首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The native hormones from tassels of maize (Zea mays) were re-investigated. The previous identification by GC/SIM of GA1, GA8 and GA29 in normal tassels was confirmed by full GC/MS scans at the correct Kovats retention indices. In tassels of dwarf-1 mutants, GA44,?GA19, GA17, GA20 and the 16,17-dihydro, 7β,16α,17-trihydroxy derivative of ent-kaurenoic acid were identified by GC/MS. Gibberellin A1 was not found in the mutant tassels. [14C]Gibberellin A53 was fed to tassels of the dwarf-5 mutant. In the ethyl acetate-soluble acidic fraction from the feeds, [14C]GA44 was identified by GC/MS; [14C]GA19 and [14C]GA29 were identified by GC/SIM. The GA29 is probably a metabolite of the feeds because the dwarf-5 mutant is known to control the step copalyl pyrophosphate to ent-kaurene in the maize GA-biosynthetic pathway and because GA29 was not identified in a control experiment. The n-butanol fractions obtained from the feeds were shown, by GC/MS, to contain [14C]GA53 after hydrolysis, suggesting that conjugated [14C]GA53 is a major metabolite from GA53 feeds. [17-13C, 17-3H2]Gibberellin A20 was fed to normal, dwarf-1 and dwarf-5 tassels. In each case, analysis of the purified ethyl acetate-soluble acidic extracts by GC/MS led to the identification of [13C]GA29 and unmetabolized [13C]GA20 in which no 13C-isotope dilution was observed.  相似文献   

2.
Mutant B1-41a, obtained by UV-irradiation of Gibberella fujikuroi strain GF-1a, does not metabolise mevalonic acid lactone (MVL), ent-kaur-16-ene, ent-kaurenol, and ent-kaurenal to gibberellins. ent-Kaur-16-ene-19-oic acid is completely metabolised to give the same gibberellins in similar concentration as unsupplemented cultures of the parent strain. It is concluded that this mutant is blocked for gibberellin synthesis at the step from ent-kaurenal to ent-kaurenoic acid. Comparison of the incorporation of MVL into GA3 by the mutant and the parent strains indicate that the metabolic block is 97·5% effective. A method of preparing ent-kaur-16-ene, labelled at C-15 and C-17 by [2H] and [3H] is described.  相似文献   

3.
Experiments were designed to test the hypothesis that the labeled products recovered from plant tissue incubated with [14C]GA12-7-aldehyde ([14C]GA12ald) would serve as appropriate [14C]markers for the recovery of naturally-occurring gibberellins (GAs). The [14C]GA12ald (about 200 millicuries per millimole) was synthesized from pumpkin endosperm using [4,5-14C]mevalonic acid. It was added to the adaxial surface of isolated pea cotyledons at 22 days after flowering. Products recovered after 0.5 and 4.0 hour incubations yielded four major peaks which were separated by high performance liquid chromatography (HPLC). These products were purified by multiple-column HPLC using on-line radioactivity detection. They were then added as [14C]markers to two unlabeled pea extracts. In general, preparative HPLC followed by further HPLC purification resulted in a single UV-absorbing peak co-eluting with each [14C]marker. These [14C] and UV-absorbing peaks were shown to contain GA53, GA44, GA20, GA19, and GA17 by GC-MS. The finding of GA53 is novel; all others have previously been found in pea. Endogenous GAs of pea were thus readily detected using [14C]GA12ald metabolites as [14C]markers to recover naturally occurring GAs suggesting that the method may be applicable in detecting naturally occurring GAs in other species.  相似文献   

4.
Biosynthesis of gibberellins (GAs) was studied in vivo in endosperms of Sechium edule Sw. Exogenous ent-[14C]kaurene was metabolized into four major products: GA12, GA4, GA7 and 16, 17-dihydro-16-hydroxy-GA15 alcohol glucoside. Other minor metabolites were also observed including ent-kaurenol and ent-kaurenal. Conversion of ent-[14C]kaurene to ent-kaurenol glucoside by endosperm cell-free preparations in the presence of UDPG was observed. However, the finding was not confirmed in in vivo studies and is probably artifactual. Overall evidence coming from the analysis of endogenous GAs and in vitro and in vivo biosynthetic studies are discussed in relation to the possible existence in the Sechium seeds of a different route, along with the known pathway, branching from ent-kaurene or ent-7-α-hydroxykaurenoic acid and this also leading to biologically active GAs.  相似文献   

5.
Maki SL  Brenner ML 《Plant physiology》1991,97(4):1359-1366
Gibberellins (GAs) are either required for, or at least promote, the growth of the pea (Pisum sativum L.) fruit. Whether the pericarp of the pea fruit produces GAs in situ and/or whether GAs are transported into the pericarp from the developing seeds or maternal plant is currently unknown. The objective of this research was to investigate whether the pericarp tissue contains enzymes capable of metabolizing GAs from [14C]GA12-7-aldehyde ([14C]GA12ald) to biologically active GAs. The metabolism of GAs early in the biosynthetic pathway, [14C]GA12 and [14C]GA12ald, was investigated in pericarp tissue isolated from 4-day-old pea fruits. [14C]GA12ald was metabolized primarily to [14C]GA12ald-conjugate, [14C]GA12, [14C]GA53, and polar conjugate-like products by isolated pericarp. In contrast, [14C]GA12 was converted primarily to [14C]GA53 and polar conjugate-like products. Upon further investigations with intact 4-day-old fruits on the plant, [14C]GA12 was found to be converted to a product which copurified with endogenous GA20. Lastly, [2H]GA20 and [2H]GA1 were recovered 48 hours after application of [2H]- and [14C]GA53 to pericarp tissue of intact 3-day-old pea fruits. These results demonstrate that pericarp tissue metabolizes GAs and suggests a function for pericarp GA metabolism during fruit growth.  相似文献   

6.
A cell-free system prepared from developing seed of runner bean (Phaseolus coccineus L.) converted [14C]gibberellin A12-aldehyde to several products. Thirteen of these were identified by capillary gas chromatography-mass spectrometry as gibberellin A1 (GA1), GA4, GA5, GA6, GA15, GA17, GA19, GA20, GA24, GA37, GA38, GA44 and GA53-aldehyde, all giving mass spectra with 14C-isotope peaks. GA8 and GA28 were also identified but contained no 14C. All the [14C]GA12-aldehyde metabolites, except GA15, GA24 and GA53-aldehyde, are known endogenous GAs of P. coccineus.Abbreviations GAn gibberellin An - GC-MS combined gas chromatography-mass spectrometry - HPLC highperformance liquid chromatography - MVA mevalonic acid - S-2 2000-g supernatant  相似文献   

7.
Field pennycress (Thlaspi arvense L.) is a winter annual crucifer with a cold requirement for stem elongation and flowering. In the present study, the metabolism of exogenous [2H]-ent-kaurenoic acid (KA) and [14C]-gibberellin A12-aldehyde (GA12-aldehyde) was compared in thermo- and noninduced plants. Thermoinduction greatly altered both quantitative and qualitative aspects of [2H]-KA metabolism in the shoot tips. The rate of disappearance of the parent compound was much greater in thermoinduced shoot tips. Moreover, there was 47 times more endogenous KA in noninduced than in thermoinduced shoot tips as determined by combined gas chromatography-mass spectrometry (GC-MS). The major metabolite of [2H]-KA in thermoinduced shoot tips was a monohydroxylated derivative of KA, while in noninduced shoot tips, the glucose ester of the hydroxy KA metabolite was the main product. Gibberellin A9 (GA9) was the only GA in which the incorporation of deuterium was detected by GC-MS, and this was observed only in thermoinduced shoot tips. The amount of incorporation was small as indicated by the large dilution by endogenous GA9. In contrast, thermo- and noninduced leaves metabolized exogenous [2H]-KA into GA20 equally well, although the amount of conversion was also limited. These results are consistent with the suggestion (JD Metzger [1990] Plant Physiol 94: 000-000) that the conversion of KA in to GAs is under thermoinductive control only in the shoot tip, the site of perception for thermoinductive temperatures in field pennycress. There were essentially no differences in the qualitative or quantitative distribution of metabolites formed following the application of [14C]-GA12-aldehyde to the shoot tips of thermo- or noninduced plants. Thus, the apparent thermoinductive regulation of the KA metabolism into GAs is probably limited to the two metabolic steps involved in converting KA to GA12-aldehyde.  相似文献   

8.
Barley grains contain hydrocarbons, including a material indistinguishable from ent-kaurene by GLC, and which after appropriate chemical conversions contain material behaving like ent-kauran-16,17-diol, ent-kaurene norketone and ent-17-nor-kaurane on TLC and GLC. The presence of ent-kaurene was confirmed by conversion to ent-kauran-16-ol and, following formation of acetate-[3H], recrystallization to constant specific activity with unlabelled carrier. In the initial ca. 15 hr of germination, preceding the rise in endogenous gibberellins, the level of ent-kaurene falls. Exogenous ent-kaurene-[14C] was not metabolized by intact barley grains. ent-Kauran-16,17-epoxide was formed non-enzymically by boiled extracts. Unboiled homogenates also formed ent-kauran-17-ol and ent-kauran-16,17-diol. The diol appeared to be formed from the epoxide, but the ent-kauran-17-ol was not. No recognized gibberellin precursors were detected. Nevertheless, endogenous ent-kaurene may be the stored biosynthetic precursor of gibberellins in germinating barley grains.  相似文献   

9.
《Phytochemistry》1986,25(8):1829-1836
When etiolated barley (Hordeum vulgare L. var. Larker) shoots are incubated with [4-14C]levulinic acid, 14CO2 is evolved, and amino and organic acids are labelled. Respiratory inhibitors and short-chain fatty acids, similar in size to levulinic acid, reduce the production of 14CO2 from [4-14C]levulinic acid, while δ-aminolevulinic acid treatment or illuminating the tissue increase 14CO2 evolution. The contribution of levulinic acid metabolism to α-aminolevulinic acid biosynthesis is no greater than that of a general cellular metabolite. The data suggest that fatty acid oxidation and the citric acid cycle are involved in levulinic acid metabolism.  相似文献   

10.
1. 26-Hydroxycholesterol was obtained by reducing the methyl ester of (±)-3β-hydroxycholest-5-en-26-oic acid, which was synthesized from 25-oxonorcholesterol. 2. Methods for preparing 7α-hydroxycholesterol and 7-dehydrocholesterol were modified to allow the micro-scale preparation of these [14C]sterols from [26-14C]-cholesterol. 3. 26-Hydroxycholesterol was oxidized more readily than 7α-hydroxycholesterol, 7-dehydrocholesterol or cholesterol by mitochondrial preparations from livers of mice, rats, guinea pigs, common toads (Bufo vulgaris) and Caiman crocodylus. 4. (±)-3β-Hydroxy[26-14C]cholest-5-en-26-oic acid was oxidized very rapidly to 14CO2 by mouse and guinea-pig mitochondria without evident discrimination between the two optical isomers. 5. An enzyme system that oxidizes 26-hydroxycholesterol to 3β-hydroxycholest-5-en-26-oic acid was identified in the soluble extract of rat-liver mitochondria. This enzyme could use NADP in place of NAD but was not identical with liver alcohol dehydrogenase (EC 1.1.1.1). 6. [26-14C]Cholesteryl 3β-sulphate was not oxidized by fortified mouse-liver preparations that oxidized [26-14C]cholesterol to 14CO2.  相似文献   

11.
Field pennycress (Thlaspi arvense L.) is a winter annual weed with a cold requirement for stem elongation and flowering. The relative abilities of several native gibberellins (GAs) and GA-precursors to elicit stem growth were compared. Of the eight compounds tested, gibberellin A1, (GA1), GA9, and GA20 caused stem growth in noninduced (no cold treatment) plants. No stem growth was observed in plants treated with ent-kaurene, ent-kaurenol, ent-kaurenoic acid, GA53, or GA8. Moreover, of the biologically active compounds, GA9 was the most active followed closely by GA1. In thermoinduced plants (4-week cold treatment at 6°C) that were continuously treated with 2-chlorocholine chloride to reduce endogenous GA production, GA9 was the most biologically active compound. However, the three kaurenoid GA precursors also promoted stem growth in thermoinduced plants, and were almost as active as GA20. No such increase in activity was observed for either GA[unk] or GA53. The results are discussed in relation to thermoinductive regulation of GA metabolism and its significance to the initiation of stem growth in field pennycress. It is proposed that thermoinduction results in increased conversion of ent-kaurenoic acid to GAs through the C-13 desoxy pathway and that GA9 is the endogenous mediator of thermoinduced stem growth in field pennycress.  相似文献   

12.
Gibberellin A14-[17-3H] applied to seedlings of dark grown dwarf pea (Pisum sativum L. cy. Meteor) was converted to GA1, GA8, GA18, GA23, GA28, and GA38. The sequence of interconversion of GA14→ GA18 → GA38 → GA23 → GA1 → GA8 is indicated. Identifications were made by gas-liquid radiochromatography using three liquid stationary phases.  相似文献   

13.
In G2 peas (Pisum sativum L.) apical senescence occurs only in long days (LD), and indeterminate growth is associated with elevated gibberellin (GA) levels in the shoot in short days (SD). Metabolism of GA12 aldehyde was investigated by feeding shoots grown in SD or LD with [14C]GA12 aldehyde through the cut end of the stem for 0.5 to 6 hours in the light and analyzing the tissue extract by high performance liquid chromatography. More radioactive products were detected than can be accounted for by the two GA metabolic pathways previously known to be present in peas. Three of the major products appear to be GA conjugates, but an additional pathway(s) of GA metabolism may be present. The levels of putative C20 GAs, [14C]GA53, [14C]GA44, [14C]GA19, and/or [14C] GA17, were all elevated in SD as compared to LD. Putative [14C]GA, was slightly higher in LD than in SD. Putative [14C]GA53 was a major metabolite after 30 minutes of treatment in SD but had declined after longer treatment times to be replaced by elevated levels of putative [14C] GA44 and [14C]GA19/17. Metabolism of GA20 was slow in both photoperiods. Although GA20 and GA19 are the major endogenous GAs as determined by gas chromatography-mass spectrometry, putative [14C]GA20 and [14C]GA19 were never major products of [14C]GA12 aldehyde metabolism. Thus, photoperiod acts in G2 peas to change the rate of GA53 production from GA12 aldehyde, with the levels of the subsequent GAs on the 13-OH pathway being determined by the amount of GA53 being produced.  相似文献   

14.
A new product obtained by incubation of [2-14C ]-mevalonic acid with a cell-free system from Cucurbita maxima endosperm was identified by GC-MS as ent-kaura-6,16-dien-19-oic acid. When this compound was reincubated with the microsomal fraction it was converted to 7β-hydroxykaurenolide and hence to 7β,12α-dihydroxykaurenolide. The dienoic acid was also obtained by incubation of ent-kaurene, ent1-kaurenol, ent-kaurenal and ent-kaurenoic acid, but not ent-7α-hydroxykaurenoic acid, with the microsomal fraction. Thus, in the C. maxima cell-free system, the kaurenolides are formed by a pathway which branches from the GA pathway at ent-kaurenoic acid and proceeds via the dienoic acid.  相似文献   

15.
Experiments with ent-kaur-16-ene-[14C], prepared biosynthetically from sodium acetate-[2-14C], have shown that the C-20 carbon atom of the C20 gibberellins is evolved as carbon dioxide during the biosynthesis of the C19 gibberellins by Gibberella fujikuroi.  相似文献   

16.
β-[U-14C]Alanine can be synthesized in >95% yield from l-[U-14C]aspartic acid using the aspartate 1-decarboxylase of Escherichia coli and converted to d-[1,2,3-14C]pantothenate in a 10–20% yield using the pantothenate synthetase of E. coli. Sufficiently pure preparations of both enzymes are readily obtained.  相似文献   

17.
GA12-aldehyde obtained from mevalonate via ent-kaurene, ent-kaurenol, ent-kaurenoic acid and ent-7α-hydroxykaurenoic acid in a cell-free system from immature seeds of Cucurbita maxima was converted to GA12 by the same system. When Mn2+ was omitted from the system GA12-aldehyde and GA12 were converted further to several products. Among these GA15, GA24, GA36 and GA37 were conclusively identified by GC-MS. With the exception of GA37 these GAs have not previously been found in higher plants. Another biosynthetic pathway led from ent-7α-hydroxykaurenoic acid to very polar products via what was tentatively identified as ent-6α, 7α-dihydroxykaurenoic acid. An unidentified component with an MS resembling that of a dihydroxykaurenolide was also obtained from incubations with mevalonate.  相似文献   

18.
The effect of light on the metabolism of [14C]kaurene in light-requiring lettuce seeds (Lactuca sativa L. cv Grand Rapids) was investigated. Seeds were soaked in a solution of [14C]ent-kaurene in methylene chloride with 0.01% Tween-20, dried, and incubated in 20% polyethylene glycol (PEG) to prevent seedling development. Labeled metabolites were extracted and analyzed by high performance liquid chromatography and gas chromatography-radio counting. [14C]ent-Kaurenol and [14C]ent-kaurenal were identified in seeds incubated in constant white light, while no ethyl acetate-soluble metabolites were found in seeds incubated in the dark. In time course experiments using acid scarified seeds, metabolism began after 18 hours of incubation and greatly increased after 24 hours of incubation in 20% PEG. By 48 hours, several unidentified, more polar metabolites were found. Germination was induced in seeds imbibed in 20% PEG by 4 hours of red or 4 hours of white light following 20 hours in the dark, and was fully reversed by 2 hours of far red light. However, in metabolism experiments, [14C]ent-kaurene oxidation was observed only with constant white light. These results indicate that although ent-kaurene oxidation is a light sensitive step in the biosynthesis of gibberellins in Grand Rapids lettuce seeds, ent-kaurene metabolism is not required for light-induced germination.  相似文献   

19.
In pancreatic islets prepared from either normal or GK rats and incubated at either low (2.8 mM) or high (16.7 mM) D-glucose concentration, the labelling of both lipids and their glycerol moiety is higher in the presence of D-[1-14C]glucose than D-[6-14C]glucose. The rise in D-glucose concentration augments the labelling of lipids, the paired 14C/3H ratio found in islets exposed to both D-[1-14C]glucose or D-[6-14C]glucose and D-[3-3H]glucose being even slightly higher at 16.7 mM D-glucose than that found, under otherwise identical conditions, at 2.8 mM D-glucose. Such a paired ratio exceeds unity in islets exposed to D-[1-14C]glucose. The labelling of islet lipids by D-[6-14C]glucose is about 30 times lower than the generation of acidic metabolites from the same tracer. These findings indicate (i) that the labelling of islet lipids accounts for only a minor fraction of D-glucose catabolism in pancreatic islets, (ii) a greater escape to L-glycerol-3-phosphate of glycerone-3-phosphate generated from the C1-C2-C3 moiety of D-glucose than D-glyceraldehyde-3-phosphate produced from the C4-C5-C6 moiety of the hexose, (iii) that only a limited amount of [3-3H]glycerone 3-phosphate generated from D-[3-3H]glucose is detritiated at the triose phosphate isomerase level before being converted to L-glycerol-3-phosphate, and (iv) that a rise in D-glucose concentration results in an increased labelling of islet lipids, this phenomenon being somewhat more pronounced in the case of D-[1-14C]glucose or D-[6-14C]glucose rather than D-[3-3H]glucose.  相似文献   

20.
Gibberellic acid (GA3) and 13-deoxy-gibberellic acid (GA7) were identified in extracts of germinating barley as their 14C-methyl esters. The maximal level of GA3 was estimated by an isotopic dilution procedure to be 1·5 ng per grain. Germinating barley incorporated 2-14C-mevalonic acid into several terpenes, whose specific radioactivities were measured, but incorporation into GA3 could not be detected. Cell-free embryo extracts from germinating barley converted 2-14C-mevalonic acid into isopentenol, dimethylallyl alcohol, farnesol and squalene, while 14C-isopentenyl pyrophosphate was incorporated into geraniol, farnesol, geranylgeraniol and squalene. There was no detectable incorporation into the gibberellin intermediate ent-kaurene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号