首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 554 毫秒
1.
Investigation into the effect of the reducing sugar of dextran on formation and stability of dextran-coated ultrasmall superparamagnetic iron oxides (USPIO) has demonstrated that reduction of the terminal reducing sugar can have a significant effect on particle size, coating stability, and magnetic properties. Four aspects of polysaccharide-coated USPIO particle synthesis were investigated: (i) the effect reduction of the terminal polysaccharide sugar has upon polysaccharide usage, particle size, stability, and magnetic susceptibility; (ii) the effect an exogenous reducing sugar can have upon particle synthesis; (iii) the effect the molecular weight of the reduced polysaccharide has on particle synthesis; and (iv) the effectiveness of reduced and native dextrans in stabilizing a preformed magnetic sol. For low molecular weight dextrans (MW 20,000 x 10(-6) cgs). Similar results were obtained with a 12 kDa pullulan. The effect of polysaccharide molecular weight on particle size was studied, wherein higher molecular weight reduced dextrans produced larger particles. The effectiveness of the reduced and native dextrans in stabilizing a preformed magnetic sol was compared. Reduced dextrans were found to be superior for stabilizing the magnetic sol. The observed effects of reduction of the terminal sugar in dextran compared with the native dextran were modeled using the Langmuir adsorption isotherm. A good fit of experimental data with this model was found.  相似文献   

2.
High density lipoprotein (HDL) particles are made up of lipid and protein constituents and apolipoprotein A-I (apoA-I) is a principal protein component that facilitates various biological activities of HDL particles. Increase in Ox-PL content of HDL particles makes them 'dysfunctional' and such modified HDL particles not only lose their athero-protective properties but also acquire pro-atherogenic and pro-inflammatory functions. The details of Ox-PL-induced alteration in the molecular properties of HDL particles are not clear. Paraoxonase 1 (PON1) is an HDL-associated enzyme that possesses anti-inflammatory and anti-atherogenic properties; and many of the athero-protective functions of HDL are attributed to the associated PON1. In this study we have characterized the physicochemical properties of reconstituted HDL (rHDL) particles containing varying amounts of Ox-PL and have compared their PON1 stimulation capacity. Our results show that increased Ox-PL content (a) modifies the physicochemical properties of the lipid domain of the rHDL particles, (b) decreases the stability and alters the conformation as well as orientation of apoA-I molecules on the rHDL particles, and (c) decreases the PON1 stimulation capacity of the rHDL particles. Our data indicate that the presence of Ox-PLs destabilizes the structure of the HDL particles and modifies their function.  相似文献   

3.
Macrophages are key-cells in the initiation, the development and the regulation of the inflammatory response to bacterial infection. Macrophages are intensively and increasingly recruited in septic joints from the early phases of infection and the infiltration is supposed to regress once efficient removal of the pathogens is obtained. The ability to identify in vivo macrophage activity in an infected joint can therefore provide two main applications: early detection of acute synovitis and monitoring of therapy.In vivo noninvasive detection of macrophages can be performed with magnetic resonance imaging using iron nanoparticles such as ultrasmall superparamagnetic iron oxide (USPIO). After intravascular or intraarticular administration, USPIO are specifically phagocytized by activated macrophages, and, due to their magnetic properties, induce signal changes in tissues presenting macrophage infiltration. A quantitative evaluation of the infiltrate is feasible, as the area with signal loss (number of dark pixels) observed on gradient echo MR images after particles injection is correlated with the amount of iron within the tissue and therefore reflects the number of USPIO-loaded cells.We present here a protocol to perform macrophage imaging using USPIO-enhanced MR imaging in an animal model of septic arthritis, allowing an initial and longitudinal in vivo noninvasive evaluation of macrophages infiltration and an assessment of therapy action.  相似文献   

4.
5.
Phage display, an extremely promising technology in the context of molecular imaging, allows for the selection of peptides interacting with virtually any target from a heterogeneous mixture of bacteriophages. In this work, we propose the concept of magnetophages, obtained by covalent coupling of ultrasmall particles of iron oxide (USPIO) to the proteins of the phage wall. To validate magnetophages as a magnetic resonance imaging contrast agent (MRI), we have used as a prototype the clone E3 because of its specific affinity for phosphatidylserine, a marker of apoptosis. Enzyme-linked immunosorbent assay showed that E3 magnetophages incubated with phosphatidylserine retained the properties of the nonmagnetically labeled phages. The usefulness of magnetophages as an MRI contrast agent was estimated by incubation with phosphatidylcholine and phosphatidylserine or with apoptotic and control cells. Under these conditions, E3 magnetophages allow the discrimination of phosphatidylserine from phosphatidylcholine and of apoptotic cells from control ones. Injected in vivo, magnetophages are rapidly cleared from the blood stream and internalized by the phagocytic cells of the liver. To abrogate this problem, USPIO were pegylated to obtain stealthy E3-PEG-magnetophages, invisible to phagocytic cells, which were successfully targeted to apoptotic liver. If this feature demonstrated for E3 magnetophages can be extrapolated to other phage display selected entities, magnetophages become an original system which allows validation of the candidate binding peptides before their synthesis is considered. The concept of the magnetophage could be extended to other imaging modalities by replacing USPIO with an adequate reporter (i.e., radiolabeled phages).  相似文献   

6.
7.
Aims: Class IIa bacteriocins are small antimicrobial peptides synthesized by lactic acid bacteria. The proposed mechanisms of action for class IIa bacteriocins suggest that the physicochemical properties of the target bacterial surface govern the bacteriocin antimicrobial activity. The aim of this study is to decipher the relationship between both sensitivity and resistance to a class IIa bacteriocin, carnobacteriocin BM1 and physicochemical surface properties of bacteria. Methods and Results: The study was performed on 18 strains by a microbial adhesion to solvents process and with electrophoretic mobility measurements considering bacteria as soft particles. A large variation in bacterial surface properties is observed among the bacterial populations. Electro‐hydrodynamic parameters values appear to be more homogeneous for sensitive strains than for the resistant ones, which can exhibit more extreme values. Conclusions: Physicochemical surface properties of 18 strains determined show large variations between the strains. However, no direct link between these surface properties and the resistant/sensitive phenotypes of the strains can be stated. Significance and Impact of the Study: The surface physicochemical properties tested have a low predictive power to discriminate sensitive or resistant strains when determined at the bacterial population scale.  相似文献   

8.
9.
Neural stem cells (NSCs) have great prospects in therapy for neurological disorders. However, the correlation between improved function and stem cell transplantation has not been fully elucidated. A non-invasive method for stem cell tracking is crucial for clinical studies. In the present study, NSCs were infected with lentiviral vectors, and the expression of transferrin receptor (TfR) in neural stem cells after lentivirus transfection (TfR-NSC) was confirmed by western blot analysis. TfR-NSCs were incubated with 1.8 nM ultra-small super-paramagnetic iron oxide nanoparticles (USPIOs) or transferrin (Tf)-conjugate of USPIO nanoparticles (Tf-USPIOs). Tf-USPIO enhanced the cellular iron content in TfR-NSCs 80 ± 18 % compared to USPIOs. These results demonstrated that TfR overexpressed in neural stem cells specifically internalized Tf-USPIOs. Furthermore, the results indicate that TfR reporter imaging may be a valuable way to evaluate the efficacy of neural stem cell treatment.  相似文献   

10.
Nonviral gene delivery systems are amenable to forming colloidal particles with a wide range of physicochemical properties that include size, surface charge, and density and type of ligand presented. However, it is not known how to best design these particles without having a set of physicochemical design constraints that have been optimized for the intended gene delivery application. Here, a nanoparticle-based model delivery system is developed that can mimic the surface properties of nonviral gene delivery particles, and this model system is used to define design constraints that should be applied to next generation gene delivery particles. As a test case, a well-defined nanoparticle-based system is developed to guide the rational design of gene delivery to hepatocytes in the liver. The synthetic scheme utilizes monodisperse polystyrene particles and provides for variation of mean particle size and particle size distribution through variation in reaction conditions. The nanoparticles are PEGylated to provide stability in serum and also incorporate targeting ligands, e.g., galactose, at tunable densities. Four nanoparticles are synthesized from uniformly sized polystyrene beads specifically for the purpose of identifying design constraints to guide next generation gene delivery to the liver. These four nanoparticles are Gal-50 and Gal-140, that are galactosylated 50 and 140 nm nanoparticles, and MeO-50 and MeO-140, that are methoxy-terminated 50 and 140 nm nanoparticles. All four particles have the same surface charge, and Gal-50 and Gal-140 have the same surface galactose density. The availability of galactose ligands to receptor binding is demonstrated here by agglutination with RCA120.  相似文献   

11.
ABSTRACT: BACKGROUND: Minocycline has proven anti-nociceptive effects, and delays the development of allodynia/hyperalgesia after peripheral nerve injury. However, the mechanism by which this occurs remains unclear. Inflammatory cells, in particular macrophages, are critical components of the response to nerve injury. Using ultrasmall superparamagnetic iron oxide-magnetic resonance imaging (USPIO-MRI) to monitor macrophage trafficking, the purpose of this project is to determine whether minocycline modulates macrophage trafficking to the site of nerve injury in vivo and, in turn, results in altered pain thresholds. RESULTS: Animal experiments were approved by Stanford IACUC. A model of neuropathic pain was created using the Spared Nerve Injury (SNI) model that involves ligation of the left sciatic nerve in the left thigh of adult Sprague-Dawley rats. Animals with SNI and uninjured animals (control) were then injected with/without USPIOs (300umol/kg IV) and with/without minocycline (50mg/kg IP). Bilateral sciatic nerves were scanned with a volume coil in a 7T magnet 7 days after USPIO administration. Fluid-sensitive MR images were obtained, and ROIs were placed on bilateral sciatic nerves to quantify signal intensity. Pain behavior modulation by minocycline was measured using the Von Frey filament test. Sciatic nerves were ultimately harvested at day 7, fixed in 10% buffered formalin and stained for the presence of iron oxide-laden macrophages. Behavioral measurements confirmed the presence of allodynia in the neuropathic pain model while the uninjured and minocycline-treated injured group had significantly higher paw withdrawal thresholds (p<0.011). Decreased MR signal is observed in the SNI group that received USPIOs (3.3+/-0.5%) compared to the minocycline-treated SNI group that received USPIOs (15.2+/-4.5%) and minocycline-treated group (no USPIOs; 41.2+/-2.3%) (p<0.04). Histology of harvested sciatic nerve specimens confirmed the presence USPIOs at the nerve injury site in the SNI group without minocycline treatment. CONCLUSION: Animals with neuropathic pain in the left hindpaw show increased trafficking of USPIO-laden macrophages to the site of sciatic nerve injury. Minocycline appears to retard the migration of macrophages to the nerve injury site, which may partly explain its anti-nociceptive effects. USPIO-MRI is an effective in vivo imaging tool to study the role of macrophages in the development of neuropathic pain.  相似文献   

12.

Background

In orthopedic surgery, implant-associated infections are still a major problem. For the improvement of the selective therapy in the infection area, magnetic nanoparticles as drug carriers are promising when used in combination with magnetizable implants and an externally applied magnetic field. These implants principally increase the strength of the magnetic field resulting in an enhanced accumulation of the drug loaded particles in the target area and therewith a reduction of the needed amount and the risk of undesirable side effects. In the present study magnetic nanoporous silica core–shell nanoparticles, modified with fluorophores (fluorescein isothiocyanate/FITC or rhodamine B isothiocyanate/RITC) and poly(ethylene glycol) (PEG), were used in combination with metallic plates of different magnetic properties and with a magnetic field. In vitro and in vivo experiments were performed to investigate particle accumulation and retention and their biocompatibility.

Results

Spherical magnetic silica core–shell nanoparticles with reproducible superparamagnetic behavior and high porosity were synthesized. Based on in vitro proliferation and viability tests the modification with organic fluorophores and PEG led to highly biocompatible fluorescent particles, and good dispersibility. In a circular tube system martensitic steel 1.4112 showed superior accumulation and retention of the magnetic particles in comparison to ferritic steel 1.4521 and a Ti90Al6V4 control. In vivo tests in a mouse model where the nanoparticles were injected subcutaneously showed the good biocompatibility of the magnetic silica nanoparticles and their accumulation on the surface of a metallic plate, which had been implanted before, and in the surrounding tissue.

Conclusion

With their superparamagnetic properties and their high porosity, multifunctional magnetic nanoporous silica nanoparticles are ideal candidates as drug carriers. In combination with their good biocompatibility in vitro, they have ideal properties for an implant directed magnetic drug targeting. Missing adverse clinical and histological effects proved the good biocompatibility in vivo. Accumulation and retention of the nanoparticles could be influenced by the magnetic properties of the implanted plates; a remanent martensitic steel plate significantly improved both values in vitro. Therefore, the use of magnetizable implant materials in combination with the magnetic nanoparticles has promising potential for the selective treatment of implant-associated infections.
  相似文献   

13.
Ultrasmall particles of iron oxide (USPIOs) coated with 3,3′-bis(phosphonate)propionic acid were covalently coupled to a home-made Arg-Gly-Asp (RGD) peptidomimetic molecule via a short oligoethyleneglycol (OEG) spacer. The conjugation rate was measured by X-ray photoelectron spectroscopy (XPS). The particle size and magnetic characteristics were kept. Our novel conjugate targeted efficiently Jurkat cells (increase of 229% vs the control).  相似文献   

14.
We are developing a nanoparticulate histochemical reagent designed for histochemistry in living animals (molecular imaging), which should finally be useful in clinical imaging applications. The iterative development procedure employed involves conceptual design of the reagent, synthesis and testing of the reagent, then redesign based on data from the testing; each cycle of testing and development generates a new generation of nanoparticles, and this report describes the synthesis and testing of the third generation. The nanoparticles are based on human serum albumin and the imaging modality selected is magnetic resonance imaging (MRI). Testing the second particle generation with newly introduced techniques revealed the presence of impurities in the final product, therefore we replaced dialysis with diafiltration. We introduced further testing methods including thin layer chromatography, arsenazo III as chromogenic assay for gadolinium, and several versions of polyacrylamide gel electrophoresis, for physicochemical characterisation of the nanoparticles and intermediate synthesis compounds. The high grade of chemical purity achieved by combined application of these methodologies allowed standardised particle sizes to be achieved (low dispersities), and accurate measurement of critical physicochemical parameters influencing particle size and imaging properties. Regression plots confirmed the high purity and standardisation. The good degree of quantitative physicochemical characterisation aided our understanding of the nanoparticles and allowed a conceptual model of them to be prepared. Toxicological screening demonstrated the extremely low toxicity of the particles. The high magnetic resonance relaxivities and enhanced mechanical stability of the particles make them an excellent platform for the further development of MRI molecular imaging.  相似文献   

15.
Background aimsChimeric antigen receptor (CAR) T-cell therapy is a promising treatment strategy in solid tumors. In vivo cell tracking techniques can help us better understand the infiltration, persistence and therapeutic efficacy of CAR T cells. In this field, magnetic resonance imaging (MRI) can achieve high-resolution images of cells by using cellular imaging probes. MRI can also provide various biological information on solid tumors.MethodsThe authors adopted the amino alcohol derivatives of glucose-coated nanoparticles, ultra-small superparamagnetic particles of iron oxide (USPIOs), to label CAR T cells for non-invasive monitoring of kinetic infiltration and persistence in glioblastoma (GBM). The specific targeting CARs included anti-human epidermal growth factor receptor variant III and IL13 receptor subunit alpha 2 CARs.ResultsWhen using an appropriate concentration, USPIO labeling exerted no negative effects on the biological characteristics and killing efficiency of CAR T cells. Increasing hypointensity signals could be detected in GBM models by susceptibility-weighted imaging MRI ranging from 3 days to 14 days following the injection of USPIO-labeled CAR T cells. In addition, nanoparticles and CAR T cells were found on consecutive histopathological sections. Moreover, diffusion and perfusion MRI revealed significantly increased water diffusion and decreased vascular permeability on day 3 after treatment, which was simultaneously accompanied by a significant decrease in tumor cell proliferation and increase in intercellular tight junction on immunostaining sections.ConclusionThese results establish an effective imaging technique that can track CAR T cells in GBM models and validate their early therapeutic effects, which may guide the evaluation of CAR T-cell therapies in solid tumors.  相似文献   

16.
Park EJ  Roh J  Kang MS  Kim SN  Kim Y  Choi S 《PloS one》2011,6(10):e26749
Diesel exhaust particles (DEPs) are the main components of ambient particulate materials, including polyaromatic hydrocarbons (PAHs), n-PAHs, heavy metals, and gaseous materials. Many epidemiological, clinical, and toxicological studies have shown that ambient particles, including DEPs, are associated with respiratory disorders, such as asthma, allergic rhinitis, and lung cancer. However, the relationship between the biological response to DEPs and their chemical composition remains unclear. In this study, we investigated the physicochemical properties of DEPs before toxicological studies, and then administered a single intratracheal instillation of DEPs to mice. The mice were then killed 1, 7, 14 and 28 days after DEP exposure to observe the biological responses induced by DEPs over time. Our findings suggest that DEPs engulfed into cells induced a Th2-type inflammatory response followed by DNA damage, whereas DEPs not engulfed into cells induced a Th1-type inflammatory response. Further, the physicochemical properties, including surface charge, particle size, and chemical composition, of DEPs play a crucial role in determining the biological responses to DEPs. Consequently, we suggest that the biological response to DEPs depend on cell-particle interaction and the physicochemical properties of the particles.  相似文献   

17.
Membrane-active small molecules (MASMs) are small organic molecules designed to reproduce the fundamental physicochemical properties of natural antimicrobial peptides: their cationic charge and amphiphilic character. This class of compounds has a promising broad range of antimicrobial activity and, at the same time, solves some major limitations of the peptides, such as their high production costs and low in vivo stability. Most cationic antimicrobial peptides act by accumulating on the surface of bacterial membranes and causing the formation of defects when a threshold is reached. Due to the drastically different structures of the two classes of molecules, it is not obvious that small-molecule antimicrobials act in the same way as natural peptides, and very few data are available on this aspect. Here we combined spectroscopic studies and molecular dynamics simulations to characterize the mechanism of action of two different MASMs. Our results show that, notwithstanding their simple structure, these molecules act just like antimicrobial peptides. They bind to the membrane surface, below the head-groups, and insert their apolar moieties in the core of the bilayer. Like many natural peptides, they cause the formation of defects when they reach a high coverage of the membrane surface. In addition, they cause membrane aggregation, and this property could contribute to their antimicrobial activity.  相似文献   

18.
Superparamagnetic iron oxide nanoparticles (SPIONs) are used as delivery systems for different therapeutics including nucleic acids for magnetofection-mediated gene therapy. The aim of our study was to evaluate physicochemical properties, biocompatibility, cellular uptake and trafficking pathways of the custom-synthesized SPIONs for their potential use in magnetofection. Custom-synthesized SPIONs were tested for size, shape, crystalline composition and magnetic behavior using a transmission electron microscope, X-ray diffractometer and magnetometer. SPIONs were dispersed in different aqueous media to obtain ferrofluids, which were tested for pH and stability using a pH meter and zetameter. Cytotoxicity was determined using the MTS and clonogenic assays. Cellular uptake and trafficking pathways were qualitatively evaluated by transmission electron microscopy and quantitatively by inductively coupled plasma atomic emission spectrometry. SPIONs were composed of an iron oxide core with a diameter of 8–9 nm, coated with a 2-nm-thick layer of silica. SPIONs, dispersed in 0.9% NaCl solution, resulted in a stable ferrofluid at physiological pH for several months. SPIONs were not cytotoxic in a broad range of concentrations and were readily internalized into different cells by endocytosis. Exposure to neodymium-iron-boron magnets significantly increased the cellular uptake of SPIONs, predominantly into malignant cells. The prepared SPIONs displayed adequate physicochemical and biomedical properties for potential use in magnetofection. Their cellular uptake was dependent on the cell type, and their accumulation within the cells was dependent on the duration of exposure to an external magnetic field.  相似文献   

19.
A new concept for the improvement of the downstream processing and purification is the so‐called magnetic separation. By using surface functionalized magnetic substrate particles, which selectively adsorb the target product, it can be directly separated out of a crude bioprocess stream. These methods are already used for analytical purposes, where only small amounts of functionalized particles are necessary. To apply the same concept at a larger scale, effective and economical procedures have to be provided. First, suitable process equipment has to be developed. Second, the magnetic particles have to be manufactured with a stable surface functionalization and long‐term stability for their reuse. Up to now mainly high‐gradient magnetic separation filter devices are applied for selective magnetic separation. They consist of a magnetic matrix in which the magnetic particles are trapped. In this work, a new magnetic filter is introduced that overcomes the capacity limitations of the current high‐gradient magnetic separation technology. The principle is demonstrated by selective recovery of lysozyme from hen egg white. Prior to the separation experiments magnetic beads with a strong acid cation‐exchange surface functionalization are synthesized. The separation procedure is implemented in only one unit operation. With the implementation of the displacement elution sequence lysozyme can be separated out of a hen egg white solution with a purification factor of PF=36 and a purity P=0.83.  相似文献   

20.
New folate-conjugated superparamagnetic maghemite nanoparticles have been synthesized for the intracellular hyperthermia treatment of solid tumors. These ultradispersed nanosystems have been characterized for their physicochemical properties and tumor cell targeting ability, facilitated by surface modification with folic acid. Preliminary experiments of nanoparticles heating under the influence of an alternating magnetic field at 108 kHz have been also performed. The nanoparticle size, surface charge, and colloidal stability have been assessed in various conditions of ionic strength and pH. The ability of these folate "decorated" maghemite nanoparticles to recognize the folate receptor has been investigated both by surface plasmon resonance and in folate receptor expressing cell lines, using radiolabeled folic acid in competitive binding experiments. The specificity of nanoparticle cellular uptake has been further investigated by transmission electron microscopy after incubation of these nanoparticles in the presence of three cell lines with differing folate receptor expression levels. Qualitative and quantitative determinations of both folate nanoparticles and nontargeted control nanoparticles demonstrated a specific cell internalization of the folate superparamagnetic nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号