首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the morphology and shape variation of the palatal organ and chewing pad of sucker fishes, family Catostomidae. The palatal organ is a muscularized structure that forms a large mass on the roof of the posterior part of the buccopharyngeal cavity in cypriniform fishes. It functions in coordination with the branchial arches to separate food items from inorganic debris during feeding. The palatal organ exhibits considerable variability in morphology among catostomids. It is shorter, narrower, and thinner in species of the subfamily Cycleptinae (e.g., Cycleptus elongatus) than in other catostomid subfamilies. The thickest and widest palatal organ is seen in species of the subfamily Ictiobinae (e.g., Ictiobus cyprinellus). The shape and size of the palatal organ generally varies between these extremes in species of subfamily Catostominae (e.g., Catostomus and Moxostoma species). Principal components analysis and analysis of variance has differentiated means of various palatal organ measurements for each monophyletic subfamily and tribe of Catostomidae with statistical significance. These results corroborate previously established typological classification of catostomids based on pharyngeal tooth count, pharyngeal tooth morphology, and diet. A keratinized chewing pad forms on the posterior surface of the palatal organ in catostomids or on a skeletal process in cyprinids and serves as an occlusion surface for pharyngeal teeth. The chewing pad is lunate in catostomids and generally ovoid in cyprinids. It is absent from the species of loaches (e.g., botiids, cobitids, and nemacheilids) and gyrinocheilids examined. A synonymy of terms used in the past to describe the palatal organ and chewing pad of Cypriniformes is provided. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

2.
Skeletal elements of the gill arches of adult cypriniform fishes vary widely in number, size, and shape and are important characters in morphologically based phylogenetic studies. Understanding the developmental basis for this variation is thus phylogenetically significant but also important in relation to the many developmental genetic and molecularly based studies of the early developing and hence experimentally tractable gill arches in the zebrafish, a cyprinid cypriniform. We describe the sequence of the chondrification and ossification of the pharyngeal arches and associated dermal bones from Catostomus commersonii (Catostomidae, Cypriniformes) and make selected comparisons to other similarly described pharyngeal arches. We noted shared spatial trends in arch development including the formation of ventral cartilages before dorsal and anterior cartilages before posterior. Qualitatively variable gill arch elements in Cypriniformes including pharyngobranchial 1, pharyngobranchial 4, and the sublingual are the last such elements to chondrify in C. commersonii. We show that the sublingual bone in C. commersonii has two cartilaginous precursors that fuse and ossify to form the single bone in adults. This indicates homology of the sublingual in catostomids to the two sublingual bones in the adults of cobitids and balitorids. Intriguing patterns of fusion and segmentation of the cartilages in the pharyngeal arches were discovered. These include the individuation of the basihyal and anterior copula through segmentation of a single cartilage rod, fusion of cartilaginous basibranchials 4 and 5, and fusion of hypobranchial 4 with ceratobranchial 4. Such “fluidity” in cartilage patterning may be widespread in fishes and requires further comparative developmental studies. J. Morphol., 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

3.
《Journal of morphology》2017,278(9):1220-1228
The pharyngeal skeleton is a key vertebrate anatomical system in debates on the origin of jaws and gnathostome (jawed vertebrate) feeding. Furthermore, it offers considerable potential as a source of phylogenetic data. Well‐preserved examples of pharyngeal skeletons from stem‐group gnathostomes remain poorly known. Here, we describe an articulated, nearly complete pharyngeal skeleton in an Early Devonian placoderm fish, Paraplesiobatis heinrichsi Broili, from Hunsrück Slate of Germany. Using synchrotron light tomography, we resolve and reconstruct the three‐dimensional gill arch architecture of Paraplesiobatis and compare it with other gnathostomes. The preserved pharyngeal skeleton comprises elements of the hyoid arch (probable ceratohyal) and a series of branchial arches. Limited resolution in the tomography scan causes some uncertainty in interpreting the exact number of arches preserved. However, at least four branchial arches are present. The final and penultimate arches are connected as in osteichthyans. A single median basihyal is present as in chondrichthyans. No dorsal (epibranchial or pharyngobranchial) elements are observed. The structure of the pharyngeal skeleton of Paraplesiobatis agrees well with Pseudopetalichthys from the same deposit, allowing an alternative interpretation of the latter taxon. The phylogenetic significance of Paraplesiobatis is considered. A median basihyal is likely an ancestral gnathostome character, probably with some connection to both the hyoid and the first branchial arch pair. Unpaired basibranchial bones may be independently derived in chondrichthyans and osteichthyans.  相似文献   

4.
The ventral gill arch skeleton was examined in some representatives of batoid fishes. The homology of the components was elucidated by comparing similarities and differences among the components of the ventral gill arches in chondrichthyans, and attempts were made to justify the homology by giving causal mechanisms of chondrogenesis associated with the ventral gill arch skeleton. The ceratohyal is present in some batoid fishes, and its functional replacement, the pseudohyal, seems incomplete in most groups of batoid fishes, except in stingrays. The medial fusion of the pseudohyal with successive ceratobranchials occurs to varying degrees among stingray groups. The ankylosis between the last two ceratobranchials occurs uniquely in stingrays, and it serves as part of the insertion of the last pair of coracobranchialis muscles. The basihyal is possibly independently lost in electric rays, the stingray genus Urotrygon (except U. daviesi) and pelagic myiiobatoid stingrays. The first hypobranchial is oriented anteriorly or anteromedially, and it varies in shape and size among batoid fishes. It is represented by rami projecting posterolaterally from the basihyal in sawfishes, guitarfishes and skates. It consists of a small piece of cartilage which extends anteromedially from the medial end of the first ccratobranchial in electric rays. It is a large cartilaginous plate in most of stingrays. It is absent in pelagic myliobatoid stingrays. The remaining hypobranchial cartilages also vary in shape and size among batoid fishes. Torpedo and possibly the Jurassic Belemnobalis and Spathobatis possess the generalized or typical chondrichthyan ventral gill arch structure in which the hypobranchials form a Σ-shaped pattern. In the electric ray Hypnos and narkinidid and narcinidid electric rays, the hypobranchial components are oriented longitudinally along the mid-portion of the ventral gill arches. They form a single cartilaginous plate in the narkinidid electric rays, Narcine and Diplobatis. In guitarfishes and skates, the second hypobranchial is unspecialized, and in skates, it does not have a direct contact with the second ceratobranchial. In both groups, the third and fourth hypobranchials are composed of a small cartilage which forms a passage for the afferent branches of the ventral aorta and serve as part of the insertion of the coracobranchialis muscle. In sawfishes and stingrays, the hypobranchials appear to be included in the medial plate. In sawfishes, the second and third components separately chondrify in adults, but the fourth component appears to be fused with the middle medial plate. In stingrays, a large medial plate appears to include the second through to the last hypobranchial and most of the basibranchial copulae. The medial plate probably develops independently in sawfishes and stingrays. Because the last basibranchial copula appears to be a composite of one to two hypobranchials and at least two basibranchial copulae, the medial plate may be formed by several developmental processes of chondrogenesis. More detailed comparative anatomical and developmental studies are needed to unveil morphogenesis and patternings of the ventral gill arch skeleton in batoid fishes.  相似文献   

5.
Embryonic, larval, and juvenile development of a Myanmarese cyprinid fish, Inlecypris auropurpureus, is described from laboratory-reared specimens. The eggs, measuring 0.9–1.0 mm in diameter, were demersal, almost spherical in shape, transparent and unpigmented, with a pale yellow yolk without oil globules. Hatching occurred 49–56 h after fertilization at 26.2°–27.3°C. The newly hatched larvae, measuring 2.9–3.1 mm in body length (BL) with 17 + 19–20 = 36–37 myomeres, had melanophores on the head and body. A cement organ on the forehead for adhering to objects during the yolk sac and early preflexion larval stages was distinctive. The yolk was completely absorbed at 3.6–4.0 mm BL. Notochord flexion was initiated at 5.1–5.6 mm BL and finished at 7.1 mm BL. Aggregate numbers of all fin rays were completed at 14 mm BL. Squamation was initiated midlaterally on the anterior trunk at 14 mm BL and completed at 27 mm BL. Although the eggs of I. auropurpureus resembled those of the closely related species Chela dadiburjori, Danio rerio, and Devario malabaricus, they differed from those of Danio rerio and Devario malabaricus in having a narrower perivitelline space. The larvae and juveniles of I. auropurpureus were also similar to those of C. dadiburjori, Danio rerio, and Devario malabaricus in general morphology, but they differed from the latter three species in having a series of dark blotches laterally on the body in the juvenile stage. Moreover, I. auropurpureus differed from C. dadiburjori in having more myomeres and a near-single row of melanophores on the body along the dorsal midline from the yolk-sac to early postflexion larval stages, from Danio rerio in having a cement organ on the forehead during the yolk-sac and early preflexion larvae, and a single melanophore on the lower eye margin in the early yolk-sac larvae, and from Devario malabaricus in having a single melanophore on the lower eye margin in the early yolk-sac larvae. The presence of a cement organ on the forehead indicates a close relationship among the genera Inlecypris, Chela, and Devario.  相似文献   

6.
7.
Development of the mandibular, hyoid and gill arches, which constitute the splanchnocranium, are described for Prochilodus argenteus, order Characiformes, one of the basal lineages of the Otophysi. Development was examined from just hatched larvae through juveniles using whole specimens cleared and counterstained for cartilage and bone as well as histological preparations. Observations are compared with the developmental trends reported for Cypriniformes, the basalmost clade of the Otophysi. Shortened developmental sequences for Prochilodus compared to the cypriniform Catostomus were discovered in the ontogeny of the ceratohyals, ceratobranchials 1–5, epibranchials 1–4 and the symplectic portion of the hyosymplectic. Prochilodus also differs from Catostomus in having the basihyal plus the anterior copula appearing at different stages of ontogeny rather than simultaneously. Contrary to previous assumptions, developmental information indicates that hypobranchial 4 as well as likely basibranchial 5 are present in Prochilodus. Various developmental patterns in Prochilodus considered basal for the Otophysi, the predominant component of the Ostariophysi, are likely conserved from patterns prevalent in basal groups in the Actinopterygii.  相似文献   

8.
We assess cranial neural-crest cell migration and contributions to the larval chondrocranium in the phylogenetically basal and morphologically generalized anuran Bombina orientalis (Bombinatoridae). Methods used include microdissection, scanning electron microscopy, and vital dye labeling, in conjunction with confocal and fluorescence microscopy. Cranial neural-crest cells begin migrating before neural-fold closure and soon form three primary streams. These streams contribute to all cranial cartilages except two medial components of the hyobranchial skeleton (basihyal and basibranchial cartilages), the posterior portion of the trabecular plate, and the otic capsule, the embryonic origin of which is unknown. Chondrogenic fate is regionalized within the cranial neural folds, with the anterior regions contributing to anterior cartilages and the posterior regions to posterior cartilages. A neural-crest contribution also was consistently observed in several cranial nerves and the connective tissue component of many cranial muscles. Notwithstanding minor differences among species in the initial configuration of migratory streams, cranial neural-crest migration and chondrogenic potential in metamorphosing anurans seem to be highly stereotyped and evolutionarily conservative. This includes a primary role for the neural crest in the evolutionary origin of the paired suprarostral and infrarostral cartilages, two prominent caenogenetic features of the rostral skull unique to anuran larvae. Our results provide a model of the ancestral pattern of embryonic head development in anuran amphibians. This model can serve as a basis for examining the ontogenetic mechanisms that underlie the diversity of cranial morphology and development displayed by living frogs, as well as the evolutionary consequences of this diversity. © 1996 Wiley-Liss, Inc.  相似文献   

9.
In this study, bioinformatics analysis, tissue distribution and developmental expression pattern of lipoprotein lipase (lpl) and hepatic lipase (lipc) in zebrafish Danio rerio are reported. In adult D. rerio, lpl was highly expressed in liver. This is remarkably different from the tissue expression pattern of LPL in mammals, which is not detected in the adult liver. The expression of lipc was liver specific, which is consistent with that in mammals. During embryogenesis, lpl mRNA was increased gradually in concentration from 0·5 hpf (hour post fertilization) to 6 dpf (days post fertilization), but lipc was not expressed at the early stage of the embryo until 3 dpf. In situ hybridization further displayed the expression pattern of lpl mainly restricted to the head region including cells surrounding the mouth opening, branchial arches, pectoral fin and lateral line neuromast, whereas lipc was mainly restricted to the liver and part of head regions including lens. This lays a foundation for further investigation of lpl or lipc function and evolution in fishes.  相似文献   

10.
Homologies of the branchial arch muscles in the cyprinid Zacco platypus are assessed based on their innervation. Muscles serving the first gill arch are innervated by branches of the glossopharyngeal (IX) nerve and those serving other arches by the vagal (X) nerve. Absence of the levator posterior is confirmed. Five pairs of muscles originating from the cranium and inserted onto the specialized 5th ceratobranchial, all unique to cyprinids, are innervated by the 4th branchial trunks of X, indicating that all pairs are derivatives of the sphincter oesophagi, involving reorganization from intrinsic to extrinsic elements. Homologies of some ventral branchial muscles are also discussed and the criteria for homology improved by clarifying the innervation pattern. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

11.
We provide a detailed account of the osteology of the miniature Asian freshwater cyprinid fish Danionella dracula. The skeleton of D. dracula shows a high degree of developmental truncation when compared to most other cyprinids, including its close relative the zebrafish Danio rerio. Sixty‐one bones, parts thereof or cartilages present in most other cyprinids are missing in D. dracula. This impressive organism‐wide case of progenesis renders it one of the most developmentally truncated bony fishes or even vertebrates. Danionella dracula lacks six of the eight unique synapomorphies that define the order Cypriniformes and has, thus, departed from the cypriniform Bauplan more dramatically than any other member of this group. This escape from one of the most successful Baupläne among bony fishes may have been facilitated by the organism‐wide progenesis encountered in D. dracula. By returning in its skeletal structure to the early developmental condition of other cypriniforms, D. dracula may have managed to overcome the evolutionary constraints associated with this Bauplan and opened up new evolutionary avenues that enabled it to evolve a number of striking morphological novelties, including its tooth‐like odontoid processes and a complex drumming apparatus. J. Morphol. 277:147–166, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
A study of nine cyprinid and six catostomid species focused on the early ontogeny of supraneurals and neural arches of the Wehcrian apparatus. These elements chondrify during the mesolarval stage, and there is strong temporal correlation with chondrification of the dorsal-fin pterygiophores. Supraneurals 2 and 3 form from separate chondrification centers that subsequently coalesce. In some cyprinids and catostomids, Sn 2 is at first bilaterally paired. This observation demonstrates that supraneurals are not always unpaired, and provides circumstantial evidence that the paired claustra are homologous to Sn l. Claustra in 14 of 15 species examined possessed at least a cartilage rudiment. No evidence was found to support the currently prevalent hypothesis that the claustra form from dissociated parts of the first neural arch.  相似文献   

13.
The striata complex, a group of spined loaches included in the genus Cobitis and characterized by a striped coloration pattern on the lateral midline, is distributed in rivers in northeastern Asia to western Japan. The complex comprises 2 continental species (Cobitis tetralineata and Cobitis lutheri) and 3 Japanese races of species rank (large race, middle race, and small race), the small race further comprising 6 local forms of subspecific rank (Tokai form, Biwa form, Yodo form, Sanyo form, San-in form, and Kyushu form). Previous karyological studies have revealed that the large race is an allotetraploid, the others being diploid. In this study, mitochondrial (mt) DNA analyses were conducted for 30 diploid populations of the Cobitis striata complex from Japan and Korea to examine: (1) their phylogenetic relationships and the position of the complex among the major lineages of Cobitis; and (2) the genetic relationships among the Japanese and Korean populations. The results, based on cytochrome b sequences (724 base pairs) analyzed with those of the main lineage of European and Japanese Cobitis, indicated that the striata complex should be considered as a monophyletic group, which evolved in northeastern Asia. Initially considered as a subspecies of Cobitis taenia, widely distributed from Europe to Asia, the striata complex does not have a sister-relationship with the former. Although the Korean species C. tetralineata was formerly believed to be closely related to the middle race in Japan, and a second continental species, C. lutheri, closely related to the Kyushu or San-in forms of the small race in Japan, the trees resulting from the present study revealed that the two Korean species were clustered with each other and separated from all Japanese races.  相似文献   

14.
Muscle development in the bamboo sole Heteromycteris japonicus was investigated, focusing primarily on the cranial muscles, using an improved whole mount immunohistochemical staining method with potassium hydroxide, hydrogen peroxide and trypsin. Larvae of H. japonicus had branchial levators, but not all of them were retained in adults, a condition also seen in the Japanese flounder Paralichthys olivaceus. In particular, larval branchial levators II and III disappeared during development, while I and IV remained to become the levator internus I and levator posterior, which were well‐defined muscles in adults. In place of the atrophied muscles, levatores externi and levator internus II developed and regulated the branchial arches. The results showed that the muscle composition in the dorsal branchial arches changed to the adult form before metamorphosis in H. japonicus, as seen in P. olivaceus, and this transformation may be common to all members of that group.  相似文献   

15.
The osteological development of elements forming the oral cavity was examined in early stage larvae of the grouper,Epinephelus coioides, from hatching to 242.5 hours after hatching. By the time of initial mouth opening, at 54 hours after hatching, the fundamental elements, composed of the trabecula, some components of the lower branchial and hyoid arches, the quadrate and symplectic-hyomandibular cartilages, maxilla and Meckel's cartilage, had appeared. No further elements were observed until 165 hours after initial mouth opening, except some components in the lower branchial arch and head region. The appearance of new elements and initial ossification of existing cartilage occurred thereafter, but all elements related to feeding either had not appeared or had not started ossifying until 188.5 hours after initial mouth opening. Based on the morphology and developmental modes of these elements, the feeding mode of grouper larvae was considered to be “sucking/grasping.” However, the appearance and ossification of elements occurred slowly, with no transitional phase from sucking to grasping modes of feeding being observed during the study; such delayed development of the feeding-related bony elements was considered to be a cause of the difficulty in rearing early stage grouper larvae.  相似文献   

16.
Developmental information on the structure and composition of the cartilaginous and bony skull in the large African barb Labeobarbus (=Barbus) intermedius (Teleostei; Cyprinidae) is provided. Sequences of cartilages and bones appearance from a large series of cleared and Alizarin red- and Alcian blue-stained laboratory-reared specimens ranging from prehatching larvae to juvenile stages are described. Comparisons of cranial development are made among cyprinids: L. intermedius, Danio rerio, Barbus barbus, and Cyprinus carpio.  相似文献   

17.
18.
AGAT, GAMT and CT1, three creatine synthesis and transport‐related molecules, have been widely studied in mammals. To explore their homologous genes in adult zebrafish Danio rerio, the gene expression patterns of these three genes in D. rerio were investigated. The results reveal that AGAT, GAMT and CT1 are expressed widely in diverse tissues of D. rerio where the homologous genes in mammals are also expressed.  相似文献   

19.
Because of the genetic and developmental information available, Danio rerio stands out as a vertebrate model system in which significant progress in the areas of development and evolution can be made. Despite its increasing popularity, little research has been done on skeletal development. In this report, we provide developmental information on the structure and composition of the zebrafish skull, pectoral, and pelvic girdle. We describe the sequence of ossification of the skull and paired fins from a large series of cleared and Alizarin red-stained specimens at larval and adult stages. The most commonly followed developmental sequence in Danio rerio is described. Chondrocranial development is noted from Alcian blue-stained specimens. General trends in ossification patterns are examined from developmental, phylogenetic, and functional contexts. No clear pattern in ossification order of dermal versus cartilage bones is evident. Ossification sequence conforms to functional need in a general way, but there are inconsistencies in the details of order. Selected phylogenetic comparisons of ossification sequence within cranial regions are made among Danio rerio, Betta splendens, Oryzias latipes, and Barbus barbus. Greater sequence conservation is apparent between D. rerio and Barbus barbus, the ostariophysans, than among other taxon pairs. Intraspecific variation in ossification order is apparent, most of which involves small adjustments in timing. © 1996 Wiley-Liss, Inc.  相似文献   

20.
A phylogenetic analysis combining 63 morphological characters and DNA sequences (3296 bp), comprising segments of the mitochondrial genes 16S and ND2, and the nuclear gene 28S, for 19 taxa of the West African killifish tribe Callopanchacini and 11 out‐group taxa, highly supported the monophyly of the tribe, and made it possible to provide the first unambiguous diagnoses for the included genera (Archiaphyosemion, Callopanchax, Nimbapanchax, and Scriptaphyosemion). The monophyly of the Callopanchacini is supported by six morphological synapomorphies: posterior portion of the mandibular channel consisting of a single open groove; basihyal pentagonal, as a result of a nearly rectangular basihyal cartilage and a triangular bony support; dorsal process of the urohyal usually absent, sometimes rudimentary; presence of a wide bony flap adjacent to the proximal portion of the fourth ceratobranchial; a broad bony flap adjacent to the proximal portion of the fifth ceratobranchial; and haemal prezygapophysis of the pre‐ural vertebra 2 ventrally directed. The analysis indicates that the medially continuous rostral neuromast channel, commonly used to diagnose the tribe, is plesiomorphic. This study also indicates that, among African aplocheiloids, the annual life cycle style developed once in Callopanchax, and then again independently in the clade containing Fundulopanchax and Nothobranchius. © 2015 The Linnean Society of London  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号