首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glutathione reductase (GR) recycles oxidized glutathione (GSSG) by converting it to the reduced form (GSH) using an NADPH as the electron source. The function of GR in the male genital tract of the rat was examined by measuring its enzymatic activity and examining the gene expression and localization of the protein. Levels of GR activity, the protein, and the corresponding mRNA were the highest in epididymis among testes, vas deferens, seminal vesicle, and prostate gland. The localization of GR, as evidenced by immunohistochemical techniques, reveals that it exists at high levels in the epithelia of the genital tract. In testis, GR is mainly localized in Sertoli cells. The enzymatic activity and protein expression of GR in primary cultured testicular cells confirmed its predominant expression in Sertoli cells. Intracellular GSH levels, expressed as mol per mg protein, was higher in spermatogenic cells than in Sertoli cells. As a result of these findings, the effects of buthionine sulfoximine (BSO), an inhibitor for GSH synthesis, and 1,3-bis(2-chlorethyl)-1-nitrosourea (BCNU), an inhibitor for GR, on cultured testicular cells were examined. Sertoli cells were prone to die as the result of BCNU, but not BSO treatment, although intracellular levels of GSH declined more severely with BSO treatment. Spermatogenic cells were less sensitive to these agents than Sertoli cells, which indicates that the contribution of these enzymes is less significant in spermatogenic cells. The results herein suggest that the GR system in Sertoli cells is involved in the supplementation of GSH to spermatogenic cells in which high levels of cysteine are required for protamine synthesis. In turn, the genital tract, the epithelia of which are rich in GR, functions in an antioxidative manner to protect sulfhydryl groups and unsaturated fatty acids in spermatozoa from oxidation during the maturation process and storage.  相似文献   

2.
Galectin-1, a highly conserved beta-galactoside-binding protein, induces apoptosis of activated T cells and suppresses the development of autoimmunity and chronic inflammation. To gain insight regarding the potential role of galectin-1 as a novel mechanism of immune privilege, we investigated expression and ultrastructural localization of galectin-1 in rat testis. Galectin-1 expression was assessed by Western blot analysis and immunocytochemical localization in testes obtained from rats aged from 9 to 60 days. Expression of this carbohydrate-binding protein was developmentally regulated, and its immunolabeling exhibited a stage-specific pattern throughout the spermatogenic process. Immunogold staining using the anti-galectin-1 antibody revealed the typical Sertoli cell profile in the seminiferous epithelium, mainly at stages X-II. During spermiation (stages VI-VIII), a strong labeling was observed at the luminal pole of seminiferous epithelium, localized on apical stalks of Sertoli cells, on heads of mature spermatids, and on bodies of residual cytoplasm. Moreover, spermatozoa released into the lumen showed a strong immunostaining. Following spermiation (stage VIII), galectin-1 expression was restored at the basal portion of Sertoli cells and progressively spread out through the whole cells as differentiation of germinal cells proceeded. Immunoelectron microscopy confirmed distribution of galectin-1 in nuclei and cytoplasmic projections of Sertoli cells and on heads and tails of late spermatids and residual bodies. Surface localization of galectin-1 was evidenced in spermatozoa from caput epididymis. Thus, the regulated expression of galectin-1 during the spermatogenic cycle suggests a novel role for this immunosuppressive lectin in reproductive biology.  相似文献   

3.
4.
Metallothionein (MT), a cysteine-rich heavy metal-binding protein, has been considered to play a role in the homeostatic control and detoxification of heavy metals, such as zinc, copper, and cadmium. In the present study, we have utilized a digoxigenin-labeled riboprobe to localize MT mRNA only by bright-field optics in the testis and prostate of the rat. In the rat testis, MT mRNA was found predominantly in primary spermatocytes and also in secondary spermatocytes and spermatids, but not in the spermatogonia, Sertoli cells, and Leydig cells. On the other hand, MT protein was present in these spermatogenic cells as well as in spermatozoa and Sertoli cells. In the prostate, MT mRNA was found predominantly in the epithelium of the dorsolateral lobes, but not in the ventral lobe, which is in agreement with the observed localization of MT protein. The utilization of both in situ hybridization and immunohistochemical staining on the same tissue specimens show MT gene expression in specific cell types in the male genital organs.  相似文献   

5.
Dopamine is a recognized modulator in the central nervous system (CNS) and peripheral organ functions. The presence of peripheral dopamine receptors outside the CNS has suggested an intriguing interaction between the nervous system and other functional systems, such as the reproductive system. In the present study we analyzed the expression of D2R receptors in rat testis, rat spermatogenic cells and spermatozoa, in different mammals. The RT-PCR analysis of rat testis mRNA showed specific bands corresponding to the two dopamine receptor D2R (L and S) isoforms previously described in the brain. Using Western blot analysis, we confirmed that the protein is present in rat testis, isolated spermatogenic cells and also in spermatozoa of a range of different mammals, such as rat, mouse, bull, and human. The immunohistochemistry analysis of rat adult testis showed that the receptor was expressed in all germ cells (pre- and post-meiotic phase) of the tubule with staining predominant in spermatogonia. Confocal analysis by indirect immunofluorescence revealed that in non-capacitated spermatozoa of rat, mouse, bull, and human, D2R is mainly localized in the flagellum, and is also observed in the acrosomal region of the sperm head (except in human spermatozoa). Our findings demonstrate that the two D2 receptor isoforms are expressed in rat testis and that the receptor protein is present in different mammalian spermatozoa. The presence of D2R receptors in male germ cells implies new and unsuspected roles for dopamine signaling in testicular and sperm physiology.  相似文献   

6.
In mammalian cells, essential polyunsaturated fatty acids (PUFAs) are converted to longer PUFAs by alternating steps of elongation and desaturation. In contrast to other PUFA-rich tissues, the testis is continuously drained of these fatty acids as spermatozoa are transported to the epididymis. Alteration of the germ cell lipid profile from spermatogonia to condensing spermatids and mature spermatozoa has been described, but the male gonadal gene expression of the desaturases, responsible for the PUFA-metabolism, is still not established. The focus of this study was to characterize the expression and regulation of stearoyl-CoA desaturase 1 (SCD1), stearoyl-CoA desaturase 2 (SCD2), and Delta5- and Delta6-desaturase in rat testis. Desaturase gene expression was detected in testis, epididymis, and separated cells from seminiferous tubulus using Northern blot analysis. For the first time, SCD1 and SCD2 expression is demonstrated in rat testis and epididymis, both SCDs are expressed in epididymis, while testis mainly contains SCD2. Examination of the testicular distribution of Delta5- and Delta6-desaturase and SCD1 and SCD2 shows that all four desaturases seem to be localized in the Sertoli cells, with far lower expression in germ cells. In light of earlier published results showing that germ cells are richer in PUFAs than Sertoli cells, this strengthens the hypothesis of a lipid transport from the Sertoli cells to the germ cells. As opposed to what is shown in liver, Delta5- and Delta6-desaturase mRNA levels in Sertoli cells are up-regulated by dexamethasone. Furthermore, dexamethasone induces SCD2 mRNA. Insulin also up-regulates these three genes in the Sertoli cell, while SCD1 mRNA is down-regulated by both insulin and dexamethasone. Delta5- and Delta6-desaturase, SCD1, and SCD2 are all up-regulated by FSH. A similar up-regulation of the desaturases is observed when treating Sertoli cells with (Bu)2cAMP, indicating that the desaturase up-regulation observed with FSH treatment results from elevated levels of cAMP. Finally, testosterone has no influence on the desaturase gene expression. Thus, FSH seems to be a key regulator of the desaturase expression in the Sertoli cell.  相似文献   

7.
The role of epididymal sperm-binding proteins in reproductive tract immunity is now well recognized in addition to their role in sperm maturation. Spermatozoa acquire forward motility and fertilizing ability during their passage through the epididymis, where they acquire a wide variety of proteins belonging to different classes. Previously, we demonstrated that EPPIN (epididymal protease inhibitor), an androgen-regulated, sperm-binding protein containing protease-inhibitory motifs, is expressed specifically in the testis and epididymis. In the present study, we investigated the antibacterial activity of EPPIN against Escherichia coli and the mechanism of antimicrobial action. EPPIN exhibited dose- and time-dependent antibacterial activity that was relatively insensitive to salt. However, EPPIN lost its antibacterial activity completely on reduction and alkylation of its cysteines, indicating the importance of disulfide bonds for its activity. EPPIN permeabilized the outer and inner membranes of E. coli, which is consistent with its ability to induce striking morphological alterations of E. coli membranes as shown by scanning electron microscopy. EPPIN did not cause disruption of eukaryotic membranes in the rat erythrocyte hemolytic assay. The present results indicate that EPPIN has a role in the innate immune system of human epididymis.  相似文献   

8.
The gene for a testicular cell adhesion protein called Tpx-1, which mediates the binding of spermatogenic cells to Sertoli cells of the rat in primary culture, was previously cloned. Here the characterization of Tpx-1 is reported. Tpx-1 messenger ribonucleic acid (mRNA) became detectable in pachytene spermatocytes and continued to be present throughout development into elongated spermatids, while the amount of Tpx-1 protein seemed to increase some time after the increment of mRNA. Tpx-1 protein was also present, although less abundantly, in spermatozoa prepared from the epididymis. Tpx-1 contains a cluster of hydrophobic amino acid residues near the amino terminus and a cysteine-rich region in the carboxyl-terminal half. Tpx-1 fused with green fluorescence protein was secreted into the medium when expressed in a cultured cell line, depending on the presence of the amino-terminal hydrophobic region. Moreover, Tpx-1 was present in the medium of testicular cell primary culture. Structure-function analysis revealed that the amino-terminal 101 amino acid residues were sufficient for cell adhesion activity, whereas the carboxyl-terminal cysteine-rich region was dispensable. In conclusion, Tpx-1 is produced and secreted from spermatogenic cells at various differentiation stages, and mediates the interaction of those cells with Sertoli cells.  相似文献   

9.
10.
A monoclonal antibody (MAb) raised against human sperm protein, designated YWK-II, was used to determine the distribution of antigens in rat spermatozoa and rat testicular germ cells. By an indirect immunofluorescent method, the antibody localized over the rat spermatozoal head, except for the postacrosomal region. In paraffin sections of adult and immature rat testis, germ cells, at every developmental stage, and Sertoli cells stained, while interstitial cells and peritubular myoid cells remained unstained. When cocultures of Sertoli and germ cells were tested, only the germ cells stained intensely. Sertoli cells and peritubular myoid cells in cultures did not stain. In the epididymal sections, strong staining occurred with spermatozoa in the lumen and epididymal epithelial cells, with moderate staining in the myoid layers of epididymis. To determine the sperm antigen interacting with the YWK-II antibody, rat spermatozoa proteins were prepared and analyzed by an immunoblot technique. The monoclonal antibody interacted with a single protein, with an estimated molecular weight of 115,000, present in the cauda epididymal spermatozoa. Among the proteins of the caput epididymal spermatozoa, however, the antibody interacted with a major and a minor band with molecular weights of 115,000 and 88,000, respectively. On the other hand, with proteins prepared from the membrane fraction of adult and immature rat testis, the antibody reacted with two bands with estimated molecular weights of 88,000 and 115,000. In the lysate prepared from germ cells dissociated from Sertoli-germ cell cocultures, the antibody recognized only the 88,000 protein. The present results show that the YWK-II MAb interacts with two proteins with different molecular weights. The amount of the interacting proteins in spermatozoa varied with their location within the epididymis.  相似文献   

11.
Anatomical localization of cellular retinol-binding protein (CRBP) mRNA was examined in normal rat testis and epididymis and also in retinoid-deficient rat testis. In situ hybridization was performed with 35S-labeled rat CRBP cRNA probes on frozen tissue sections. In normal testis, CRBP mRNA was mainly localized in the Sertoli cells and to some extent in peritubular cells. A distinct cyclic variation of the relative levels of hybridizable CRBP mRNA was observed during the spermatogenic cycle. The peak of CRBP mRNA content was seen in the stages of the cycle that preceded those in which peak CRBP protein content had been observed previously in our laboratory by immunohistochemistry. No appreciable amount of CRBP mRNA was observed in the interstitial space or in the lumen of the tubules. CRBP mRNA displayed the same anatomical localization in the retinoid-deficient testis, but the level of hybridizable CRBP mRNA was substantially reduced. A strong hybridization signal for CRBP mRNA was seen in proximal epididymis and was strikingly localized in the ductular epithelium. CRBP mRNA was not detectable in the distal portion of the epididymis. These studies provide information about the cell-specific expression of CRBP synthesis within the testis and epididymis and about its cyclic variation and regulation.  相似文献   

12.
Here we analyzed Pfkfb3 and Pfkfb4 gene expression in rat testis development, isolated testicular cells and spermatozoa. Real time RT-PCR analysis during testis development showed the maximum expression of Pfkfb3 in pre-puber samples and of Pfkfb4 in adult samples. Western blot analysis showed that uPFK-2 protein, a product of Pfkfb3 gene, was present in all the cell types forming the seminiferous epithelium (Sertoli, interstitial and spermatogenic cells). In contrast, tPFK-2, a product of Pfkfb4 gene, was restricted to spermatogenic cells. Confocal analyses by indirect immunofluorescence also corroborated this expression pattern. Immunoblotting studies of isolated spermatozoa demonstrated the presence of uPFK-2 only in immature sperm and once spermatozoa became fully functional this isozyme was replaced by the testicular isozyme tPFK-2. Moreover, immunostaining confirmed that tPFK-2 was localized mainly in the acrosomal region of the sperm head and in the mid-piece of the flagellum, where other spermatogenic cell-specific glycolytic enzymes have been found.  相似文献   

13.
14.
The immunohistochemical localization of cellular retinol-binding protein (CRBP) was studied in rat testis and epididymis. Parallel studies were also carried out on the localization of plasma retinol-binding protein (RBP) and transthyretin (TTR) in testis. The studies employed antibodies purified by immunosorbent affinity chromatography, permitting the specific staining and localization of each antigen by the unlabeled peroxidase-antiperoxidase method. For RBP and TTR, specific immune staining was found in the interstitial spaces between the seminiferous tubules, and not in the tubules themselves. In contrast, strong specific immune staining for CRBP was found in the seminiferous tubules, with a striking localization within Sertoli cells. Moreover, a distinct cyclic variation of specific staining for CRBP within Sertoli cells was observed during the spermatogenic cycle. This cyclic variation was seen with regard to both the intensity of staining and to the anatomic distribution of CRBP within the Sertoli cells. Within the epididymis CRBP was selectively localized to the proximal portion of the caput epididymidis, with variations in intensity of the staining of the epithelium of the ducts in different histological zones. Specific immune staining for CRBP was very weak or absent in the other portions of the epididymis. These results were confirmed by radioimmunoassay. Vitamin A-deficient rats showed markedly reduced specific immune staining for CRBP in both testes and epididymides, and greatly reduced levels of CRBP in these tissues on radioimmunoassay. These studies on the localization of CRBP provide information concerning the specific cells and anatomic loci within the testis and epididymis where retinol may be playing an important role in sperm formation and maturation.  相似文献   

15.
Cluster-of-differentiation antigen 9 (CD9) gene expressed in the male germ line stem cells is crucial for sperm-egg fusion, and was therefore selected as candidate gene for boar semen quality. The association of CD9 with boar sperm quality and fertility trait was analyzed using a total of 340 boars both from purebred Pietrain and Pietrain×Hampshire crosses. A single nucleotide polymorphism (g.358A>T) in intron 6 was significantly associated with sperm motility (MOT) (P<0.001), plasma droplet rate (PDR) (P<0.001) and abnormal spermatozoa rate (ASR) (P<0.01). Boars were divided into two groups with group 1 (G-I) boars having a higher SCON and SMOT, lower SVOL (sperm volume) and group 2 (G-II) having a lower SCON and SMOT, higher SVOL. The mRNA and protein expression levels were evaluated in reproductive, non-reproductive tissues and spermatozoa from G-I and G-II animals by using quantitative real-time PCR and western blotting. When both reproductive and non-reproductive tissues were examined, highest mRNA was expressed in prostate gland, then in the body of the epididymis, vas deferens and tail of the epididymis. In case of reproductive tissues, CD9 expression was higher in tissues and spermatozoa collected from G-I boars than those collected from G-II boars. The mRNA expression was significantly different (P<0.05) in body of epididymis from G-I and G-II boars. The CD9 protein expression results from western blot were coincided with the results of qRT-PCR. Moreover, CD9 protein localization in Leydig cells, Sertoli cells, epithelial cells and spermatozoa was remarkable which indicated the important role of CD9 in spermatogenesis process. By using mRNA and protein expression profiles, it could be shown that CD9 plays a crucial role during sperm development, especially within the epididymis where the maturation of the sperm, a key process for the sperm quality and motility takes place. These results will improve the understanding of the functions of the CD9 in spermatogenesis within the reproductive tracts and will shed light on CD9 as a candidate gene in the selection of good sperm quality boars.  相似文献   

16.
Immunohistochemical localization of follistatin in rat tissues.   总被引:6,自引:0,他引:6  
We have used immunohistochemistry to localize follistatin/activin-binding protein in adult male and female rats. A polyclonal antibody directed against a follistatin peptide (residues 123-134) was used as a specific immunologic probe. Intense and specific follistatin immunoreactivity was evident in spermatogenic cells of seminiferous tubules in the testis. The predominant staining was in nuclei of spermatocytes and spermatids, but no immune reaction was observed in spermatogonia or spermatozoa. Moderate immunoreactivity was detected in Leydig cells. Sertoli cells were follistatin-negative. Significant immunoreactivity was evident in ovarian granulosa cells. The intensity of the staining changed with follicle development: no immunoreactivity was observed in granulosa cells of primordial to primary follicles, but the cells of secondary to Graafian follicles displayed moderate to strong staining and finally luteal cells of the corpus luteum became negative. The epithelial lining of the oviduct and the smooth muscle of the myometrium of the uterus were intensely immunoreactive. Immunoreactive follistatin staining was present in the pituitary: a group of round-shaped cells were specifically stained. Immunostainable follistatin was visible in the epithelial layers of renal tubules with moderate to strong staining reactivity. Hepatic cells in the liver demonstrated homogeneous immunoreactivity from moderate to strong. The cortex of the adrenal gland, white pulp of the spleen and the brain cortex were also stained weakly but distinctly with the antiserum. In conclusion, immunoreactive follistatin is widespread in rat tissues, suggesting that follistatin/activin-binding protein is a ubiquitous protein, regulating a wide variety of activin actions.  相似文献   

17.
The specific activity of 2,3-dehydrodolichyl diphosphate synthase in homogenates of protease-treated seminiferous tubules, enriched spermatogenic cells, and Sertoli cells changed as a function of the age of prepuberal rats. The highest enzymatic activity occurred in each case in 23-day-old rats. Homogenates of pachytene spermatocytes, spermatids, or Sertoli cells had higher synthase activity than a whole testicular homogenate prepared by protease treatment of tubules. Enzymatic activity in pachytene spermatocytes expressed per mg of protein was about 1.7-fold higher than in spermatids, 5.3-fold higher than in spermatogonia, and about 8.3-fold higher than in spermatozoa. Therefore, the increase in spermatogenic cell synthase before day 23 can be accounted for by the appearance of the pachytene spermatocytes. Enzymatic activity decreased remarkably after the differentiation of spermatids into spermatozoa. Synthase activity in enriched Sertoli cell preparations was 1.5-2.3-fold higher than in spermatogenic cell preparations between days 15 and 30. Therefore, both spermatogenic cells and Sertoli cells contribute to changes in the enzymatic activity in seminiferous tubules during development. These changes may be important in regulating the availability of dolichyl phosphate for glycoprotein synthesis during early stages of differentiation.  相似文献   

18.
β-hexosaminidase is an essential lysosomal enzyme whose absence in man results in a group of disorders, the GM2 gangliosidoses. β-hexosaminidase activity is many times higher in the epididymis than in other tissues, is present in sperm, and is postulated to be required for mammalian fertilization. To better understand which cells are responsible for β-hexosaminidase expression and how it is regulated in the male reproductive system, we quantitated the mRNA expression of the α- and β-subunits of β-hexosaminidase and carried out immunocytochemical localization studies of the enzyme in the rat testis and epididymis. β-hexosaminidase α-subunit mRNA was abundant and differentially expressed in the adult rat testis and epididymis, at 13- and 2-fold brain levels, respectively. In contrast, β-subunit mRNA levels in the testis and epididymis were 0.3- and 5-fold brain levels. During testis development from 7–91 postnatal days of age, testis levels of α-subunit mRNA increased 10-fold and coincided with the appearance of spermatocytes and spermatids in the epithelium; in contrast, β-subunit mRNA was expressed at low levels throughout testis development. In isolated male germ cells, β-hexosaminidase α-subunit expression was most abundant in haploid round spermatids, whereas the β-subunit mRNA was not detected in germ cells. Within the epididymis both α- and β-subunit mRNA concentrations were highest in the corpus, with 1.5-fold and 9-fold initial segment values, respectively. Light microscopic immunocytochemistry revealed that β-hexosaminidase was localized to Sertoli cells and interstitial macrophages in the testis. In the epididymis, β-hexosaminidase staining was most intense in narrow cells in the initial segment, principal cells in the caput, and proximal corpus, and clear cells throughout the duct. Electron microscopic immunocytochemistry revealed that β-hexosaminidase was predominantly present in lysosomes in Sertoli and epididymal cells. The cellular and regional specificity of β-hexosaminidase immunolocalization suggest an important role for the enzyme in testicular and epididymal functions. Mol. Reprod. Dev. 46:227–242, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

19.
Previously, we identified a 26-kDa fertility-associated protein in bull seminal plasma as lipocalin-type prostaglandin D synthase. The objective of the present study was to immunohistochemically localize this enzyme to the various cell types within the bull testis and seven subsegments of the epididymis, and on ejaculated sperm in order to gain further insight into its potential function in male reproduction. In the testis, immunoperoxidase staining was localized within the elongating spermatids and Sertoli cells of the seminiferous tubules, varying with the stage of the spermatogenic cycle. The highest level of staining occurred during stages III-VII. The cuboidal epithelial cells of the rete testis and efferent ducts were also immunoreactive. Expression of lipocalin-type prostaglandin D synthase was not uniform in the seven epididymal subsegments, suggesting a possible role in sperm maturation. In all epididymal regions, expression was limited to the epithelial principal cells; no immunoreactivity was apparent in other cell types. Lipocalin-type prostaglandin D synthase was strikingly localized in the caput epididymidis, while moderate to weak staining was observed in the remainder of the epididymis. Droplets of reaction product observed within the lumen increased progressively from the caput to cauda. Using fluorescence microscopy, we also localized lipocalin-type prostaglandin D synthase to the apical ridge of the acrosome on ejaculated sperm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号