共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Altan Ozkan 《Biofouling》2013,29(4):469-482
This paper reports the cell–substratum interactions of planktonic (Chlorella vulgaris) and benthic (Botryococcus sudeticus) freshwater green algae with hydrophilic (glass) and hydrophobic (indium tin oxide) substrata to determine the critical parameters controlling the adhesion of algal cells to surfaces. The surface properties of the algae and substrata were quantified by measuring contact angle, electrophoretic mobility, and streaming potential. Using these data, the cell–substratum interactions were modeled using thermodynamic, DLVO, and XDLVO approaches. Finally, the rate of attachment and the strength of adhesion of the algal cells were quantified using a parallel-plate flow chamber. The results indicated that (1) acid–base interactions played a critical role in the adhesion of algae, (2) the hydrophobic alga attached at a higher density and with a higher strength of adhesion on both substrata, and (3) the XDLVO model was the most accurate in predicting the density of cells and their strength of adhesion. These results can be used to select substrata to promote/inhibit the adhesion of algal cells to surfaces. 相似文献
3.
《The Journal of cell biology》1983,97(5):1500-1506
The surface treatment of polystyrene, which is required to make polystyrene suitable for cell adhesion and spreading, was investigated. Examination of surfaces treated with sulfuric acid or various oxidizing agents using (a) x-ray photoelectron and attenuated total reflection spectroscopy and (b) measurement of surface carboxyl-, hydroxyl-, and sulfur-containing groups by various radiochemical methods showed that sulfuric acid produces an insignificant number of sulfonic acid groups on polystyrene. This technique together with various oxidation techniques that render surfaces suitable for cell culture generated high surface densities of hydroxyl groups. The importance of surface hydroxyl groups for the adhesion of baby hamster kidney cells or leukocytes was demonstrated by the inhibition of adhesion when these groups were blocked: blocking of carboxyl groups did not inhibit adhesion and may raise the adhesion of a surface. These results applied to cell adhesion in the presence and absence of serum. The relative unimportance of fibronectin for the adhesion and spreading of baby hamster kidney cells to hydroxyl-rich surfaces was concluded when cells spread on such surfaces after protein synthesis was inhibited with cycloheximide, fibronectin was removed by trypsinization, and trypsin activity was stopped with leupeptin. 相似文献
4.
5.
Summary In the present report we have investigated the role that the physical properties of substrata play in modulating the effects
which components of extracellular matrix (ECM) exert on adhesion, spreading, and growth of retinal pigmented epithelial cells.
By simple modifications of conditions for protein adsorption on glass we obtained a set of substrata all coated with proteins
of ECM (protein carpets) but with different physical properties. Using these protein carpets we have shown that their stability
(desorption rate) in tissue culture conditions varies according to the technique with which they were prepared. Both semiremovable
and immobilized carpets are stable, whereas removable protein carpets desorb readily. Therefore, the protein concentration
or composition or both may change with time in tissue culture depending on the technique used to prepare the carpet. In addition,
efficacy of cell attachment to given protein may vary depending on whether a technique used to prepare the protein carpet
involves denaturation of the protein. Adherent cells quickly remove (clear) weakly adsorbed protein carpets and it seems that
the carpet removal is a mechanical process. During the carpet removal cells are rounded, which indicates that a spread cell
phenotype normally associated with stress fibers and focal contacts occurs when the substratum is rigid enough to sustain
cell traction. In addition, substrata lacking the rigidity to support the spread phenotype do not support cell proliferation
either. 相似文献
6.
7.
Finaz C Hammami-Hamza S 《Biology of the cell / under the auspices of the European Cell Biology Organization》2000,92(3-4):235-244
The initiation and propagation of a Ca2+ signal through the egg seems to be the pivotal event in triggering of meiosis resumption. Over the past decade evidence has accumulated suggesting that sperm contact is essential for this phenomenon to occur in most physiological groups. Given their ability to transduce signals, adhesive proteins which are involved in various binding mechanisms such as cell migration, lymphocyte activation, phagocytosis and virus fusion may play a similar role in fertilization. They have been the subject of serious investigation in non-human mammals and some emerging data indicate that they are active in humans as well. Our goal is to review the presence of such molecules on human gametes and their relevant physiological role, i.e., integrins and their ligands, selectins, IgG Fc receptors and leucocyte differentiation markers. We will discuss how they might trigger egg activation through signaling pathways in light of their identified functions in other adhesion systems. The putative participation of specific human sperm proteins will also be evaluated. 相似文献
8.
Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy 总被引:20,自引:27,他引:20
下载免费PDF全文

《The Journal of cell biology》1975,66(1):198-200
Cells of many kinds adhere firmly to glass or plastic surfaces which have been pretreated with polylysine. The attachment takes place as soon as the cells make contact with the surfaces, and the flattening of the cells against the surfaces is quite rapid. Cells which do not normally adhere to solid surfaces, such as sea urchin eggs, attach as well as cells which normally do so, such as amebas or mammalian cells in culture. The adhesion is interpreted simply as the interaction between the polyanionic cell surfaces and the polycationic layer of adsorbed polylysine. The attachment of cells to the polylysine-treated surfaces can be exploited for a variety of experimental manipulations. In the preparation of samples for scanning or transmission electron microscopy, the living material may first be attached to a polylysine- coated plate or grid, subjected to some experimental treatment (fertilization of an egg, for example), then transferred rapidly to fixative and further passed through processing for observation; each step involves only the transfer of the plate or grid from one container to the next. The cells are not detached. The adhesion of the cell may be so firm that the body of the cell may be sheared away, leaving attached a patch of cell surface, face up, for observation of its inner aspect. For example, one may observe secretory vesicles on the inner face of the surface (3) or may study the association of filaments with the inner surface (Fig. 1). Subcellular structures may attach to the polylysine-coated surfaces. So far, we have found this to be the case for nuclei isolated from sea urchin embryos and for the microtubules of flagella, which are well displayed after the membrane has been disrupted by Triton X-100 (Fig. 2). 相似文献
9.
The role of electro-osmosis in the electric-field-induced movement of charged macromolecules on the surfaces of cells. 总被引:14,自引:4,他引:14
下载免费PDF全文

The surfaces of most cells bear a net negative charge. The imposition of an electric field parallel to the surface of the cell should produce, therefore, an electro-osmotic flow of fluid towards the cathodal side of the cell. Our analysis of a simple model of the cell surface indicates that a negatively charged mobile macromolecule will be swept by this electro-osmotic flow of fluid to the cathodal side of the cell if its zeta potential, zeta 1, is less negative than the zeta potential of the cell surface, zeta 2. Conversely, if zeta 2 is less negative than zeta 1, the negatively charged macromolecule will accumulate at the anodal side of the cell. Our experimental results demonstrate that concanavalin A (Con A) receptors on embryonic muscle cells normally accumulate at the cathodal side of the cell, but that they can be induced to accumulate at the anodal side of the cell by preincubating the myotubes either with neuraminidase, a treatment that removes negatively charged sialic acid residues, or with the lipid diI, a treatment that adds positive charges to the surface of the cell. Addition of the negatively charged lipid monosialoganglioside (GM1), on the other hand, enhances the accumulation of Con A receptors at the cathodal side of the cell. 相似文献
10.
We have devised a method of making a flat oil/water interface which remains flat on inversion. Cell adhesion to the interface can be observed microscopically. Glutaraldehyde-fixed human red blood cells adhere to the interface between physiological saline and hexadecane containing surface-active behenic acid at pH values below about 7-5. At high pH values, cells are prevented from adhering due to dissociation of the carboxyl groups of behenic acid oriented in the interface. The negative red cells are driven away electrostatically. Adherent and non-adherent cells remain on the aqueous side of the interface and do not appreciably deform it when adherent. Cells are electrostatically attracted to a similar interface containing positively charged octadecyltrimethylammonium ions. Cells also adhere to an interface containing octadecanol, which carries no charge. Underlying both electrostatic repulsion and attraction between red cells and oil/water interfaces is an attractive force which may be of electrodynamic (van der Waals) origin. 相似文献
11.
Faille C Jullien C Fontaine F Bellon-Fontaine MN Slomianny C Benezech T 《Canadian journal of microbiology》2002,48(8):728-738
The ability of bacterial spores and vegetative cells to adhere to inert surfaces was investigated by means of the number of adherent spores (Bacillus cereus and Bacillus subtilis spores) and Escherichia coli cells and their resistance to cleaning or rinsing procedures (adhesion strength). Six materials (glass, stainless steel, polyethylene high density (PEHD), polyamide-6, polyvinyl chloride, and Teflon) were tested. Slight differences in the number of adherent spores (less than 1 log unit) were observed between materials, but a higher number of adherent E. coli cells was found on the hydrophobic materials PEHD and Teflon. Conversely, the resistance of both B. cereus and B. subtilis spores to a cleaning procedure was significantly affected by the material. Hydrophobic materials were harder to clean. The topography parameter derived from the Abbott-Firestone curve, RVK, and, to a lesser extent, the widely used roughness parameters RA (average roughness) and Rz (maximal roughness), were related to the number of adherent cells. Lastly, the soiling level as well as the adhesion strength were shown to depend largely on the microorganism. The number of adhering B. cereus hydrophobic spores and their resistance to a cleaning procedure were found to be 10 times greater than those of the B. subtilis hydrophilic spores. Escherichia coli was loosely bound to all the materials tested, even after 24 h biofilm formation. 相似文献
12.
Podestà A Indrieri M Brogioli D Manning GS Milani P Guerra R Finzi L Dunlap D 《Biophysical journal》2005,89(4):2558-2563
Many proteins "bind" DNA through positively charged amino acids on their surfaces. However, to overcome significant energetic and topological obstacles, proteins that bend or package DNA might also modulate the stiffness that is generated by repulsions between phosphates within DNA. Much previous work describes how ions change the flexibility of DNA in solution, but when considering macromolecules such as chromatin in which the DNA contacts the nucleosome core each turn of the double helix, it may be more appropriate to assess the flexibility of DNA on charged surfaces. Mica coated with positively charged molecules is a convenient substrate upon which the flexibility of DNA may be directly measured with a scanning force microscope. In the experiments described below, the flexibility of DNA increased as much as fivefold depending on the concentration and type of polyamine used to coat mica. Using theory that relates charge neutralization to flexibility, we predict that phosphate repulsions were attenuated by approximately 50% in the most flexible DNA observed. This simple method is an important tool for investigating the physiochemical causes and molecular biological effects of DNA flexibility, which affects DNA biochemistry ranging from chromatin stability to viral encapsulation. 相似文献
13.
Summary Firm adhesion of fungal plant pathogens to their hosts is critical at several stages in the host-parasite interaction. Spores of many fungal species are capable of rapid, non-specific attachment to various surfaces. This early adhesion, which often occurs well before germ tube emergence, prevents spores from being blown or washed from the host surface before infection can take place. Adhesion is critical for proper sensing of topographic signals involved in thigmotropic responses and for differentiation and function of appressoria. Four fungal pathogens which exhibit a variety of adhesion mechanisms have been selected for discussion.Abbreviations EMC extracellular matrix - FSTEM freeze-substitution transmission electron microscopy - Con A concanavalin A - CryoSEM cryo scanning electron microscopy - MTM macroconidial tip mucilage - STM spore tip mucilage 相似文献
14.
Woodruff MA Jones P Farrar D Grant DM Scotchford CA 《Journal of molecular histology》2007,38(5):491-499
Any biomaterial implanted within the human body is influenced by the interactions that take place between its surface and
the surrounding biological milieu. These interactions are known to influence the tissue interface dynamic, and thus act to
emphasize the need to study cell-surface interactions as part of any biomaterial design process. The work described here investigates
the relationship between human osteoblast attachment, spreading and focal contact formation on selected surfaces using immunostaining
and digital image processing for vinculin, a key focal adhesion component. Our observations show that a relationship exists
between levels of cell attachment, the degree of vinculin-associated plaque formation and biocompatibility. It also suggests
that cell adhesion is not indicative of how supportive a substrate is to cell spreading, and that cell spreading does not
correlate with focal contact formation. 相似文献
15.
In order to exploit the ability of anaerobic bacteria to degrade certain contaminants for bioremediation of polluted subsurface environments, we need to understand the mechanisms by which such bacteria partition between aqueous and solid phases, as well as the environmental conditions that influence partitioning. We studied four strictly anaerobic bacteria, Desulfomonile tiedjei, Syntrophomonas wolfei, Syntrophobacter wolinii, and Desulfovibrio sp. strain G11, which theoretically together can constitute a tetrachloroethylene- and trichloroethylene-dechlorinating consortium. Adhesion of these organisms was evaluated by microscopic determination of the numbers of cells that attached to glass coverslips exposed to cell suspensions under anaerobic conditions. We studied the effects of the growth phase of the organisms on adhesion, as well as the influence of electrostatic and hydrophobic properties of the substratum. Results indicate that S. wolfei adheres in considerably higher numbers to glass surfaces than the other three organisms. Starvation greatly decreases adhesion of S. wolfei and Desulfovibrio sp. strain G11 but seems to have less of an effect on the adhesion of the other bacteria. The presence of Fe(3+) on the substratum, which would be electropositive, significantly increased the adhesion of S. wolfei, whereas the presence of silicon hydrophobic groups decreased the numbers of attached cells of all species. Measurements of transport of cells through hydrophobic-interaction and electrostatic-interaction columns indicated that all four species had negatively charged cell surfaces and that D. tiedjei and Desulfovibrio sp. strain G11 possessed some hydrophobic cell surface properties. These findings are an early step toward understanding the dynamic attachment of anaerobic bacteria in anoxic environments. 相似文献
16.
AIM: The main aim of this work was to study and compare the adhesion of water exposed Helicobacter pylori to six different substrata and correlate any changes in morphology, physiology, ability to form aggregates and cultivability when in the planktonic or in the sessile phase. METHODS AND RESULTS: The number of total cells adhered for different water exposure times and modifications in the cell shape were evaluated using epifluorescence and scanning electron microscopy, and physiology assessed using Syto9 and propidium iodide (PI) cellular uptake. All abiotic surfaces were rapidly colonized by H. pylori, and colonization appeared to reach a steady state after 96 h with levels ranging from 2.3 x 10(6) to 3.6 x 10(6) total cells cm(-2). Cell morphology was largely dependent on the support material, with spiral bacteria, associated with the infectious form of H. pylori, subsisting in a higher percentage on nonpolymeric substrata. Also, sessile bacteria were generally able to retain the spiral shape for longer when compared with planktonic bacteria, which became coccoid more quickly. The formation of large aggregates, which may act as a protection mechanism against the negative impact of the stressful external environmental conditions, was mostly observed on the surface of copper coupons. However, Syto9 and PI staining indicates that most of H. pylori attached to copper or SS304 have a compromised cell membrane after only 48 h. Cultivability methods were only able to detect the bacteria up to the 2 h exposure-time and at very low levels (up to 500 CFU cm(-2)). CONCLUSIONS: The fact that the pathogen is able to adhere, retain the spiral morphology for longer and form large aggregates when attached to different plumbing materials appeared to point to pipe materials in general, and copper plumbing in particular, as a possible reservoir of virulent H. pylori in water distribution systems. However, the Syto9/PI staining results and cultivability methods indicate that the attached H. pylori cells quickly enter in a nonviable physiological state. SIGNIFICANCE AND IMPACT OF THE STUDY: This represents the first study of H. pylori behaviour in water-exposed abiotic surfaces. It suggests that co-aggregation with the autochthonous heterotrophic consortia present in water is necessary for a longer survival of the pathogen in biofilms associated to drinking water systems. 相似文献
17.
The adhesion of micro-organisms to metal surfaces has been shown to be important in the corrosion process, but the cell surface structures participating in this adhesion have not previously been identified. Evidence is presented that a bacterial substance taking part in the initial adhesion of Pseudomonas fluorescens and Desulfovibrio desulfuricans (New Jersey) to mild steel is polysaccharide in nature. It is likely that this is present in the outer membrane of the bacterial cells as lipopolysaccharide. 相似文献
18.
The densities of adhesion of Staphylococcus epidermis, Staphylococcus aureus and Serratia marcescens to five types of plastics were studied in relation to interfacial free energies at the aqueous interfaces of both the bacteria and the plastics. The free energy of adhesion of bacteria to plastic in an aqueous medium is a linear function of partition of the bacteria between the solid surface and the liquid phase. These results show that the thermodynamics of the partitioning of a suspended particle between two immiscible liquid phases also apply to partitioning between a liquid and a solid phase. 相似文献
19.
Gregor Reid Lesley -Ann Hawthorn Rosemary Mandatori Roger L. Cook H. Steven Beg 《Microbial ecology》1988,16(3):241-251
The ability of bacteria to attach to surfaces has been recognized as an important phenomenon, particularly for pathogenic organisms that utilize this capacity to initiate disease. The present investigation was undertaken to determine whether indigenous urogenital bacteria, lactobacilli, colonized prosthetic devices in vivo and in vitro and attached to specific polymer surfaces in vitro. Polyethylene intrauterine devices (IUDs) in place for 2 years were removed from six women who were asymptomatic and free of signs of cervical or uterine infection. Lactobacilli were found attached to the IUDs, as determined by culture, and fluorescent antibody and acridine orange staining techniques. This demonstrated that bacterial biofilms consisting of indigenous bacteria can occur on prosthetic devices without inducing a symptomatic infection. In vitro studies were then undertaken with well-documented lactobacilli strainsL. acidophilus T-13,L. casei GR-1, GR-2, and RC-17, andL. fermentum A-60. These organisms were found to adhere to IUDs and urinary catheters within 24 hours. A quantitative assay was designed to examine the mechanisms of adhesion ofL. acidophilus T-13 to specific polymer surfaces that are commonly used as prosthetic devices. The lactobacilli adhered optimally to fluorinated ethylene propylene when 108 bacteria were incubated for 9 hours at 37°C in phosphate buffered saline, pH 7.1. Additional experiments verified that the lactobacilli adhered to polyethyleneterephthalate, polystyrene, and sulfonated polystyrene and to silkolatex catheter material. There was a linear relationship found between polymer hydrophobicity and bacterial adherence. These results demonstrate that lactobacilli bind to various surfaces in vivo and in vitro, and that the nature of the substratum can affect the colonization. 相似文献
20.
《The Journal of cell biology》1982,95(1):127-136
Cytostructural changes during fibroblast spreading and translocation and during the transition between the two states have been studied in living cells and in the same cells after fixation and immunofluorescent staining. In time-lapse sequences we observe that birefringent arcs, sometimes circles, concentric with the cell perimeter, form near the periphery of a spreading cell, or that arcs form near the leading edge of a locomoting cell. The arcs move toward the nucleus, where they disappear. In spreading cells, radial stress fibers extend from the region of the cell nucleus to the periphery. The arcs or circles and the stress fibers are visualized in the same cells after fixation and staining with fluorescein-conjugated antiactin antibodies. Stained images of spreading cells show the arcs and stress fibers in the same plane of focus. At points of intersection with arcs, stress fibers are bent toward the substrate on which the cell is moving. During a transitional stage between spreading and translocation the cytostructure undergoes reproducible changes. Arcs and circle cease to form. The radial stress fibers elongate, spiral around the nucleus, and move to the periphery as a band of filaments. We interpret the moving arcs as condensations of a microfilament network that move toward the nucleus as compression waves. As elements of the net are brought close together by the compression wave, contraction may occur and facilitate the condensations. 相似文献