首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
6.
Nuclear DNA helicase II (NDH II) is the bovine homolog of human RNA helicase A. The aim of this study was to compare NDH II localization between somatic cells (bovine embryonal fibroblasts) and female germ cells (oocytes), with the main focus on the dynamic changes in the redistribution of NDH II during the growth phase of the bovine oocytes. The fine granular staining of NDH II was spread in the whole nucleoplasm of fibroblasts, excluding the reticulated nucleoli. In contrast, the large reticulated nucleoli of the growing oocytes isolated from early antral follicles exhibited strong positivity for NDH II together with the immunostaining signals of upstream binding factor (UBF) and RNA polymerase I subunit (PAF53), documenting the high synthetic activity of these nucleoli. At the time of termination of oocyte growth, NDH II was preferentially located at the nucleolar periphery together with proteins of fibrillar centres. In fully grown oocytes, NDH II was still present in the thin periphery shell around the compact nucleolar core. The semiquantitative RT-PCR revealed that the average signal of NDH II mRNA in fully grown oocytes was only at 40% level in comparison with growing oocytes. Western blot analysis further confirmed that a 140 kD NDH II protein was abundant in growing oocytes, while the signal was substantially weaker in fully grown oocytes. The significant decrease in NDH II gene expression and in NDH II mRNA translation correlates with a termination of the oocyte growth. Altogether, the results demonstrate that NDH II expression parallels the activity of ribosomal RNA biosynthesis in the bovine growing oocytes.  相似文献   

7.
Mouse and porcine fully grown oocytes at metaphase I(MI) were fused to one or more fully grown oocytes of the same species that contained an intact germinal vesicle (GV). In fused cells containing one GV, premature chromosome condensation (PCC) was observed. In fused cells containing more than one GV, germinal vesicle breakdown (GVBD) and PCC were delayed. Fusion of an MI fully grown oocyte with a growing oocyte resulted in rapid PCC, whereas, fusion of an MI fully grown oocyte with more than one growing oocyte resulted in neither PCC nor GVBD. Moreover, MI chromosomes formed a clump of chromatin. Results of these experiments suggest that the delay in GVBD in fusions of MI oocytes with multiple GV-intact oocytes was due to dilution of maturation promoting factor (MPF) by the cytoplasm of the GV-intact oocytes and that the cytoplasm of growing oocytes can inhibit MPF present in MI oocytes.  相似文献   

8.
Yang CR  Wei Y  Qi ST  Chen L  Zhang QH  Ma JY  Luo YB  Wang YP  Hou Y  Schatten H  Liu ZH  Sun QY 《PloS one》2012,7(6):e38807
The arrest of meiotic prophase in mammalian oocytes within fully grown follicles is dependent on cyclic adenosine monophosphate (cAMP) regulation. A large part of cAMP is produced by the Gs-linked G-protein-coupled receptor (GPR) pathway. In the present study, we examined whether GPR3 is involved in the maintenance of meiotic arrest in porcine oocytes. Expression and distribution of GPR3 were examined by western blot and immunofluorescence microscopy, respectively. The results showed that GPR3 was expressed at various stages during porcine oocyte maturation. At the germinal vesicle (GV) stage, GPR3 displayed a maximal expression level, and its expression remained stable from pro-metaphase I (MI) to metaphase II (MII). Immunofluorescence staining showed that GPR3 was mainly distributed at the nuclear envelope during the GV stage and localized to the plasma membrane at pro-MI, MI and MII stages. RNA interference (RNAi) was used to knock down the GPR3 expression within oocytes. Injection of small interfering double-stranded RNA (siRNA) targeting GPR3 stimulated meiotic resumption of oocytes. On the other hand, overexpression of GPR3 inhibited meiotic maturation of porcine oocytes, which was caused by increase of cGMP and cAMP levels and inhibition of cyclin B accumulation. Furthermore, incubation of porcine oocytes with the GPR3 ligand sphingosylphosphorylcholine (SPC) inhibited oocyte maturation. We propose that GPR3 is required for maintenance of meiotic arrest in porcine oocytes through pathways involved in the regulation of cAMP and cGMP.  相似文献   

9.
Fulka J  Moor RM  Loi P  Fulka J 《Theriogenology》2003,59(8):1879-1885
Germinal vesicles (GVs) in immature mammalian oocytes contain prominent nucleoli whose role in the process of oocyte maturation is not fully understood. Here we report that the microsurgical removal of nucleoli from immature fully grown porcine oocytes permits germinal vesicle breakdown and chromosome condensation and the enucleolated oocytes mature up to the second metaphase. Interestingly, the enucleolation of growing oocytes which, although unable to mature, resulted in germinal vesicle breakdown and the formation of a cluster of condensed chromatin. These results indicate that the nucleolus in fully grown oocytes is dispensable at least for nuclear maturation. On the other hand, the results obtained in growing oocytes suggest the role of the nucleolus in the cell cycle regulation.  相似文献   

10.
11.
The synthesis and intracellular distribution of actin were studied in isolated dictyate and metaphase II mouse oocytes by (1) sodium dodecyl sulfate-polyacrylamide gel electrophoresis of newly synthetized oocyte protein and (2) cytochemical F-actin labeling by fluorescent phalloidin. Unpermeabilized, fully grown oocytes bound phalloidin intensely at the level of the zona pellucida (ZP), such ZP-associated actin representing a significant portion of total actin found in these cells. In contrast, phalloidin binding to ZP was very low in growing oocytes and was undetectable in ovulated, metaphase II eggs. When ZP-associated actin of fully grown oocytes was removed by prolongedly exposing oocytes to α-chymotrypsin, the amount of newly synthesized actin displayed by cumulus-enclosed oocytes was reduced to a level comparable to that shown by oocytes isolated from granulosa cells. We demonstrate that ZP-associated actin belongs to granulosa cell processes that remain within the ZP as a consequence of oocyte isolation procedures. We conclude that actin synthesis of mouse oocytes is not regulated by granulosa cells.  相似文献   

12.
13.
In mammals, oocyte acquires a series of competencies sequentially during folliculogenesis that play critical roles at fertilization and early stages of embryonic development. In mouse, chromatin in germinal vesicle (GV) undergoes dynamic changes during oocyte growth and its progressive condensation has been related to the achievement of developmental potential. Cumulus cells are essential for the acquisition of meiotic competence and play a role in chromatin remodeling during oocyte growth. This study is aimed to characterize the chromatin configuration of growing and fully grown bovine oocytes, the status of communications between oocyte and cumulus cells and oocyte developmental potential. Following nuclear staining, we identified four discrete stages of GV, characterized by an increase of chromatin condensation. GV0 stage represented 82% of growing oocytes and it was absent in fully grown oocytes. GV1, GV2, and GV3 represented, respectively, 24, 31, and 45% of fully grown oocytes. Our data indicated a moderate but significant increase in oocyte diameter between GV0 and GV3 stage. By dye coupling assay the 98% of GV0 oocytes showed fully open communications while the number of oocytes with functionally closed communications with cumulus cells was significantly higher in GV3 group than GV1 and GV2. However, GV0 oocytes were unable to progress through metaphase II while GV2 and GV3 showed the highest developmental capability. We conclude that in bovine, the progressive chromatin condensation is related to the sequential achievement of meiotic and embryonic developmental competencies during oocyte growth and differentiation. Moreover, gap-junction-mediated communications between oocyte and cumulus cells could be implicated in modulating the chromatin remodeling process.  相似文献   

14.
15.
16.
17.
Recent research has shown that the maternal nucleolus is essential for embryonic development. The morphology of the nucleolus in growing oocytes differs from that in full‐grown oocytes. We determined the ability of nucleoli from growing oocytes to substitute for nucleoli of full‐grown oocytes in terms of supporting embryonic development in this study. Growing (around 100 µm in diameter) and full‐grown porcine oocytes (120 µm) were collected from small (0.6–1.0 mm) and large antral follicles (4–5 mm), respectively. The nucleolus was aspirated from full‐grown oocytes by micromanipulation, and the resulting enucleolated oocytes were matured to metaphase II; the nucleoli originating from full‐grown and growing oocytes were then injected into the oocytes. The Chromatin of growing oocytes was aspirated with the nucleolus during the enucleolation process. Growing oocytes were thus treated with actinomycin D to release the chromatin from their nucleoli, and the nucleoli were collected and transferred to the enucleolated and matured full‐grown oocytes. After activation by electro‐stimulation, nucleoli were formed in pronuclei of sham‐operated oocytes. Enucleolated oocytes that had been injected with nucleoli from either full‐grown or growing, however, did not form any nucleoli in the pronuclei. No enucleolated oocytes developed to blastocysts, whereas enucleolated oocytes injected with nucleoli from full‐grown oocytes (15%) or growing oocytes (18%) developed to blastocysts. These results indicate that the nucleoli from growing oocytes can substitute for nucleoli from full‐grown oocytes during early embryonic development. Mol. Reprod. Dev. 77: 167–173, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号