首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
茂丹通脉片含药血清体外诱导 S 分M化C为 内皮细胞的作用   总被引:2,自引:1,他引:2  
目的:观察芪丹通脉片含药血清体外诱导大鼠骨髓间充质干细胞(MSCs)向内皮细胞分化的作用。方法:灌胃法制备芪丹通脉片含药血清和对照血清。采用密度梯度离心法分离和培养大鼠MSCs,取第三代MSCs,采用10wg/LVEGF预诱导24h后,分别加入15%芪丹通脉片含药血清与对照血清体外时MSCs诱导分化,至第7天,利用相差显微镜观察细胞形态改变,透射电镜观察细胞超微结构。免疫荧光方法检测内皮细胞特异性表面标志CD31、Ⅷ因子的表达。结果:至第7天,合15%芪丹通脉片合药血清组诱导后的MSCs形态发生明显改变,呈“卵石样”改变,透射电镜下细胞胞浆内可见Weible-Palade小体,共聚焦显微镜下可见CD31、Ⅷ因子阳性细胞。对照血清组MSCs形态仍呈长梭型,电镜下胞浆内无Weible-Palade小体,共聚焦显微镜下无CD31、Ⅷ因子阳性细胞。结论:益气活血复方芪丹通脉片含药血清具有体外诱导大鼠MSCs向内皮细胞定向分化的作用。  相似文献   

3.
表观遗传调控,如组蛋白乙酰化修饰,是决定干细胞分化方向的重要机制。组蛋白去乙酰化酶抑制剂(HDACi)通过影响不同亚类的组蛋白去乙酰化酶(HDAC)活性,提高组蛋白乙酰化水平,调控基因表达,从而影响胚胎干细胞自我更新,以及沿神经元、心肌和造血等细胞谱系的定向分化。HDACi类小分子化合物在体细胞重编程中也有广泛的应用,可替代致癌因子c-Myc和Klf4,促进体细胞克隆。研究显示,HDACi的效应与药物剂量、细胞类型和细胞分化状态密切相关。本文主要阐述了HDACi在干细胞分化和体细胞重编程中的应用进展,并对所涉及的分子通路进行讨论,有助于揭示干细胞定向分化的关键分子机制,优化干细胞定向分化诱导策略,对干细胞诱导分化具有重要的理论和实用价值。  相似文献   

4.
Bioelectrical signals generated by ion channels play crucial roles in excitation genesis and impulse conduction in excitable cells as well as in cell proliferation,migration and apoptosis in proliferative cells.Recent studies have demonstrated that multiple ion channels are heterogeneously present in different stem cells;however,patterns and phenotypes of ion channels are species-and/or origin-dependent.This editorial review focuses on the recent findings related to the expression of functional ion channels and the roles of these channels in regulation of cell proliferation in stem cells.Additional effort is required in the future to clarify the ion channel expression in different types of stem cells;special attention should be paid to the relationship between ion channels and stem cell proliferation,migration and differentiation.  相似文献   

5.
Stem cell research has received increasing attention due to their invaluable potentials in the clinical applications to cure degenerative diseases, genetic disorders and even cancers. A great number of studies have been conducted with an aim to elucidate the molecular mechanisms involved in the regulation of self-renewal of stem cells and the mysterious circuits guiding them to differentiate into all kinds of progenies that can replenish the cell pools. However, little effort has been made in studying the metabolic aspects of stem cells. Mitochondria play essential roles in mammalian cells in the generation of ATP, Ca2+ homeostasis, compartmentalization of biosynthetic pathways and execution of apoptosis. Considering the metabolic roles of mitochondria, they must be also critical in stem cells. This review is primarily focused on the biogenesis and bioenergetic function of mitochondria in the differentiation process and metabolic features of stem cells. In addition, the involvement of reactive oxygen species and hypoxic signals in the regulation of stem cell pluripotency and differentiation is also discussed.  相似文献   

6.
Stem cell therapy offers hope to reconstitute injured myocardium and salvage heart from failing. A recent approach using combinations of derived Cardiac-derived c-kit expressing cells (CCs) and mesenchymal stem cells (MSCs) in transplantation improved infarcted hearts with a greater functional outcome, but the effects of MSCs on CCs remain to be elucidated. We used a novel two-step protocol to clonogenically amplify colony forming c-kit expressing cells from 4- to 6-week-old C57BL/6N mice. This method yielded highly proliferative and clonogenic CCs with an average population doubling time of 17.2 ± 0.2, of which 80% were at the G1 phase. We identified two distinctly different CC populations based on its Sox2 expression, which was found to inversely related to their nkx2.5 and gata4 expression. To study CCs after MSC coculture, we developed micron-sized particles of iron oxide-based magnetic reisolation method to separate CCs from MSCs for subsequent analysis. Through validation using the sex and species mismatch CC-MSC coculture method, we confirmed that the purity of the reisolated cells was greater than 85%. In coculture experiment, we found that MSCs prominently enhanced Ctni and Mef2c expressions in Sox2 pos CCs after the induction of cardiac differentiation, and the level was higher than that of conditioned medium Sox2 pos CCs. However, these effects were not found in Sox2 neg CCs. Immunofluorescence labeling confirmed the presence of cardiac-like cells within Sox2 pos CCs after differentiation, identified by its cardiac troponin I and α-sarcomeric actinin expressions. In conclusion, this study shows that MSCs enhance CC differentiation toward cardiac myocytes. This enhancement is dependent on CC stemness state, which is determined by Sox2 expression.  相似文献   

7.
Mechanosensitive (MS) channels play a major role in protecting bacterial cells against hypo-osmotic shock. To understand their function, it is important to identify the conserved motifs using sequence analysis methods. In this study, the sequence conservation was investigated by an in silico analysis to generate sequence logos. We have identified new conserved motifs in the domains TM1, TM2 and the cytoplasmic helix from 231 homologs of MS channel of large conductance (MscL). In addition, we have identified new motifs for the TM3 and the cytoplasmic carboxy-terminal domain from 309 homologs of MS channel of small conductance (MscS). We found that the conservation in MscL homologs is high for TM1 and TM2 in the three domains of life. The conservation in MscS homologs is high only for TM3 in Bacteria and Archaea. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Stem cell differentiation is regulated by multiple signaling events. Recent technical advances have revealed that differentiated cells can be reprogrammed into stem cells. The signals involved in stem cell programming are of major interest in stem cell research. The signaling mechanisms involved in regulating stem cell reprogramming and differentiation are the subject of intense study in the field of life sciences. In this review, the molecular interactions and signaling pathways related to stem cell differentiation are discussed.  相似文献   

9.
The use of embryonic stem cells (ESCs) and their progeny in high throughput drug discovery and regenerative medicine will require production at scale of well characterized cells at an appropriate level of purity. The adoption of automated bioprocessing techniques offers the possibility to overcome the lack of consistency and high failure rates seen with current manual protocols. To build the case for increased use of automation this work addresses the key question: “can an automated system match the quality of a highly skilled and experienced person working manually?” To answer this we first describe an integrated automation platform designed for the ‘hands-free’ culture and differentiation of ESCs in microwell formats. Next we outline a framework for the systematic investigation and optimization of key bioprocess variables for the rapid establishment of validatable Standard Operating Procedures (SOPs). Finally the experimental comparison between manual and automated bioprocessing is exemplified by expansion of the murine Oct-4-GiP ESC line over eight sequential passages with their subsequent directed differentiation into neural precursors. Our results show that ESCs can be effectively maintained and differentiated in a highly reproducible manner by the automated system described. Statistical analysis of the results for cell growth over single and multiple passages shows up to a 3-fold improvement in the consistency of cell growth kinetics with automated passaging. The quality of the cells produced was evaluated using a panel of biological markers including cell growth rate and viability, nutrient and metabolite profiles, changes in gene expression and immunocytochemistry. Automated processing of the ESCs had no measurable negative effect on either their pluripotency or their ability to differentiate into the three embryonic germ layers. Equally important is that over a 6-month period of culture without antibiotics in the medium, we have not had any cases of culture contamination. This study thus confirms the benefits of adopting automated bioprocess routes to produce cells for therapy and for use in basic discovery research.  相似文献   

10.
Tissue engineering is an interdisciplinary expertise that involves the use of nanoscaffolds for repairing, modifying, and removing tissue defects and formation of new tissues. Mesenchymal stem cells (MSCs) can differentiate into a variety of cell types, and they are attractive candidates for tissue engineering. In the current study, the electrospinning process was used for nanofiber preparation, based on a poly-l -lactic-acid (PLLA) polymer. The surface was treated with O 2 plasma to enhance hydrophilicity, cell attachment, growth, and differentiation potential. The nanoscaffolds were preconditioned with lipopolysaccharide (LPS) to enhance induction of differentiation. The nanoscaffolds were categorized by contact angle measurements and scanning electron microscopy. The MTT assay was used to analyze the rate of growth and proliferation of cells. Osteogenic differentiation of cultured MSCs was evaluated on nanofibers using common osteogenic markers, such as alkaline phosphatase activity, calcium mineral deposition, quantitative real-time polymerase chain reaction, and immunocytochemical analysis. Based on the in vitro results, primed MSCs with LPS on the PLLA nanoscaffold significantly enhanced the proliferation and osteogenesis of MSCs. Also, the combination of LPS and electrospun nanofibers can provide a new and suitable matrix to support stem cells’ differentiation for bone tissue engineering.  相似文献   

11.
12.
Wang YH  Zheng HY  Qin NL  Yu SB  Liu SY 《生理学报》2007,59(1):8-12
为了探讨ATP敏感钾通道在前脂肪细胞增殖分化中作用,本实验用逆转录实时定量PCR方法检测大鼠前脂肪细胞和诱导5d获得的脂肪细胞中该通道磺脲类受体2(sulphonylurea receptor2,SUR2)mRNA表达,探讨该通道阻滞剂格列本脲和激动剂二氮嗪对前脂肪细胞中SUR2mRNA表达的影响;MTT检测前脂肪细胞增殖;流式细胞仪检测细胞周期;油红O染色法检测细胞内脂质含量;Image-Pro Plus5.0软件测量细胞直径;逆转录PCR检测过氧化物酶体增殖物激活受体-γ(peroxisome proliferator-activatedreceptor-γ PPAR-γ)mRNA表达。结果显示:前脂肪细胞及诱导5d获得的脂肪细胞均有SUR2mRNA表达,且后者明显高于前者;格列本脲抑制前脂肪细胞SUR2mRNA表达,剂量依赖性地促进前脂肪细胞增殖,增加G2/M+S期细胞百分比,增加细胞脂质含量,使脂肪细胞直径增大,增加PPAR-γ mRNA的表达;二氮嗪在这些方面的作用与格列本脲相反。以上结果提示,ATP敏感钾通道在前脂肪细胞增殖和分化中可能起调节作用,PPAR-γ可能参与这些作用。  相似文献   

13.
Pluripotent mesenchymal stem-like cell lines were established from lungs of 3–4 months old aborted fetus. The cells present the high ex vivo expansion potential of MSC, a typical fibroblast-like morphology and proliferate up to 15 passages without displaying clear changes in morphology. Immunological localization and flow cytometry analyses showed that these cells are positive for OCT4, c-Kit, CD11, CD29, CD44, telomerase, CD106, CD105, CD166, and SSEA1, weakly expression or negative for SSEA1, SSEA3, SSEA4, CD34, CD105 and CD106. These cells can give rise to the adipogenic as evidenced by accumulation of lipid-rich vacuoles within cells identified by Oil-red O when they were induced with 0.5 mM isobutylmethylxanthine, 200 μM indomethacin, 10−6 M dexamethasone, and 10 μg/ml of insulin in high-glucose DMEM. Osteogenic lineage cells were generated in 0.1 μM dexamethasone, 50 μg/ml ascorbic acid, 10 mM β-glycerophosphate, which are shaped as the osteoblastic morphology, expression of alkaline phosphatase (AP), and the formation of a mineralized extracellular matrix identified by Alizarin Red staining. Neural cells are observed when the cultures were induced with 2-mercapometal, which are positive for nestin, NF-100, MBP and GFAP. Additionally, embryoid bodies (EBs) and sperm like cells are obtained in vitro differentiation of these lung MSCs induced with 10−5 M retinoic acid (RA). These results demonstrated that these MSCs are pluripotent and may provide an in vitro model to study germ-cell formation and also as a potential source of sperms for male infertility.  相似文献   

14.
干细胞是在机体分化过程中存在的具有自我增殖、更新能力,且能形成各种类型分化细胞的一类细胞的总称。它不但为细胞发育分化和细胞诱导研究提供了很好的模型,而且对于临床细胞替代疗法与细胞移植具有重要意义。作者综合干细胞研究的成果,从方法、机理及诱导得到的神经细胞的检查等几个方面对诱导干细胞向神经细胞分化的进展加以综述。  相似文献   

15.
16.
Mesenchymal stem cells (MSCs) have various roles in the body and cellular environment, and the cellular phenotypes of MSCs changes in different conditions. MSCs support the maintenance of other cells, and the capacity of MSCs to differentiate into several cell types makes the cells unique and full of possibilities. The involvement of MSCs in the epithelial-mesenchymal transition is an important property of these cells. In this review, the role of MSCs in cell life, including their application in therapy, is first described, and the signaling mechanism of MSCs is investigated for a further understanding of these cells.  相似文献   

17.
Mesenchymal stem cells (MSCs) are a prospective cell source for tissue regeneration due to their self‐renewal abilities and potential to differentiate into different cell lineages, but the molecular mechanisms of the directed differentiation and proliferation are still unknown. Recently, multiple studies have indicated the crucial role of HOX genes in MSC differentiation and proliferation. However, the role of HOXA5 in MSCs remains unknown. Here, we investigated HOXA5 function in stem cells from the apical papilla (SCAPs). After HOXA5 depletion, the results showed a significant decrease in ALP activity and a weakened mineralization ability of SCAPs. The real‐time RT‐PCR results showed prominently lessened expression of OPN and BSP. The CCK8 and CFSE results displayed inhibited proliferation of SCAPs, and flow cytometry assays revealed arrested cell cycle progression at the S phase. Furthermore, we found that depletion of HOXA5 upregulated p16INK4A and p18INK4C and downregulated the Cyclin A. Our research demonstrated that depletion of HOXA5 inhibited osteogenic differentiation and repressed cell proliferation by arresting cell cycle progression at the S phase via p16INK4A, p18INK4C, and Cyclin A in SCAPs, indicating that HOXA5 has a significant role in maintaining the proliferation and differentiation potential of dental‐tissue‐derived MSCs.  相似文献   

18.
Mesenchymal stem cells(MSCs) have various roles in the body and cellular environment, and the cellular phenotypes of MSCs changes in different conditions. MSCs support the maintenance of other cells, and the capacity of MSCs to differentiate into several cell types makes the cells unique and full of possibilities. The involvement of MSCs in the epithelial-mesenchymal transition is an important property of these cells. In this review, the role of MSCs in cell life, including their application in therapy, is first described, and the signaling mechanism of MSCs is investigated for a further understanding of these cells.  相似文献   

19.
In the industrial l-glutamate production established on the use of Corynebacterium glutamicum, l-glutamate synthesized intracellularly is exported through mechanosensitive transmembrane channel proteins (MscCG and MscCG2) activated by the force-from-lipids. The involvement of MscCG2 in l-glutamate export by C. glutamicum was demonstrated in 2018; however, MscCG was previously found to be the major exporter of l-glutamate. Recent advances in research methods, such as development of the microbial patch clamp, revealed unique characteristics of MscCG, including its conductance, opening and closing thresholds, and gating hysteresis, as well as the significant effect of membrane lipids on the channel properties. In addition, the cryoelectron microscopic structure of Escherichia coli MscS, the canonical representative of the mechanosensitive channel family to which MscCG and MscCG2 belong, revealed its new membrane-interacting region, new position within the lipid bilayer, and hook lipids in a newly defined cavity between subunits. In this short review, the applications of bacterial mechanosensitive channels in the development of effective microbial cell factories, which will contribute to sustainable development, are discussed.  相似文献   

20.
In this study, we selected gelatin as ECM (extracellular matrix) to support differentiation of mES (mouse embryonic stem) cells into TE (trophectoderm), as gelatin was less expensive and widely used. We found that 0.2% and 1.5% gelatin were the suitable concentrations to induce TE differentiation by means of detecting Cdx2 expression using real-time PCR. Moreover, about 15% cells were positive for Cdx2 staining after 6 days differentiation. We discovered that the expressions of specific markers for TE, such as Cdx2, Eomes, Hand1 and Esx1 were prominently increased after gelatin induction. Meanwhile, the expression of Oct4 was significantly decreased. We also found that inhibition of the BMP (bone morphogenetic protein) signalling by Noggin could promote mES cells differentiation into TE, whereas inhibition of the Wnt signalling by Dkk1 had the contrary effect. This could be used as a tool to study the differentiation and function of early trophoblasts as well as further elucidating the molecular mechanism during abnormal placental development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号