首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ammonium sulfate (5 mM) had no effect on nitrate reductase activity during a 3 hr dark incubation, but the enzyme was increased 2.5-fold during a subsequent 24 hr incubation of the maize leaves in light. The enzyme activity induced by ammonium ion declined at a slower rate under non-inducing conditions than that induced by nitrate. The decline in ammonium stimulated enzyme activity in the dark was also slower than that with nitrate. Further. cycloheximide accelerated the dark inactivation of the ammonium-enzyme while it had no effect on the nitrate-enzyme. The experiments demonstrate that increase in nitrate reductase activity by ammonium ion is different from the action of nitrate action.  相似文献   

2.
Of the different hormones tested, cytokinins stimulated nitrate-induced nitrate reductase (NR) activity in the dark. The optimal stimulation was obtained at 16 hr and this was sensitive to tungstate, 6-methylpurine and cycloheximide. The cytokinin stimulation of NR activity was further enhanced by brief irradiation with red light, but this effect was not noticed when leaves were exposed to far-red light. Both kinetin and red light, when given together, or given with a darkness interruption, stimulated the NR activity more than with either of them alone.  相似文献   

3.
    
Preincubation of nitrate reductase (NR) extracted from wheat shoot tips with NADH in vitro, activated and stabilized activity at both O° and 25°. However, preincubation with potassium ferricyanide inactivated the NR in vitro. NADH also stabilized the NR activity in extracts from maize shoot tips. It was observed that NR from both wheat and maize was active at low temperatures.  相似文献   

4.
Preincubation of maize leaves crude extracts with NADH resulted in a progressive accumulation of nitrite which mimicked a rapid and lineal activation of nitrate reductase. Nevertheless, in partially purified preparations it was found that preincubation at pH 8.8 with NADH promoted a gradual inactivation of nitrate reductase. At pH 7.5, the enzyme was not inactivated by the presence of NADH alone, but, with the simultaneous presence of a low concentration of cyanide, a fast inactivation took place. The NADH-cyanide-inactivated nitrate reductase remained inactive after removing the excess of NADH and cyanide by filtration through Sephadex G-25. However, it could be readily reactivated by incubation with ferricyanide or by a short exposure to light in the presence of FAD. Prolonged irradiation caused a progressive inactivation of the photoreactivated enzyme.  相似文献   

5.
The initial activity of wheat leaf nitrate reductase was depressed on inclusion of the following thiol compounds; dithiothreitol, dithioerythreitol or mercaptoethanol, but not cysteine and glutathione. This thiol effect simply resulted from an interference with the chemical determination of nitrite. Preincubation of the enzyme with NAD+ and these thiols enhanced the inhibition of nitrate reductase activity. This effect was mediated by NADH production by the thiol reduction of NAD+. The inactivation by NAD+ in the presence of thiol compounds which was enhanced by cyanide ions could be reversed by ferricyanide, as has been observed previously for NADH-mediated inactivation of nitrate reductase.  相似文献   

6.
In fresh leaves, the inactivation of nitrate reductase was rapid at high temperatures as compared to low temperatures. In leaves subjected to freeze-thaw treatment, the loss of enzyme activity was extremely rapid particularly at high temperatures. Pre-incubation with NADH not only protected the enzyme against inactivation, but also stimulated its activity. In dialysed extracts of rice leaves, NADH alone offered some protection while nitrate alone did not protect the enzyme from inactivation. Addition of both NADH and nitrate during pre-incubation enhanced the enzyme activity considerably. It is suggested that stimulation of nitrate reduction by NADH and nitrate may be of physiological significance to the plant, in the sense that in the presence of sufficient supplies of reluctant and nitrate, the process of nitrate assimilation would be accelerated.  相似文献   

7.
Thermal stability and pH optima of NADH-nitrate reductase-associated cytochrome c reductase and FMNH2-nitrate reductase from wild type, cv Steptoe or Winer, and mutants nar 1d, nar 1g, nar 1h, Xno 18 and Xno 19 were compared to determine if structural differences in the nitrate reductase protein could be detected. Also, the nitrate reductase-associated cytochrome c reductase from nar 1d was purified and compared with the wild type by peptide mapping. The pH optimum for FMNH2-nitrate reductase from Steptoe and nar 1h, and for NADH-cytochrome c reductase from Steptoe, nar 1d, nar 1g and nar 2a was 7.5. Thermal stabilities of the nitrate reductase-associated activities (FMNH2-nitrate reductase or NADH-cytochrome c reductase) from nar mutants were less than the Steptoe wild type, while Xno mutants were equal to the Winer wild type. Cleveland peptide maps of nar 1d NADH-cytochrome c reductase and Steptoe nitrate reductase were identicalwhen digested with endoprotease lys-C but were distinctly different in one peptide when digested with Staphylococcus aureus endoprotease V8. These results provide evidence that nar 1 gene codes for the nitrate reductase polypeptide.  相似文献   

8.
Barley seedling nitrate reductase was stabilized in vitro without the use of extraneous protein by optimizing the buffer components. The extraction buffer (NRT 8.5) consists of 0.25 M Tris-HCl, pH 8.5, 3 mM DTT, 5 μM FAD, 1 μ M sodium molybdate and 1 mM EDTA. This buffer stabilizes the extracted nitrate reductase at O° and 30°, whereas the addition of extraneous protein to standard extraction buffers stabilizes the enzyme only at 0°.  相似文献   

9.
Pre-incubation of nitrate reductase from Sorghum seedlings with NADH increased enzyme activity by 25%. Ferricyanide had no effect. NADH protected the enzyme from inactivation during storage. Malonate inhibited in vivo nitrate reduction in Sorghum leaves by 95%. The inhibitory effect of malonate was reversed by fumarate. Sodium fluoride in the presence of phosphate also inhibited in vivo nitrate reduction by 60%. It is suggested that NADH generated via the citric acid cycle is utilized for nitrate reduction in Sorghum seedlings.  相似文献   

10.
    
The NADH: nitrate reductase from durum wheat leaves was inactivated by cyanide and its activity restored by thiosulphate and beef kidney rhodanese. Rhodanese and thiosulphate, added to NADH-nitrate reductase before cyanide treatment protected NADH-nitrate reductase activity. No oxidizing agent was required for the protection or restoration of cyanide treated NADH-nitrate reductase.  相似文献   

11.
Nitrate reductase was purified from 90-hr-old, nitrate-treated barley shoots by the same four-step procedure under four sets of conditions (A, B, C, D)  相似文献   

12.
    
The periplasmic nitrate reductase of Rhodobacter sphaeroides f. sp. denitrificans is a heterodimer responsible for the first step of reduction in the denitrification process by the conversion of nitrate to nitrite. It consists of a 91 kDa molybdenum‐containing catalytic subunit (NapA) and a 17 kDa dihaem cytochrome c (NapB). Crystals of the NapA–NapB complex were obtained by the vapour‐diffusion method using ammonium sulfate as precipitant. They belong to the P6122 space group, with unit‐cell parameters a = b = 151.9, c = 255.8 Å, and contain a single complex in the asymmetric unit. A complete native data set was collected at a synchrotron source to 3.1 Å resolution.  相似文献   

13.
测定了生长在Al2(SO4)100μmol/L氮素营养液中的两个玉米品种(SC704和VA35的根系和叶片)的NADH-硝酸还原酶(EC1.6.6.)和NAD(P)H-硝酸还原酶(EC1.6.6.2)活性。结果表明铝的存在阻碍了玉米根系和叶片的生长、降低了营养液的pH值,降低了叶片的NADH-及NAD(P)H-硝酸还原酶活性(酶活性降低的程度SC704低于VA35),增加了根系的NADH-和NAD(P)H-硝酸还原酶活性(VA35根系的比活性除外)。铝胁迫下根系的NADH-和NAD(P)H-硝酸还原酶活性的增加SC704大于VA35。耐铝品种SC704的高NR活性以及在铝胁迫下能维持更高的NR活性的特点说明硝酸还原酶与植物组织的Al解毒机制有关。同时,在铝胁迫下的硝酸盐代谢中NAD(P)H-硝酸还原酶具有更重要的作用。  相似文献   

14.
The greening of callus was achieved by modulating the medium's growth regulator concentrations under continuous light. Canavalia lineata (L.) DC. calluses formed chlorophyll when they were exposed to continuous light in the presence of benzylaminopurine and indole-3-acetic acid. Canavanine and canaline were detected in the green callus. But only canaline was detected in the white callus grown in the dark. Feedings of canaline to suspension cultures showed that the green suspended cells were capable of de novo biosynthesis of canavanine, but the white suspended cells were not. Exogeneously supplied canavanine was used to produce canaline and homoserine by the white suspended cells. Arginase activity was induced by the addition of arginine or canavanine to the medium, and canaline reductase activity was induced by the addition of canaline but not with ornithine in the white suspended cells.Abbreviations BA benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - OPA o-phthaldialdehyde - PC Phillips & Collins (1979) medium  相似文献   

15.
  总被引:1,自引:0,他引:1  
The effects of red and far-red light on the enhancement of in vitro nitrate reductase activity and on nitrate accumulation in etiolated excised maize leaves were examined. Illumination for 5 min with red light followed by a 4-h dark period caused a marked increase in nitrate reductase activity, whereas a 5-min illumination with far-red light had no effect on the enzyme activity. The effect of red light was completely reversed by a subsequent illumination with the same period of far-red light. Continuous far-red light also enhanced nitrate reductase activity. Both photoreversibility by red and far-red light and the operation of high intensity reaction under continuous far-red light indicated that the induction of nitrate reductase was mediated by phytochrome. Though nitrate accumulation was slightly enhanced by red and continuous far-red light treatments by 17% and 26% respectively, this is unlikely to account for the entire increase of nitrate reductase activity. The far-red light treatments given in water, to leaves preincubated in nitrate, enhanced nitrate reductase activity considerably over the dark control. The presence of a lag phase and inhibition of increase in enzyme activity under continuous far-red light-by tungstate and inhibitors of RNA synthesis and protein synthesis-rules out the possibility of activation of nitrate reductase and suggests de novo synthesis of the enzyme affected by phytochrome.  相似文献   

16.
    
Maize aldose reductase (AR) is a member of the aldo‐keto reductase superfamily. In contrast to human AR, maize AR seems to prefer the conversion of sorbitol into glucose. The apoenzyme was crystallized in space group P212121, with unit‐cell parameters a = 47.2, b = 54.5, c = 100.6 Å and one molecule in the asymmetric unit. Synchrotron X‐ray diffraction data were collected and a final resolution limit of 2.0 Å was obtained after data reduction. Phasing was carried out by an automated molecular‐replacement procedure and structural refinement is currently in progress. The refined structure is expected to shed light on the functional/enzymatic mechanism and the unusual activities of maize AR.  相似文献   

17.
The effect of alkyl-amines and -guanidines on the absorption of rubidium by the excised roots of the corn plant was tested. Inhibition of Rb+ absorption was observed with both amines and guanidines, where guanidines were more effective. The effect of alkylamines on Rb+ transport depends on their molecular structure.  相似文献   

18.
The patterns of incorporation of d-[G-14C]shikimate and variously labelled 14C-4-(2′-carboxy-phenyl)-4-oxobutyrate into the naphthoquinone nucleus of phylloquinone by maize shoots have been investigated. The results show that (a) the alicyclic ring and C-7 of shikimate give rise to Ring A and either C-1 or C-4, and (b) the phenyl ring, 2′-carboxy and C-4, and C-2 and -3 of 4-(2′-carboxyphenyl)-4-oxobutyrate give rise to Ring A, C-1 and -4 and C-2 and -3. Radioactivity from α-[1-14C]naphthol, 1,4-[1,4-14C]naphthoquinone and [Me-14C]menadione is not incorporated into phylloquinone to any significant extent.  相似文献   

19.
N-Carbamylputrescine (NCP) amidohydrolase was purified ca 70-fold from maize shoots. The enzyme was present in the cytosol and the optimal pH w  相似文献   

20.
The soluble sugars were determined in different parts of maize seedlings (seeds, roots and shoots), 0, 2, 4 and 6 days after sowing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号