首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In vertebrates, sex differences in the brain have been attributed to differences in gonadal hormone secretion; however, recent evidence in mammals and birds shows that sex chromosome-linked genes, independent of gonadal hormones, also mediate sex differences in the brain. In this study, we searched for genes that were differentially expressed between the sexes in the brain of a teleost fish, medaka (Oryzias latipes), and identified two sex chromosome genes with male-biased expression, cntfa (encoding ciliary neurotrophic factor a) and pdlim3a (encoding PDZ and LIM domain 3 a). These genes were found to be located 3–4 Mb from and on opposite sides of the Y chromosome-specific region containing the sex-determining gene (the medaka X and Y chromosomes are genetically identical, differing only in this region). The male-biased expression of both genes was evident prior to the onset of sexual maturity. Sex-reversed XY females, as well as wild-type XY males, had more pronounced expression of these genes than XX males and XX females, indicating that the Y allele confers higher expression than the X allele for both genes. In addition, their expression was affected to some extent by sex steroid hormones, thereby possibly serving as focal points of the crosstalk between the genetic and hormonal pathways underlying brain sex differences. Given that sex chromosomes of lower vertebrates, including teleost fish, have evolved independently in different genera or species, sex chromosome genes with sexually dimorphic expression in the brain may contribute to genus- or species-specific sex differences in a variety of traits.  相似文献   

2.
Germ line control of female sex determination in zebrafish   总被引:2,自引:0,他引:2  
A major transition during development of the gonad is commitment from an undifferentiated “bi-potential” state to ovary or testis fate. In mammals, the oogonia of the developing ovary are known to be important for folliculogenesis. An additional role in promoting ovary fate or female sex determination has been suggested, however it remains unclear how the germ line might regulate this process. Here we show that the germ line is required for the ovary versus testis fate choice in zebrafish. When the germ line is absent, the gonad adopts testis fate. These germ line deficient testes have normal somatic structures indicating that the germ line influences fate determination of surrounding somatic tissues. In germ line deficient animals the expression of the ovary specific gene cyp19a1a fails to be maintained whereas the testis genes sox9a and amh remain expressed. Furthermore, we observed decreased levels of the ovary specific genes cyp19a1a and foxL2 in germ line deficient animals prior to morphological sex differentiation of the gonad. We propose that the germ line has a common role in female sex determination in fish and mammals. Additionally, we show that testis specification is sufficient for masculinization of the fish pointing to a direct role of hormone signaling from the gonad in directing sex differentiation of non-gonadal tissues.  相似文献   

3.
Summary The development of the gonad, from hatching through sexual maturity and oviposition, has been studied in Arion ater rufus and Deroceras reticulatum. At hatching, the gonad is comprised of several acini. These acini are hollow structures, the walls of which are generally one or two cell layers thick. This cell layer consists of intermingled germinal and non-germinal cells. Eventually, each acinus is divided into two compartments (cortical and medullar) by a layer of auxiliary cells.The auxiliary cells appear to differentiate into Sertoli and follicle cells. These three non-germinal cell types appear to form an uninterrupted cell barrier that isolates the female germ cells in the cortex from the male germ cells in the medulla. Thus, although these animals are hermaphroditic, the male and female germinal lines differentiate in physiologically isolated compartments.Supported in part by NSF Traineeship Grant GZ-198.1 and NIH Developmental Biology Training Grant, No. 5-T01-HD00266-01.The author extends his thanks to Professors Alan J. Kohn, Edward C. Roosen-Runge, and W. Siang Hsu for their advice, suggestions, and encouragement.  相似文献   

4.
In the germ line of the Caenorhabditis elegans hermaphrodite, nuclei either proliferate through mitosis or initiate meiosis, finally differentiating as spermatids or oocytes. The production of oocytes requires repression of the fem-3 mRNA by cytoplasmic FBF and nuclear MOG proteins. Here we report the identification of the sex determining gene mog-3 and show that in addition to its role in gamete sex determination, it is necessary for meiosis by acting downstream of GLP-1/Notch. Furthermore, we found that MOG-3 binds both to the nuclear proteins MEP-1 and CIR-1. MEP-1 is necessary for oocyte production and somatic differentiation, while the mammalian CIR-1 homolog counters Notch signaling. We propose that MOG-3, MEP-1 and CIR-1 associate in a nuclear complex which regulates different aspects of germ cell development. While FBF triggers the sperm/oocyte switch by directly repressing the fem-3 mRNA in the cytoplasm, the MOG proteins play a more indirect role in the nucleus, perhaps by acting as epigenetic regulators or by controlling precise splicing events.  相似文献   

5.
Testicular type Sox9 is the most upstream conserved gene in the sex determining cascade among vertebrate. However, in medaka, only one Sox9 gene was identified as expressed in the ovary; no other Sox9 gene was reported expressed in the testis. We explored the medaka genome and cloned a novel testicular type Sox9 cDNA. Phylogenetic analysis revealed that both our isolated Sox9 and the already reportedly cloned medaka Sox9 belongs zebrafish Sox9a branch. Therefore, we named our gene Sox9a2. Unexpectedly, Sox9a2 mRNA was expressed in somatic cells surrounding germ cells at similar high levels in both sexes during early gonadal sex differentiation. However, at the initial stage of testicular tubules development, the expression of Sox9a2 was maintained only in XY gonads, and was remarkably reduced in XX gonads. These results suggest that Sox9a2 is not involved in early sex determination and differentiation, but is involved in the later development of testicular tubules in medaka.  相似文献   

6.
7.
有性生殖是多细胞生物的一个重要特征,最常见的就是人类的性染色体X和Y。性别决定(Sex determination)系统有着悠久的起源,在高等生物进化的历程中,不同物种采用的性别决定方式大相径庭,而同源转录因子在不同生物体内的功能和调控方式也是有区别的,比如DMRT转录因子家族,这说明性别决定机制具有高度多样性。本文介绍了近年来发现的具有代表性的性别决定相关的基因的发现过程,总结了性别决定相关转录调控因子的功能和结构方面的研究成果,从结构生物学视角来展望未来的研究方向,为进一步探索生物体内这一重大进程提供新思路。  相似文献   

8.
In Drosophila, the sex of germ cells is determined by autonomous and inductive signals. Somatic inductive signals can drive XX germ cells into oogenesis or into spermatogenesis. An autonomous signal makes XY germ cells male and unresponsive to sex determination by induction. The elements forming the X:A ratio in the soma and the genes tra, tra2, dsx, and ix that determine the sex of somatic cells have no similar role in the germline. The gene Sxl, however, is required for female differentiation of somatic and germ cells. Inductive signals that are dependent on somatic tra and dsx expression already affect the sex-specific development of germ cells of first instar larvae. At this early stage, however, germline expression of Sxl does not appear to affect the sexual characteristics of germ cells. Since inductive signals dependent on tra and dsx nevertheless influence the choice of sex-specific splicing of Sxl, it can be concluded that Sxl is a target of the inductive signal, but that its product is required late for oogenesis. Other genes must therefore control the early sexual dimorphism of larval germ cells. © 1994 Wiley-Liss, Inc.  相似文献   

9.
10.
11.
Cilia and flagella are highly conserved organelles that have diverse motility and sensory functions. Motility defects in cilia and flagella result in primary ciliary dyskinesia (PCD). We isolated a novel medaka PCD mutant, jaodori (joi). Positional cloning showed that axonemal dynein intermediate chain 2 (dnai2) is responsible for joi. The joi mutation was caused by genomic insertion of the medaka transposon, Tol1. In the joi mutant, cilia in Kupffer's vesicle (KV), an organ functionally equivalent to the mouse node in terms of left-right (LR) specification, are generated but their motility is disrupted, resulting in a LR defect. Ultrastructural analysis revealed severe reduction in the outer dynein arms in KV cilia of joi mutants. We also found the other dnai2 gene in the medaka genome. These two dnai2 genes function either redundantly or distinctly in tissues possessing motile cilia.  相似文献   

12.
13.
When environments differentially influence male and female performance, environmental sex determination (ESD) might evolve. The conclusion from several previous theoretical models was that reaction norms for sex determination should have a single, sharp threshold, with only females being produced in some environments and only males in others. These reaction norms can be disadvantageous in fluctuating environments, however, because they lead to sex-ratio fluctuations. We analysed the evolution of ESD, looking for equilibrium strategies in unconstrained as well as constrained strategy spaces. We identified situations where a single-threshold reaction norm is not evolutionarily stable. In these cases, we found stable strategies in the form of complex reaction norms, showing an oscillatory pattern of sex determination with respect to variation in an environmental variable. Considering that constraints could prevent such phenotypes from being realized, we found that certain randomized reaction norms, with probabilistic sex determination for a range of environments, would achieve nearly the same fitness. We also investigated reaction norms constrained to have a single threshold and found that genetic polymorphism in the environmental threshold value could evolve, producing a similar effect as a randomized reaction norm. We argue that the appearance of genetic variation can be regarded as an alternative outcome when constraints prevent the evolution of a more complex or a randomized strategy.  相似文献   

14.
The proliferation of germ cells becomes sexually dimorphic during gonadal sex differentiation, although the underlying dynamics of this are not well understood in vertebrates. By tracing GFP-labeled germ cells in vivo and analyzing the germ cell-depleted mutant, zenzai, we show that the proliferation and differentiation of germ cells are regulated in a sexually dimorphic manner in the teleost fish medaka. In the undifferentiated gonads, germ cells resume proliferation by slow intermittent division (type I), producing isolated daughter cells. While germ cells in the male gonads continue this mode of proliferation, some germ cell fractions in the female gonads initiate two to four rounds of continuous division (type II), forming cysts of four, eight, or sixteen cells, which subsequently enter meiosis synchronously. Thus, female germ cells become differentiated much earlier than do male germ cells. In the zenzai mutant, a defect in slow intermittent division eventually leads to the depletion of germ cells in the adult gonads in both sexes, despite the fact that cyst-forming division is unaffected. This argues that slow intermittent division is essential for the maintenance of germ cells. The proliferation and differentiation of germ cells are thus important components of gonadal sex differentiation in vertebrates.  相似文献   

15.
Most flowering plant species are hermaphroditic, but a small number of species in most plant families are unisexual (i.e., an individ-ual will produce only male or female gametes). Because species with unisexual flowers have evolved repeatedly from hermaphroditic progenitors, the mechanisms controlling sex determination in flowering plants are extremely diverse. Sex is most strongly determined by genotype in all species but the mechanisms range from a single controlling locus to sex chromosomes bearing several linked locirequired for sex determination. Plant hormones also influence sex expression with variable effects from species to species. Here, we review the genetic control of sex determination from a number of plant species to illustrate the variety of extant mechanisms. We emphasize species that are now used as models to investigate the molecular biology of sex determination. We also present our own investigations of the structure of plant sex chromosomes of white campion (Silene latifolia - Melan-drium album). The cytogenetic basis of sex determination in white campion is similar to mammals in that it has a male-specific Y-chromosome that carries dominant male determining genes. If one copy of this chromosome is in the genome, the plant is male. Otherwise it is female. Like mammalian Y-chromosomes, the white campion Y-chromosome is rich in repetitive DNA. We isolated repetitive sequences from microdissected Y-chromosomes of white campion to study the distribution of homologous repeated sequences on the Y-chromosome and the other chromosomes. We found the Y to be especially rich in repetitive sequences that were generally dispersed over all the white campion chromosomes. Despite its repetitive character, the Y-chromosome is mainly euchromatic. This may be due to the relatively recent evolution of the white campion sex chromosomes compared to the sex chromosomes of animals. © 1994 Wiley-Liss, Inc.  相似文献   

16.
The synaptonemal complex (SC) is a meiosis-specific structure essential for synapsis of homologous chromosomes. For the first time in any non-mammalian vertebrates, we have isolated cDNA clones encoding two structural components of the SC, SYCP1 and SYCP3, in the medaka, and investigated their protein expression during gametogenesis. As in the case of mammals, medaka SYCP1 and SYCP3 are expressed solely in meiotically dividing cells. In the diplotene stage, SYCP1 is diminished at desynaptic regions of chromosomes and completely lost on the chromosomes at later stages. SYCP3 is localized along the arm and centromeric regions of chromosomes at metaphase I, and its existence on the whole chromosomes persists up to anaphase I, a situation different from that reported in the mouse, in which SYCP3 is confined to the centromeric regions but lost on the arm regions at metaphase I. Thus, the expression patterns of SC components are different in mammals and fish despite the resemblance in morphological structure of the SC, suggesting divergence in the function of the SC in regulation of meiosis-specific chromosomal behavior. Since the antibody against medaka SYCP3 is cross-reactive to other fishes, it should be generally useful for a meiosis-specific marker in fish germ cells.  相似文献   

17.
DNA methylation is a prevalent epigenetic modification in vertebrates, and it has been shown to be involved the regulation of gene expression and embryo development. However, it remains unclear how DNA methylation regulates sexual development, especially in species without sex chromosomes. To determine this, we utilized zebrafish to investigate DNA methylation reprogramming during juvenile germ cell development and adult female-to-male sex transition.We reveal that primordial germ cells(PGCs) undergo significant DNA methylation reprogramming during germ cell development, and the methylome of PGCs is reset to an oocyte/ovary-like pattern at 9 days post fertilization(9 dpf). When DNA methyltransferase(DNMT) activity in juveniles was blocked after 9 dpf, the zebrafish developed into females. We also show that Tet3 is involved in PGC development. Notably, we find that DNA methylome reprogramming during adult zebrafish sex transition is similar to the reprogramming during the sex differentiation from 9 dpf PGCs to sperm. Furthermore, inhibiting DNMT activity can prevent the female-to-male sex transition, suggesting that methylation reprogramming is required for zebrafish sex transition. In summary, DNA methylation plays important roles in zebrafish germ cell development and sexual plasticity.  相似文献   

18.
The origin of new morphological structures requires the establishment of new genetic regulatory circuits to control their development, from initial specification to terminal differentiation. The upstream regulatory genes are usually the first to be identified, while the mechanisms that translate novel regulatory information into phenotypic diversity often remain obscure. In particular, elaborate sex-specific structures that have evolved in many animal lineages are inevitably controlled by sex-determining genes, but the genetic basis of sexually dimorphic cell differentiation is rarely understood. In this report, we examine the role of dachshund (dac), a gene with a deeply conserved function in sensory organ and appendage development, in the sex comb, a recently evolved male-specific structure found in some Drosophila species. We show that dac acts during metamorphosis to restrict sex comb development to the appropriate leg region. Localized repression of dac by the sex determination pathway is necessary for male-specific morphogenesis of sex comb bristles. This pupal function of dac is separate from its earlier role in leg patterning, and Dac at this stage is not dependent on the pupal expression of Distalless (Dll), the main regulator of dac during the larval period. Dll acts in the epithelial cells surrounding the sex comb during pupal development to promote sex comb rotation, a complex cellular process driven by coordinated cell rearrangement. Our results show that genes with well-conserved developmental functions can be re-used at later stages in development to regulate more recently evolved traits. This mode of gene co-option may be an important driver of evolutionary innovations.  相似文献   

19.
20.
Glycans are known to play important roles in vertebrate development; however, it is difficult to analyze in mammals because it takes place in utero. Therefore, we used medaka (Oryzias latipes) to clarify the roles of glycans during vertebrate development. β-1,4-Galactosyltransferase is one of the key enzymes in the biosynthesis of the lactosamine structures that are commonly found on glycoproteins and glycolipids. Here, we show the essential role of β4GalT2 during medaka development. Depletion of β4GalT2 by morpholino antisense oligonucleotide injection resulted in significant morphological defects, such as shortening of the anterior-posterior axis, cyclopia, impaired somite segmentation, and head hypoplasia. In situ hybridization analyses revealed that the loss of β4GalT2 led to defective anterior-posterior axis elongation during gastrulation without affecting organizer formation. Furthermore, a cell tracing experiment demonstrated that β4GalT2 knockdown mainly affects mediolateral cell intercalation, which contributes to anterior-posterior axis elongation. A cell transplantation experiment indicated that glycans are produced by β4GalT2 cell-autonomously during gastrulation. β4GalT2 depletion also led to enhanced apoptosis; however, this does not account for the phenotypic abnormalities, as blockade of apoptosis failed to compensate for the β4GalT2 depletion. Our data suggest that β4GalT2 activity is cell-autonomously required in cells undergoing mediolateral cell intercalation, which drives extension movements during medaka gastrulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号