首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Paraffin sections of an ontogenetic series of embryos of the viviparous lizard Gerrhonotus coeruleus and the oviparous congener G. multicarinatus reveal that although general features of the development of the chorioallantoic and yolk sac membranes are similar, differences are evident in the distribution of the chorioallantoic membrane in late stage embryos. An acellular shell membrane surrounds the egg throughout gestation in both species although the thickness of this structure is much reduced in G. coeruleus over that of G. multicarinatus. The initial vascular membrane to contact the shell membrane in both species is a trilaminar omphalopleure (choriovitelline membrane) composed of ectoderm, mesoderm of the area vasculosa, and endoderm. This transitory membrane is replaced by the vascularized chorioallantois as the allantois expands to contact the inner surface of the chorion. Prior to the establishment of the chorioallantois at the embryonic pole, a membrane begins to form within the yolk ventral to the sinus terminalis. This membrane, which becomes vascularized, extends across the entire width of the abembryonic region and isolates a mass of yolk ventral to the yolk mass proper. The outer membrane of the yolk pole is a nonvascular bilaminar omphalopleure (chorionic ectoderm and yolk endoderm). In G. multicarinatus the bilaminar omphalopleure is supported internally by the vascularized allantoic membrane, whereas in G. coeruleus the allantois does not extend beyond the margin of the isolated yolk mass and the bilaminar omphalopleure is supported by the vascularized intravitelline membrane. Both the chorioallantoic placenta (uterine epithelium, chorionic ectoderm and mesoderm, and allantoic mesoderm and endoderm) and the yolk sac placenta at the abembryonic pole (uterine epithelium, chorionic ectoderm, and yolk sac endoderm) persist to the end of gestation in G. coeruleus.  相似文献   

2.
Oviposited eggs of Eumeces fasciatus contain embryos in the limb bud stage. Amniogenesis is complete and two yolk sac membranes, vascular trilaminar omphalopleure (choriovitelline membrane) and bilaminar omphalopleure, enclose the yolk vesicle. A small allantoic vesicle contacts the chorion. The choriovitelline membrane is the primary vascular system. Blood islands, sites of hematopoiesis, are associated with omphalomesenteric vessels of the choriovitelline membrane. The bilaminar omphalopleure, which contacts the eggshell over the abembryonic hemisphere of the egg, lies external to an isolated yolk mass and yolk cleft and is not vascularized. The definitive yolk sac (splanchnopleure) is formed when the extraembryonic coelom and allantoic vesicle intrude into the choriovitelline membrane. Omphalomesenteric vessels are retained with the yolk sac splanchnopleure and the associated hematopoietic sites are present throughout incubation. The chorioallantoic membrane reaches the equator of the egg, entirely supplanting the choriovitelline membrane, after 25% of incubation is completed. Further growth of the allantois is stalled until 65% of incubation is completed when rapid expansion of the allantoic vesicle, in conjunction with resorption of the isolated yolk mass, supplants the bilaminar omphalopleure. As a result, the chorioallantoic membrane completely envelopes the egg for the final 35% of incubation. This developmental event is coincident with published reports for the timing of increased growth and metabolism of embryos. As the isolated yolk mass regresses, intravitelline cells associated with the yolk cleft invade and resorb the yolk to form a large cavity. The wall of this cavity is a germinal epithelium that produces cells that fill the cavity. This structure appears to be a site of hematopoiesis previously undescribed in vertebrates.  相似文献   

3.
A prominent model for the evolution of placentation among Reptilia is based on placental structure among species in the Eugongylus group of Australian lygosomatine skinks. We studied the development of the extraembryonic membranes of an oviparous species, Bassiana duperreyi, and a viviparous species, Pseudemoia entrecasteauxii, within this taxonomic group. We observed differences in the timing of development of shared features and in the structure of extraembryonic membrane epithelia in the two species. In the viviparous species, there is earlier vascularization of the yolk sâc and increased vascular support for the abembryonic yolk sac splanchnopleure. Structural differences between species result in partitioning of the egg into two distinct hemispheres and produce epithelia which appear functionally histotrophic in both the chorioallantoic membrane and the bilaminar omphalopleure of the viviparous species. We propose that the evolution of placentation in P. entrecasteauxii involved a combination of heterochrony and structural innovation. Further, because our interpretation of placental structure of this species provides new information relevant to placental function, we propose a revision of a classic model for the evolution of placentation among Reptilia. This model predicts specific relationships among reproductive characteristics and thus is testable by comparative analysis among other species within the Eugongylus group of Australian skinks. © 1996 Wiley-Liss, Inc.  相似文献   

4.
Topological and histological analyses of Mabuya mabouya embryos at different developmental stages showed an extraembryonic membrane sequence as follows: a bilaminar omphalopleure and progressive mesodermal expansion around the whole yolk sac at gastrula stages; mesodermal split and formation of an exocoelom in the entire embryonic chamber at neurula stages; beginning of the expansion of the allantois into the exocoelom to form a chorioallantoic membrane at pharyngula stages; complete extension of the allantois into the exocoelom between limb-bud to preparturition stages. Thus, a placental sequence could be enumerated: bilaminar yolk sac placenta; chorioplacenta; allantoplacenta. All placentas are highly specialized for nutrient absorption from early developmental stages. The bistratified extraembryonic ectoderm possesses an external layer with cuboidal cells and a microvillar surface around the whole yolk sac, which absorbs uterine secretions during development of the bilaminar yolk sac placenta and chorioplacenta. During gastrulation, with mesodermal expansion a dorsal absorptive plaque forms above the embryo and several smaller absorptive plaques develop antimesometrially. Both structures are similar histologically and are active in histotrophic transfer from gastrula stages until the end of development. The dorsal absorptive plaque will constitute the placentome and paraplacentome during allantoplacental development. At late gastrula-early neurula stages some absorptive plaques form chorionic concavities or chorionic bags that are penetrated by a long uterine fold and seem to have a specialized histotrophic and/or metabolic role. The extraembryonic mesoderm does not ingress into the yolk sac and neither an isolated yolk mass nor a yolk cleft are formed. This derived pattern of development may be related to the drastic reduction of the egg size and obligatory placentotrophy from early developmental stages. Our results show new specialized placentotrophic structures and a novel arrangement of extraembryonic membrane morphogenesis for Squamata.  相似文献   

5.
The reptilian placenta is a composite structure formed by a functional interaction between extraembryonic membranes and the maternal uterus. Study of placental structure of squamate reptiles over the past century has established that each of the multiple independent origins of placentation, which characterize the reproductive diversity of squamates, has resulted from the evolutionary transformation of these homologous structures. Because each evolutionary transformation is an independent novel relationship between maternal and embryonic tissues, the resulting placentae are not homologous, even though the individual components may be. The evolution of reptilian placentation should reveal much about evolutionary patterns and mechanisms because similar structural-functional systems have been transformed along parallel trajectories on multiple occasions. We compared extraembryonic membrane and placental development and pattern of embryonic nutrition in thamnophiine snakes and Pseudemoia lizards in the context of recent hypotheses of phylogenetic relationships. Two primary types of placentation, chorioallantoic and yolk sac, evolved in each lineage. Smooth, highly vascular regions of chorioallantoic placentation are indistinguishable homoplasies that evolved in parallel, likely to facilitate respiratory exchange. The yolk sac placenta of each lineage is specialized for histotrophic nutrient transfer, yet composition of these structures differs because of variation in the ancestral snakes and lizards. In addition, the omphalopleure that contributes to yolk sac placentation persists to later embryonic stages compared to oviparous outgroups, but the two lineages have evolved different structures that prevent replacement of the omphalopleure by the allantois. Each lineage has also evolved unique structural specializations of the chorioallantoic placenta.  相似文献   

6.
The reptilian clade Squamata is defined primarily by osteological synapomorphies, few of which are entirely unambiguous. Studies of developing squamate eggs have revealed a uniquely specialized feature not known to occur in any other amniotes. This feature—the yolk cleft/isolated yolk mass complex—lines the ventral hemisphere of the egg. During its formation, extraembryonic mesoderm penetrates the yolk and an exocoelom (the yolk cleft [YC]) forms in association with it, cutting off a thin segment of yolk (the “isolated yolk mass” [IYM]) from the main body of the yolk. The YC–IYM complex has been observed and described in more than 65 squamate species in 12 families. In viviparous species, it contributes to the “omphaloplacenta,” a type of yolk sac placenta unique to squamates. The only squamates known to lack the IYM are a few highly placentotrophic skinks with minuscule eggs, viviparous species in which it clearly has been lost. Given its absence in mammals, chelonians, crocodylians, and birds, the YC–IYM complex warrants recognition as a developmental synapomorphy of the squamate clade. As in extant viviparous lizards and snakes, the YC–IYM complex presumably contributed to the placenta of extinct viviparous squamates.  相似文献   

7.
An understanding of the evolutionary morphology of extraembryonic membranes in reptiles requires information about oviparous as well as viviparous species. We are studying histology and ultrastructure of the extraembryonic membranes of snakes to clarify the evolutionary history of reptilian fetal membranes, including determination of basal (ancestral) ophidian and squamate patterns. Microscopic anatomy of the membranes of oviparous corn snakes (Elaphe guttata) was examined using light and electron microscopy. At mid-development the inner surface of the eggshell is lined by two extraembryonic membranes, the chorioallantois and the omphalallantoic membrane. The chorioallantois consists of a bilayered cuboidal epithelium that overlies the allantoic blood vessels. During development, allantoic capillaries become more abundant, and the chorionic epithelium thins, decreasing the diffusion distance for respiratory gas exchange. The abembryonic pole of the egg is delimited by a bilaminar omphalopleure and isolated yolk mass, the latter of which is lined on its inner face by the allantois. The isolated yolk mass regresses developmentally, and patches of yolk droplets become isolated and surrounded by allantoic blood vessels. By late development, the abembryonic hemisphere has been fully vascularized by allantoic vessels, forming a "secondary chorioallantois." With regard to its extraembryonic membranes, Elaphe gutatta is similar to viviparous snakes. However, this species exhibits features that have not previously been reported among squamates, perhaps reflecting its oviparous reproductive habits. Morphological evidence for the uptake of eggshell material by epithelia of the chorion and omphalopleure suggests that the potential for absorption by extraembryonic membranes predates the origin of viviparity.  相似文献   

8.
Placental membranes mediate maternal‐fetal exchange in all viviparous reptilian sauropsids. We used scanning electron microscopy to examine the placental interface in the mountain spiny lizard, Sceloporus jarrovi (Phrynosomatidae). From the late limb bud stage until birth, the conceptus is surrounded by placental membranes formed from the chorioallantois and yolk sac omphalopleure. The chorioallantois lies directly apposed to the uterine lining with no intervening shell membrane. Both fetal and maternal sides of the chorioallantoic placenta are lined by continuous layers of flattened epithelial cells that overlie dense capillary networks. The chorioallantoic placenta shows specializations that enhance respiratory exchange, as well as ultrastructural evidence of maternal secretion and fetal absorption. The yolk sac placenta contains enlarged fetal and maternal epithelia with specializations for histotrophic nutrient transfer. This placenta lacks intrinsic vascularity, although the vascular allantois lies against its inner face, contributing to an omphallantoic placenta. In a specialized region at the abembryonic pole, uterine and fetal tissues are separated by a compact mass of shed shell membrane, yolk droplets, and cellular debris. The omphalopleure in this region develops elongate folds that may contribute to sequestration and absorption of this material. Fetal membrane morphogenesis and composition in S. jarrovi are consistent with those of typical squamates. However, this species exhibits unusual placental specializations characteristic of highly placentotrophic lizards. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

9.
Reproductive mode has been remarkably labile among squamate reptiles and the evolutionary transition from oviparity to viviparity commonly has been accompanied by a shift in the pattern of embryonic nutrition. Structural specializations for placental transfer of nutrients during intrauterine gestation are highly diverse and many features of the extraembryonic membranes of viviparous species differ markedly from those of oviparous species. However, because of a high degree of evolutionary divergence between the species used for comparisons it is likely that the observed differences arose secondarily to the evolution of viviparity. We studied development of the extraembryonic membranes and placentation in the reproductively bimodal lizard Lacerta vivipara because the influence of reproductive mode on the structural/functional relationship between mothers and embryos can best be understood by studying the most recent evolutionary events. Lecithotrophic viviparity has evolved recently within this species and, although populations with different reproductive modes are allopatric, oviparous and viviparous forms interbreed in the laboratory and share many life history characteristics. In contrast to prior comparisons between oviparous and viviparous species, we found no differences in ontogeny or structure of the extraembryonic membranes between populations with different reproductive modes within L. vivipara. However, we did confirm conclusions from previous studies that the tertiary envelope of the egg, the eggshell, is much reduced in the viviparous population. These conclusions support a widely accepted model for the evolution of squamate placentation. We also found support for work published nearly 80 years ago that the pattern of development of the yolk sac of L. vivipara is unusual and that a function of a unique structure of squamate development, the yolk cleft, is hematopoiesis. The structure of the yolk sac splanchnopleure of L. vivipara is inconsistent with a commonly accepted model for amniote yolk sac function and we suggest that a long standing hypothesis that cells from the yolk cleft participate in yolk digestion requires further study.  相似文献   

10.
In reptilian sauropsids, fetal (extraembryonic) membranes that line the eggshell sustain developing embryos by providing for gas exchange and uptake of water and eggshell calcium. However, a scarcity of morphological studies hinders an understanding of functional specializations and their evolution. In kingsnakes (Lampropeltis getula), scanning electron microscopy reveals two major fetal membranes: the chorioallantois and yolk sac omphalopleure. In early development, the chorioallantois contains tall chorionic epithelial cells, avascular connective tissue, and enlarged allantoic epithelial cells. During its maturation, the chorionic and allantoic epithelia thin dramatically and become underlain by a rich network of allantoic capillaries, yielding a membrane ideally suited for respiratory gas exchange. Yolk sac development initially is like that of typical lizards and snakes, forming an avascular omphalopleure, isolated yolk mass (IYM), and yolk cleft. However, unlike the situation in most squamates studied, the omphalopleure becomes transformed into a “secondary chorioallantois” via three asynchronous events: flattening of the epithelium, regression of the IYM, and vascularization by the allantois. Progressive expansion of chorioallantois parallels growing embryonic needs for gas exchange. In early through mid‐development, external surfaces of both the chorionic and omphalopleure epithelium show an abundance of irregular surface protrusions that possibly increase surface area for water absorption. We postulate that the hypertrophied allantoic epithelial cells produce allantoic fluid, a viscous substance that facilitates water uptake and storage. Our findings are consistent with a previous study on the corn snake Pantherophis guttatus, but include new observations and novel functional hypotheses relevant to a reconstruction of basal squamate patterns. J. Morphol. 276:1467–1481, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

11.
《Journal of morphology》2017,278(4):574-591
Embryos of oviparous reptiles develop on the surface of a large mass of yolk, which they metabolize to become relatively large hatchlings. Access to the yolk is provided by tissues growing outward from the embryo to cover the surface of the yolk. A key feature of yolk sac development is a dedicated blood vascular system to communicate with the embryo. The best known model for yolk sac development and function of oviparous amniotes is based on numerous studies of birds, primarily domestic chickens. In this model, the vascular yolk sac forms the perimeter of the large yolk mass and is lined by a specialized epithelium, which takes up, processes and transports yolk nutrients to the yolk sac blood vessels. Studies of lizard yolk sac development, dating to more than 100 years ago, report characteristics inconsistent with this model. We compared development of the yolk sac from oviposition to near hatching in embryonic series of three species of oviparous scincid lizards to consider congruence with the pattern described for birds. Our findings reinforce results of prior studies indicating that squamate reptiles mobilize and metabolize the large yolk reserves in their eggs through a process unknown in other amniotes. Development of the yolk sac of lizards differs from birds in four primary characteristics, migration of mesoderm, proliferation of endoderm, vascular development and cellular diversity within the yolk sac cavity. Notably, all of the yolk is incorporated into cells relatively early in development and endodermal cells within the yolk sac cavity align along blood vessels which course throughout the yolk sac cavity. The pattern of uptake of yolk by endodermal cells indicates that the mechanism of yolk metabolism differs between lizards and birds and that the evolution of a fundamental characteristic of embryonic nutrition diverged in these two lineages. Attributes of the yolk sac of squamates reveal the existence of phylogenetic diversity among amniote lineages and raise new questions concerning the evolution of the amniotic egg. J. Morphol. 278:574–591, 2017. © 2017 Wiley Periodicals, Inc.  相似文献   

12.
《Journal of morphology》2017,278(5):665-674
As part of a broad survey of placental structure, function, and evolution in reptilian sauropsids paraffin‐section histology was used to study microscopic anatomy of the uterus and fetal membranes of three species of North American watersnakes (Nerodia : Colubridae). The pre‐ovulatory uterus is poorly vascularized with inactive shell glands. These shell glands are activated during vitellogenesis but regress during pregnancy. Two placentas develop through apposition of the uterine lining to the chorioallantois and the yolk sac omphalopleure. Fetal and maternal components of the chorioallantoic placenta are progressively vascularized during development. Their epithelia are attenuated, but (contrary to a previous report), epithelia of neither the uterus nor the chorion are eroded. The fetal portion of the yolk sac placenta is an omphalallantois, formed of avascular omphalopleure, isolated yolk mass, and allantois. This placenta is progressively replaced by chorioallantoic placenta during mid‐ to late‐development through depletion of the isolated yolk mass. The chorioallantoic placenta is anatomically specialized for maternal–fetal gas exchange, and its expansion during development reflects the growing needs of the fetus for gas exchange. The yolk sac placenta is morphologically unsuited for gas exchange, but may serve other functions in maternal‐fetal exchange.  相似文献   

13.
Current studies on fetal membranes of reptiles are providing insight into three major historical transformations: evolution of the amniote egg, evolution of viviparity, and evolution of placentotrophy. Squamates (lizards and snakes) are ideal for such studies because their fetal membranes sustain embryos in oviparous species and contribute to placentas in viviparous species. Ultrastructure of the fetal membranes in oviparous corn snakes (Pituophis guttatus) shows that the chorioallantois is specialized for gas exchange and the omphalopleure, for water absorption. Transmission and scanning electron microscopic studies of viviparous thamnophine snakes (Thamnophis, Storeria) have revealed morphological specializations for gas exchange and absorption in the intra-uterine environment that represent modifications of features found in oviparous species. Thus, fetal membranes in oviparous species show morphological differentiation for distinct functions that have been recruited and enhanced under viviparous conditions. The ultimate in specialization of fetal membranes is found in viviparous skinks of South America (Mabuya) and Africa (Trachylepis, Eumecia), in which placentotrophy accounts for nearly all of the nutrients for development. Ongoing research on these lizards has revealed morphological specializations of the chorioallantoic placenta through which nutrient transfer is accomplished. In addition, African Trachylepis show an invasive form of implantation, in which uterine epithelium is replaced by invading chorionic cells. Ongoing analysis of these lizards shows how integration of multiple lines of evidence can provide insight into the evolution of developmental and reproductive specializations once thought to be confined to eutherian mammals.  相似文献   

14.
Examination of late-stage placental material of the lizard Chalcides chalcides from the Hubrecht Laboratorium (Utrecht, The Netherlands) reveals several cytological and histological specializations that appear to have been superimposed over a morphological pattern that is typical for squamates. The chorioallantoic placenta is highly vascularized and consists of a single mesometrial placentome and a generalized paraplacentomal region, both of which are epitheliochorial. The placentome is deciduate, and contains deeply interdigitating folds of hypertrophied uterine and chorioallantoic tissue. Chorionic epithelium lining the placentome comprises enlarged, microvilliated cells, a small proportion of which are diplokaryocytes. The placentomal uterine epithelium is not syncytial and consists of enlarged cells bearing microvilli. The yolk sac placenta is a true omphaloplacenta (sensu stricto), being formed by juxtaposition of uterine tissues to an avascular, bilaminar omphalopleure. Epithelium of the omphalopleure is stratified and is hypertrophied into papillae that project into detritus of the uterine lumen. The omphalopleure is separated from the yolk sac proper by a yolk cleft that is not confluent with the exocoelom and is not invaded by the allantois. Neither an omphalallantoic placenta nor a true choriovitelline placenta is present in late gestation. Morphologically, the mature placentae of C. chalcides are among the most specialized to have been described in reptiles, reflecting the substantial maternal-fetal nutrient transfer that occurs in this species. © 1993 Wiley-Liss, Inc.  相似文献   

15.
The lizard Sceloporus jarrovi (Phrynosomatidae) is one of the most widely studied viviparous reptiles of North America. Past research has assumed that placentation in this species is relatively simple and functions mainly in gas exchange. Our examination of the late stage placenta via transmission electron microscopy reveals that S. jarrovi has a unique combination of placental characteristics, with unusual specializations for secretion and absorption. In the chorioallantoic placenta, chorionic and uterine tissues are directly apposed through eggshell loss, and their epithelia are greatly attenuated, enhancing gas exchange; this placenta shows evidence of both nutrient transfer and endocrine function. Contrary to past inferences, a yolk sac placenta forms from the avascular omphalopleure and persists through the end of gestation. The uterine epithelium is enlarged and secretory, and the fetal omphalopleure shows branching absorptive channels and other specializations for uptake. Elsewhere, the omphalopleure develops elongated folds that protrude into a coagulum of degenerating shell membrane and other organic material. Uterine tissue in this region shows specializations for absorption. Placental features in S. jarrovi have unexpected functional implications, and challenge assumptions that specializations for nutrient transfer are confined to matrotrophic species. J. Morphol. 271:1153–1175, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Embryos of oviparous Reptilia (=turtles, lepidosaurs, crocodilians and birds) extract calcium for growth and development from reserves in the yolk and eggshell. Yolk provides most of the calcium to embryos of lizards and snakes. In contrast, the eggshell supplies most of the calcium for embryonic development of turtles, crocodilians and birds. The yolk sac and chorioallantoic membrane of birds recover and transport calcium from the yolk and eggshell and homologous membranes of squamates (lizards and snakes) probably transport calcium from these two sources as well. We studied calcium mobilization by embryos of the snake Pantherophis guttatus during the interval of greatest embryonic growth and found that the pattern of calcium transfer was similar to other snakes. Calcium recovery from the yolk is relatively low until the penultimate embryonic stage. Calcium removal from the eggshell begins during the same embryonic stage and total eggshell calcium drops in each of the final 2 weeks prior to hatching. The eggshell supplies 28% of the calcium of hatchlings. The timing of calcium transport from the yolk and eggshell is coincident with the timing of growth of the yolk sac and chorioallantoic membrane and expression of the calcium binding protein, calbindin-D28K, in these tissues as reported in previous studies. In the context of earlier work, our findings suggest that the timing and mechanism of calcium transport from the yolk sac of P. guttatus is similar to birds, but that both the timing and mechanism of calcium transport by the chorioallantoic membrane differs. Based on the coincident timing of eggshell calcium loss and embryonic calcium accumulation, we also conclude that recovery of eggshell calcium in P. guttatus is regulated by the embryo.  相似文献   

17.
《Journal of morphology》2017,278(5):675-688
Ultrastructure of the placental tissues from redbelly watersnakes (Nerodia erythrogaster ) was analyzed during late pregnancy to provide insight into placental development and function. Examination of the chorioallantoic placenta with transmission electron microscopy reveals that chorionic and uterine epithelia are extremely attenuated but intact and that the eggshell membrane is vestigial and lacks a calcareous layer. These features minimize the interhemal diffusion distance across the placenta. Scanning electron microscopy reveals that fetal and maternal components of the placentas are richly vascularized by dense networks of capillaries. Although the yolk sac omphalopleure has largely been replaced by chorioallantois by late gestation, it retains patches of yolk droplets and regions of absorptive cells with microvilli and abundant mitochondria. Transmission electron microscopy reveals that yolk material is taken up for digestion by endodermal cells. As yolk is removed, allantoic capillaries invade to occupy positions just beneath the epithelium, forming regions of chorioallantoic placentation. Ultrastructural features indicate that the chorioallantoic placenta is specialized for gas exchange, while the omphalallantoic (“yolk sac”) placenta shows evidence of functions in yolk digestion and maternal‐fetal nutrient transfer. Placental features of this species are consistent with those of other thamnophines, and are evolutionarily convergent on snakes of other viviparous clades.  相似文献   

18.
Although the fetal membranes of viviparous squamates have received much study, morphology of their homologues among oviparous reptiles is poorly understood. The scarcity of information about these membranes in egg‐laying reptiles hampers attempts to distinguish specializations for viviparity from ancestral oviparous features. We used scanning electron microscopy to examine fetal membranes of an oviparous snake (Pituophis guttatus) throughout the developmental period from oviposition to hatching. The external surface of the chorion contains broad, flattened cells that lack surface features; these cells form a continuous layer over the allantoic capillaries and offer a minimal barrier to respiratory exchange. In contrast, the surface epithelium of the omphalopleure bears elaborate surface ridges suggestive of absorptive capabilities. These ridges are prominent in the first few weeks after oviposition, but diminish thereafter. During development, the isolated yolk mass (IYM) of the omphalopleure becomes depleted, and the tissue becomes heavily vascularized by allantoic vessels. Surface features of the omphalopleure progressively take on the appearance of the chorioallantois, but the changes are not synchronous with loss of the IYM or membrane vascularization. Previous studies on viviparous snakes suggest that the chorioallantois and omphalopleure are respectively specialized for gas exchange and absorption in the intrauterine environment. Our studies of fetal membranes in P. guttatus offer evidence that cytological specializations for these functions originated under oviparous conditions, reflecting functional capacities that predate viviparity. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
We used scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to describe the complete ontogeny of simple placentation and the development of both the yolk sac placentae and chorioallantoic placentae from nonreproductive through postparturition phases in the maternal uterine epithelium of the Australian skink, Eulamprus tympanum. We chose E. tympanum, a species with a simple, noninvasive placenta, and which we know, has little net nutrient uptake during gestation to develop hypotheses about placental function and to identify any difference between the oviparous and viviparous conditions. Placental differentiation into the chorioallantoic placenta and yolk sac placenta occurs from embryonic Stage 29; both placentae are simple structures without specialized features for materno/fetal connection. The uterine epithelial cells are not squamous as previously described by Claire Weekes, but are columnar, becoming increasingly attenuated because of the pressure of the impinging underlying capillaries as gestation progresses. When the females are nonreproductive, the luminal uterine surface is flat and the microvillous cells that contain electron-dense vesicles partly obscure the ciliated cells. As vitellogenesis progresses, the microvillous cells are less hypertrophied than in nonreproductive females. After ovulation and fertilization, there is no regional differentiation of the uterine epithelium around the circumference of the egg. The first differentiation, associated with the chorioallantoic placentae and yolk sac placentae, occurs at embryonic Stage 29 and continues through to Stage 39. As gestation proceeds, the uterine chorioallantoic placenta forms ridges, the microvillous cells become less hypertrophied, ciliated cells are less abundant, the underlying blood vessels increase in size, and the gland openings at the uterine surface are more apparent. In contrast, the yolk sac placenta has no particular folding with cells having a random orientation and where the microvillous cells remain hypertrophied throughout gestation. However, the ciliated cells become less abundant as gestation proceeds, as also seen in the chorioallantoic placenta. Secretory vesicles are visible in the uterine lumen. All placental differentiation and cell detail is lost at Stage 40, and the uterine structure has returned to the nonreproductive condition within 2 weeks. Circulating progesterone concentrations begin to rise during late vitellogenesis, peak at embryonic Stages 28-30, and decline after Stage 35 in the later stages of gestation. The coincidence between the time of oviposition and placental differentiation demonstrates a similarity during gestation in the uterus between oviparous and simple placental viviparous squamates.  相似文献   

20.
In the viviparous lizard Trachylepis ivensi (Scincidae) of central Africa, reproducing females ovulate tiny ~1 mm eggs and supply the nutrients for development by placental means. Histological study shows that this species has evolved an extraordinary placental pattern long thought to be confined to mammals, in which fetal tissues invade the uterine lining to contact maternal blood vessels. The vestigial shell membrane disappears very early in development, allowing the egg to absorb uterine secretions. The yolk is enveloped precocially by the trilaminar yolk sac and no isolated yolk mass or yolk cleft develops. Early placentas are formed from the chorion and choriovitelline membranes during the neurula through pharyngula stages. During implantation, cells of the chorionic ectoderm penetrate between uterine epithelial cells. The penetrating tissue undergoes hypertrophy and hyperplasia, giving rise to sheets of epithelial tissue that invade beneath the uterine epithelium, stripping it away. As a result, fetal epithelium entirely replaces the uterine epithelium, and lies in direct contact with maternal capillaries and connective tissue. Placentation is endotheliochorial and fundamentally different from that of all other viviparous reptiles known. Further, the pattern of fetal membrane development (with successive loss and re‐establishment of an extensive choriovitelline membrane) is unique among vertebrates. T. ivensi represents a new extreme in placental specializations of reptiles, and is the most striking case of convergence on the developmental features of viviparous mammals known. J. Morphol. 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号