首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steen HB  Stokke T 《Cytometry》2002,47(3):200-205
BACKGROUND: Cells exclude their own volume of dye solution in the sample flow which carries them through the flow chamber of the flow cytometer, thereby affecting the otherwise constant signal arising from the fluorescence of this solution. Under certain conditions, this phenomenon may significantly influence the fluorescence signal of the cells. MATERIALS AND METHODS: Using the slit scan technique, we studied this phenomenon as observed for monodisperse polystyrene particles in fluorescein solution. RESULTS: The measurements show that dye solution accumulates just in front of the particle and just behind it, with a relative void in between. This phenomenon is most likely caused by the rapid constriction of the flow as it enters the orifice of the nozzle or flow chamber, giving rise to a pulse of fluorescence which adds to that of the particle or cell itself. The magnitude of this artifact depends on the design and dimensions of the nozzle/flow chamber as well as on the rate of sample flow. CONCLUSIONS: The dye exclusion artifact may affect measurements of cells when they are in a dye solution having a fluorescence per unit volume which is significant compared to that of the cells, especially at low sample flow rates.  相似文献   

2.
Summary Changes in molluscan blood cell membrane structure coincided with changes in membrane amino acid permeability during cell volume regulation. Blood cells were freeze fractured after the free amino acid permeability of their membranes had been altered by modifying the extracellular Ca2+ and intracellular ATP levels and the membrane particles examined for changes in size, number/area and distribution. Test substances that altered the divalent cation or ATP levels also altered membrane particle densities, but not size or distribution, of freeze fractured blood cells. Those test substances (Ca2+-free seawater, DNP, low temperature) that inhibited volume regulation and the FAA efflux caused decreased membrane particle density, while those test substances (Co2+, Mn2+) that potentiated volume regulation and the FAA efflux increased the number of membrane particles/unit area. These changes in membrane particle density appear to result from the changes in surface area due to the treatment effects on cell volume, so that the number of membrane particles per cell remained constant. Therefore, altered membrane FAA permeability is associated with altered membrane particle density, but the effect of this structural alteration on membrane permeability is not clear.Abbreviations FAA free amino acid - DMSO dimethylsulfoxide - DNP dinitrophenol - ASW artificial seawater  相似文献   

3.
A double infusion flow system and particle sizing technique were developed to study the effect of time and shear rate on adenosine diphosphate-induced platelet aggregation in Poiseuille flow. Citrated platelet-rich plasma, PRP, and 2 microM ADP were simultaneously infused into a 40-microliters cylindrical mixing chamber at a fixed flow ratio, PRP/ADP = 9:1. After rapid mixing by a rotating magnetic stirbar, the platelet suspension flowed through 1.19 or 0.76 mm i.d. polyethylene tubing for mean transit times, t, from 0.1 to 86 s, over a range of mean tube shear rate, G, from 41.9 to 1,000 s-1. Known volumes of suspension were collected into 0.5% buffered glutaraldehyde, and all particles in the volume range 1-10(5) microns 3 were counted and sized using a model ZM particle counter (Coulter Electronics Inc., Hialeah, FL) and a logarithmic amplifier. The decrease in the single platelet concentration served as an overall index of aggregation. The decrease in the total particle concentration was used to calculate the collision capture efficiency during the early stages of aggregation, and aggregate growth was followed by changes in the volume fraction of particles of successively increasing size. Preliminary results demonstrate that both collision efficiency and particle volume fraction reveal important aspects of the aggregation process not indicated by changes in the single platelet concentration alone.  相似文献   

4.
A device is described which makes it possible to count absolute particle (cell) numbers per volume by flow cytometry. It can easily by adapted to several types of flow cytometers, especially to the Coulter EPICS V and EPICS 750 series. A volume adapter has been installed in place of the normal sample handling system without any further modifications of the instrument or the data acquisition program. The adapter consists of a special pipette with two opto-electronic detectors for the beginning and end of the measuring period. These switch on/off a shutter for the illuminating laser beam so that acquisition of the data is controlled indirectly. Sample volumes of 50 microliters were measured at flow rates up to 10(3) particles/s. Calibration beads as well as blood cells were enumerated according to FALS (forward angle light scatter), to SSC (90 degrees light scatter), and to fluorescence parameters. The results were compared to the evaluation made on a Coulter counter or in a Neubauer chamber of a light microscope. Using a concentration of 1 x 10(5)-5 x 10(5) particles/ml, the absolute numbers of particles were determined with a high reproducibility and an estimated error rate of 2-5%.  相似文献   

5.
As the incidence of respiratory and allergic symptoms has been reported to be increased in children attending schools in close proximity to busy roads, it was hypothesised that PM from roadside schools would display enhanced oxidative potential (OP). Two consecutive one-week air quality monitoring campaigns were conducted at seven school sampling sites, reflecting roadside and urban background in London. Chemical characteristics of size fractionated particulate matter (PM) samples were related to the capacity to drive biological oxidation reactions in a synthetic respiratory tract lining fluid. Contrary to hypothesised contrasts in particulate OP between school site types, no robust size-fractionated differences in OP were identified due high temporal variability in concentrations of PM components over the one-week sampling campaigns. For OP assessed both by ascorbate (OP(AA) m(-3)) and glutathione (OP(GSH) m(-3)) depletion, the highest OP per cubic metre of air was in the largest size fraction, PM(1.9-10.2). However, when expressed per unit mass of particles OP(AA) μg(-1) showed no significant dependence upon particle size, while OP(GSH) μg(-1) had a tendency to increase with increasing particle size, paralleling increased concentrations of Fe, Ba and Cu. The two OP metrics were not significantly correlated with one another, suggesting that the glutathione and ascorbate depletion assays respond to different components of the particles. Ascorbate depletion per unit mass did not show the same dependence as for GSH and it is possible that other trace metals (Zn, Ni, V) or organic components which are enriched in the finer particle fractions, or the greater surface area of smaller particles, counter-balance the redox activity of Fe, Ba and Cu in the coarse particles. Further work with longer-term sampling and a larger suite of analytes is advised in order to better elucidate the determinants of oxidative potential, and to fuller explore the contrasts between site types.  相似文献   

6.
Human health risk estimates for sites with contaminated soils are often based on the assumption that the bulk concentration of substances in outdoor soil samples is a reasonable predictor of exposures via incidental soil ingestion, soil particle inhalation, and dermal absorption. Most underlying conceptual models are grossly simplistic, however, when considered in light of (i) biases in the distribution of contaminants across soil particle sizes, (ii) the size range of particles in soils and dusts that is environmentally available, and (iii) factors that influence desorption from particles and uptake into humans. The available studies indicate that contaminant distribution across soil particle size fractions varies widely between different soil types and contaminant delivery mechanisms, and it cannot be assumed that higher masses of contaminants per unit mass of soil are correlated with smaller particles sizes. Soil data gathered in support of detailed human health risk assessments, therefore, should allow for the examination of distribution across particle sizes of contaminants of concern, and consider those size fractions most critical to human exposure. Soil evaluations for health risk assessments of metals/metalloids should also consider mineralogical characterization.  相似文献   

7.
Kim JW  Kim LU  Kim CK 《Biomacromolecules》2007,8(1):215-222
Nearly monodispersed silica nanoparticles having a controlled size from 5 to 450 nm were synthesized via a sol-gel process, and then the optimum conditions for the surface treatment of the synthesized silica nanoparticles with a silane coupling agent (i.e., 3-methacryloxypropyltrimethoxysilane (gamma-MPS)) were explored to produce dental composites exhibiting enhanced adhesion and dispersion of silica nanoparticles in the resin matrix. The particle size was increased by increasing amounts of the catalyst (NH4OH) and silica precursor (tetraethylorthosilicate, TEOS) and by decreasing the amount of water in the reaction mixtures regardless of solvents used for the synthesis. The particle size prepared by using ethanol as a solvent was significantly larger than that prepared by using methanol as a solvent when the composition of the reaction mixture was fixed. The nanosized particles in the 5-25 nm range were aggregated. The amount of grafted gamma-MPS on the surface of the synthesized silica nanoparticles was dependent on the composition of the reaction mixture when an excess amount of gamma-MPS was used. When surface treatment was performed at optimum conditions found here, the amount of the grafted gamma-MPS per unit surface area of the silica nanoparticles was nearly the same regardless of the particle size. Dispersion of the silica particles in the resin matrix and interfacial adhesion between silica particles and resin matrix were enhanced when surface treated silica nanoparticles were used for preparing dental nanocomposites.  相似文献   

8.
Combined imaging of bacteria and oxygen in biofilms   总被引:2,自引:0,他引:2  
Transparent sensors for microscopic O(2) imaging were developed by spin coating an ultrathin (<1- to 2-microm) layer of a luminescent O(2) indicator onto coverslips. The sensors showed (i) an ideal Stern-Volmer quenching behavior of the luminescence lifetime towards O(2) levels, (ii) homogeneous measuring characteristics over the sensor surface, and (iii) a linear decline of luminescence lifetime with increasing temperature. When a batch of such coverslip sensors has been characterized, their use is thus essentially calibration free at a known temperature. The sensors are easy to use in flow chambers and other growth devices used in microbiology. We present the first application for combined imaging of O(2) and bacteria in a biofilm flow chamber mounted on a microscope equipped with a spinning-disk confocal unit and a luminescence lifetime camera system.  相似文献   

9.
In this paper, we present a mathematical model with experimental support of how several key parameters govern the adsorption of active retrovirus particles onto the surface of adherent cells. These parameters, including time of adsorption, volume of virus, and the number, size, and type of target cells, as well as the intrinsic properties of the virus, diffusion coefficient, and half-life (t(1/2)), have been incorporated into a mathematical expression that describes the rate at which active virus particles adsorb to the cell surface. From this expression, we have obtained estimates of C(vo), the starting concentration of active retrovirus particles. In contrast to titer, C(vo) is independent of the specific conditions of the assay. The relatively slow diffusion (D = 2 x 10(-8) cm(2)/s) and rapid decay (t(1/2) = 6 to 7 h) of retrovirus particles explain why C(vo) values are significantly higher than titer values. Values of C(vo) also indicate that the number of defective particles in a retrovirus stock is much lower than previously thought, which has implications especially for the use of retroviruses for in vivo gene therapy. With this expression, we have also computed AVC (active viruses/cell), the number of active retrovirus particles that would adsorb per cell during a given adsorption time. In contrast to multiplicity of infection, which is based on titer and is subject to the same inaccuracies, AVC is based on the physicochemical parameters of the transduction assay and so is a more reliable alternative.  相似文献   

10.
Fu Y  Kunz R  Wu J  Dong C 《PloS one》2012,7(2):e30721
Tumor cell adhesion to the endothelium under shear flow conditions is a critical step that results in circulation-mediated tumor metastasis. This study presents experimental and computational techniques for studying the local hydrodynamic environment around adherent cells and how local shear conditions affect cell-cell interactions on the endothelium in tumor cell adhesion. To study the local hydrodynamic profile around heterotypic adherent cells, a side-view flow chamber assay coupled with micro particle imaging velocimetry (μPIV) technique was developed, where interactions between leukocytes and tumor cells in the near-endothelial wall region and the local shear flow environment were characterized. Computational fluid dynamics (CFD) simulations were also used to obtain quantitative flow properties around those adherent cells. Results showed that cell dimension and relative cell-cell positions had strong influence on local shear rates. The velocity profile above leukocytes and tumor cells displayed very different patterns. Larger cell deformations led to less disturbance to the flow. Local shear rates above smaller cells were observed to be more affected by relative positions between two cells.  相似文献   

11.
In this paper, we present a mathematical model with experimental support of how several key parameters govern the adsorption of active retrovirus particles onto the surface of adherent cells. These parameters, including time of adsorption, volume of virus, and the number, size, and type of target cells, as well as the intrinsic properties of the virus, diffusion coefficient, and half-life (t1/2), have been incorporated into a mathematical expression that describes the rate at which active virus particles adsorb to the cell surface. From this expression, we have obtained estimates of Cvo, the starting concentration of active retrovirus particles. In contrast to titer, Cvo is independent of the specific conditions of the assay. The relatively slow diffusion (D = 2 x 10(-8) cm2/s) and rapid decay (t1/2 = 6 to 7 h) of retrovirus particles explain why Cvo values are significantly higher than titer values. Values of Cvo also indicate that the number of defective particles in a retrovirus stock is much lower than previously thought, which has implications especially for the use of retroviruses for in vivo gene therapy. With this expression, we have also computed AVC (active viruses/cell), the number of active retrovirus particles that would adsorb per cell during a given adsorption time. In contrast to multiplicity of infection, which is based on titer and is subject to the same inaccuracies, AVC is based on the physicochemical parameters of the transduction assay and so is a more reliable alternative.  相似文献   

12.
J N Lucas  D Pinkel 《Cytometry》1986,7(6):575-581
Obtaining information about the shape of particles from slit-scan profiles is facilitated if the particles are oriented. Elongated particles orient in the nozzle of flow cytometers, but orientation may be disrupted before the particles get to the point of measurement. We have used our slit-scan flow cytometer to investigate the orientation of microsphere doublets in a liquid jet in air, in flow across a glass surface, and in a 200-microns-square capillary tube as a function of distance from the flow chamber nozzle. Particles were classified as being oriented if there was a centrally located dip in the slit-scan profile. Essentially all the doublets in the jet were oriented, and no disorientation was noted over the distances measured (up to 10 mm from the nozzle). Particle orientation was maintained for 80 microns in flow across a glass surface. In the capillary-type flow chamber, essentially all of the particles were oriented at the tube entrance and for several millimeters into the tube. There then occurred a region where particle tumbling started and progressively fewer doublets met the orientation criteria. The distance to where tumbling began could be estimated by calculating the length required to establish the parabolic flow profile in the tube. Finally, the fraction of oriented particles reached a constant value that did not change with increased distance into the tube. When sample was injected off axis (i.e., halfway between the chamber center and the chamber walls), particle tumbling began closer to the tube entrance.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The overall goal of this method is to describe a technique to subject adherent cells to laminar flow conditions and evaluate their response to well quantifiable fluid shear stresses1.Our flow chamber design and flow circuit (Fig. 1) contains a transparent viewing region that enables testing of cell adhesion and imaging of cell morphology immediately before flow (Fig. 11A, B), at various time points during flow (Fig. 11C), and after flow (Fig. 11D). These experiments are illustrated with human umbilical cord blood-derived endothelial progenitor cells (EPCs) and porcine EPCs2,3.This method is also applicable to other adherent cell types, e.g. smooth muscle cells (SMCs) or fibroblasts.The chamber and all parts of the circuit are easily sterilized with steam autoclaving. In contrast to other chambers, e.g. microfluidic chambers, large numbers of cells (> 1 million depending on cell size) can be recovered after the flow experiment under sterile conditions for cell culture or other experiments, e.g. DNA or RNA extraction, or immunohistochemistry (Fig. 11E), or scanning electron microscopy5. The shear stress can be adjusted by varying the flow rate of the perfusate, the fluid viscosity, or the channel height and width. The latter can reduce fluid volume or cell needs while ensuring that one-dimensional flow is maintained. It is not necessary to measure chamber height between experiments, since the chamber height does not depend on the use of gaskets, which greatly increases the ease of multiple experiments. Furthermore, the circuit design easily enables the collection of perfusate samples for analysis and/or quantification of metabolites secreted by cells under fluid shear stress exposure, e.g. nitric oxide (Fig. 12)6.  相似文献   

14.
15.
Time-lapsed films of particle motion on the leading lamella of chick heart fibroblasts and mouse peritoneal macrophages were analyzed. The particles were composed of powdered glass or powdered aminated polystyrene and were 0.5-1.0 micrometer in radius. Particle motions were described by steps in position from one frame to the time-lapse movies to the next. The statistics of the step-size distribution of the particles were consistent with a particle in Brownian motion subject to a constant force. From the Brownian movement, we have calculated the two-dimensional diffusion coefficient of different particles. These vary by more than an order of magnitude (10(-11)-10(-10) cm2/s) even for particles composed of the same material and located very close to each other on the surface of the cell. This variation was not correlated with particle size but is interpretable as a result of different numbers of adhesive bonds holding the particles to the cells. The constant component of particle movement can be interpreted as a result of a constant force acting on each particle (0.1-1.0 x 10(-8) dyn). Variations in the fractional coefficient for particles close to each other on the cell surface do not yield corresponding differences in velocity, suggesting that the frictional coefficient and the driving force vary together. This is consistent with the hypothesis that the particles are carried by flow of the membrane as a whole or by flow of some submembrane material. The utility of our methods for monitoring cell motile behavior in biologically interesting situations, such as a chemotactic gradient, is discussed.  相似文献   

16.
A key factor in gene or drug therapy is the development of carriers that can efficiently reach targeted cells from a distal administration. In many gene/drug delivery studies, results obtained in 2D cultures fail to translate to similar results in vivo. In this work, we developed a perfusable 3D chamber for studying nanoparticle penetration and transport in cell-gel soft tissue cultures. The compartmented chamber is made of a polydimethylsiloxane (PDMS) top layer with the chamber features, created using micromachined lithography, bonded to a bottom glass coverslip. A solution of cells embedded in a hydrogel is loaded in the chamber between PDMS posts that serve as anchors to the cell-matrix at the gel-media interface. The chamber offers the following unique features: (i) rapid fabrication and simplicity in assembly, (ii) direct in situ cell imaging in a plane normal to the direction of flow or action, (iii) an easily configurable and controllable environment conducive cell culture under static or interstitial flow conditions, and (iv) facile recovery of live cells from chambers for post-experimental analysis. To assess the chamber, we delivered fluorescently labeled nanoparticles of three distinct sizes to cells-embedded Matrigels in the 3D chamber under flow and static conditions. Penetration of nanoparticles were enhanced under interstitial flow while live cell imaging and flow cytometry of recovered cells revealed particle size restrictions to efficient delivery. Although designed for delivery studies, the chamber is versatile and can be easily modified. Thus it may have broad applications for biological, tissue engineering, and therapeutic studies.  相似文献   

17.
An alternative culture system has been developed based on a conventional tissue culture plate (3.5 cm diameter) which is changed into a closed perfusion chamber. The system can easily be scaled up from one to several chambers. The shape and the size of the area of cell growth may be designed to individual experimental demands. The whole culture chamber is optically accessible, so cell growth and morphology can be evaluated by light microscopy. Furthermore the cellular physiology can be characterised by any fluorimetric assay using a bottom type fluorescence reader. A peristaltic pump sustains a constant medium flow through the chamber thus creating true homeostasis. The use of HPLC-valves and connectors allows the switching between different media or assay solutions. Thus it is possible to perform in situ assays also measuring transient effects. A protocol for vitality tests using calcein-AM is worked out for an adherent cell line and for a suspension cell line. The lower detection limits are 7 × 102 cells cm-2 for the adherent cells and 5 × 104 cells mL-1 for the suspension cells. The upper limits are 1–2 × 105 cells cm-2 respectively 8 × 106 cells mL-1.  相似文献   

18.
The lipoprotein lipase activity (LPLA) eluted from human adipose tissue was measured after percutaneous biopsy in the fasting state. A positive and significant correlation was found between LPLA per 10(6) cells or per cell surface unit and cell volume in 27 normal and obese subjects in weight balance and on maintenance diet. Such a correlation was also found in 13 diabetic subjects before treatment. In 11 obese subjects subjected to a restricted diet, LPLA dropped dramatically without a significant change in cell size, blunting the cell size effect. In diabetic subjects the LPLA per cell was significantly lower than in nondiabetic people with similar adipose cell volume.  相似文献   

19.
We have developed a platform for cell analysis based on immunomagnetic selection and magnetic alignment of cells in combination with an epi-illumination tracking and detection system. Whole blood was labeled with ferromagnetic nanoparticles and fluorescent probes, and placed in a magnetic field in a chamber. Cells labeled with ferromagnetic nanoparticles moved upward and aligned along ferromagnetic lines deposited by lithographic techniques on an optically transparent surface of the chamber. An epi-illumination system using a 635 nm laser diode as a light source scanned the lines and measured signals obtained from the aligned cells. The cell counts per unit of blood volume obtained with the system correlated well with those obtained from the counts from a standard hematology analyzer and flow cytometer. The cell analysis platform is significantly less complex and more sensitive than current cell analysis equipment and provides additional functionality through its ability to subject the cells to repeated and varied analyses while they remain in a natural environment (i.e., whole blood).  相似文献   

20.
This protocol describes the core methodology for the fabrication of bar-coded hydrogel microparticles, the capture and labeling of protein targets and the rapid microfluidic scanning of particles for multiplexed detection. Multifunctional hydrogel particles made from poly(ethylene glycol) serve as a sensitive, nonfouling and bio-inert suspension array for the multiplexed measurement of proteins. Each particle type bears a distinctive graphical code consisting of unpolymerized holes in the wafer structure of the microparticle; this code serves to identify the antibody probe covalently incorporated throughout a separate probe region of the particle. The protocol for protein detection can be separated into three steps: (i) synthesis of particles via microfluidic flow lithography at a rate of 16,000 particles per hour; (ii) a 3-4-h assay in which protein targets are captured and labeled within particles using an antibody sandwich technique; and (iii) a flow scanning procedure to detect bar codes and quantify corresponding targets at rates of 25 particles per s. By using the techniques described, single- or multiple-probe particles can be reproducibly synthesized and used in customizable multiplexed panels to measure protein targets over a three-log range and at concentrations as low as 1 pg ml(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号