in controls.  相似文献   

17.
A codon-optimized 2-deoxyribose-5-phosphate aldolase (DERA) gene was newly synthesized and expressed in Escherichia coli to investigate its biochemical properties and applications in synthesis of statin intermediates. The expressed DERA was purified and characterized using 2-deoxyribose-5-phosphate as the substrate. The specific activity of recombinant DERA was 1.8 U/mg. The optimum pH and temperature for DERA activity were pH 7.0 and 35 °C, respectively. The recombinant DERA was stable at pH 4.0–7.0 and at temperatures below 50 °C. The enzyme activity was inhibited by 1 mM of Ni2+, Ba2+ and Fe2+. The apparent K m and V max values of purified enzyme for 2-deoxyribose-5-phosphate were 0.038 mM and 2.9 μmol min?1 mg?1, for 2-deoxyribose were 0.033 mM and 2.59 μmol min?1 mg?1, respectively, which revealed that the enzyme had similar catalytic efficiency towards phosphorylated and non-phosphorylated substrates. To synthesize statin intermediates, the bioconversion process for production of (3R, 5S)-6-chloro-2,4,6-trideoxyhexose from chloroacetaldehyde and acetaldehyde by the recombinant DERA was developed and a conversion of 94.4 % was achieved. This recombinant DERA could be a potential candidate for application in production of (3R, 5S)-6-chloro-2,4,6-trideoxyhexose.  相似文献   

18.
UDP-(1)fructose was synthesized essentially by the method of Michelson or Roseman et al. The product obtained was much more stable to acid than UDP-fructose isolated from Jerusalem artichoke tubers by Umemura et al.7) and UDP-glucose. Hydrolysis time curves of UDP-(1)fructose and fructose-1-phosphate in 0.01N HGl and 0.1N HCl both at 100°C are presented. It was concluded from these curves that UDP-(1)fructose was first hydrolyzed into UMP and fructose-1-phosphate, and then fructose-1-phosphate was hydrolyzed more slowly into free fructose and inorganic phosphate.  相似文献   

19.
《Insect Biochemistry》1988,18(6):531-538
Studies were made on 13C and 31P NMR in larvae of two species of silkworm, Bombyx mori and Philosamia cynthia ricini, in vivo as well as in vitro to determine the pathways of glucose utilization, especially those to amino acids as components of silk fibroin. Results showed that the 13C of [1-13C]glucose administered orally into 5th instar larvae of both species was incorporated into glucose-1-phosphate, glucose-6-phosphate and trehalose. Serine, glutamate, glutamine, citrate, malate, trehalose and sorbitol-6-phosphate were detected in the hemolymphs of these larvae as metabolites of [1-13C]glucose. Two days after [1-13C]glucose administration, labeled alanine, glycine, serine, urea, glycogen, trehalose and glycerol were clearly detected in Bombyx larvae. Starvation caused rapid consumption of administered [1-13C]glucose with very little accumulation of 13C in glycogen or trehalose. In the in vivo31P NMR spectra of Bombyx larvae, ATP, arginine phosphate, sorbitol-6-phosphate, uridine diphosphoglucose, phosphoenolpyruvate and inorganic phosphate were detected with some sugar phosphates, such as glucose-1-phosphate and glucose-6-phosphate. During starvation, the intensity of the signal of inorganic phosphate increased and those of sugar phosphate other than sorbitol-6-phosphate decreased, but these changes were reversed by oral administration of glucose.  相似文献   

20.
Glucose-6-phosphate dehydrogenase (E.C. 1.1.1.49) was partially purified by fractionation with ammonium sulfate and phosphocellulose chromatography. The Km value for glucose-6-phosphate is 1.6 × 10?4 and 6.3 × 10?4M at low (1.0–6.0 × 10?4M) and high (6.0–30.0 × 10?4M) concentrations of the substrate, respectively. The Km value for NADP+ is 1.4 × 10?5M. The enzyme is inhibited by NADPH, 5-phosphoribosyl-1-pyrophosphate, and ATP, and it is activated by Mg2+, and Mn2+. In the presence of NADPH, the plot of activity vs. NADP+ concentration gave a sigmoidal curve. Inhibition of 5-phosphoribosyl-1-pyrophosphate and ATP is reversed by Mg2+ or a high pH. It is suggested that black gram glucose-6-phosphate dehydrogenase is a regulatory enzyme of the pentose phosphate pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号