首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc metallized Phthalocyanine (ZnPcSmix), a potent photosensitizer, is conjugated to gold dendrimer encapsulated nanoparticles (AuDENPs) in order to improve the efficacy of photodynamic therapy (PDT) using MCF‐7 breast cancer cells and WS1 fibroblast cells as a control. Both ZnPcSmix and AuDENPs are mixed in a nitrogen atmosphere for 48 hours and characterization analysis conducted using ultraviolet‐visible (UV‐vis) spectrometry for spectral properties, transmission electron microscopy (TEM) for morphological features and zeta potential measurement for surface stability and size distribution of the compound obtained or of the multiple particles delivery complex (MPDC). Cell viability, proliferation and membrane damage following PDT are assessed by the trypan blue exclusion test, adenosine triphosphate luminescence and lactate dehydrogenase cytotoxicity assays, respectively. Stable MPDCs are spherical shaped with a diameter lesser than 5 nm, and have a maximum absorption peak at 676 nm. The MPDC‐mediated PDT induces a decrease in cell viability and proliferation, and increased membrane damage or cytotoxicity. The conjugation enhances the therapeutic efficiency of PDT by improving drug delivery and targeting of MCF‐7 cancer cells.   相似文献   

2.
Photodynamic therapy (PDT) and photothermal therapy (PTT) are emerging modalities for the treatment of tumors and nonmalignant conditions, based on the use of photosensitizers to generate singlet oxygen or heat, respectively, upon light (laser) irradiation. They have potential advantages over conventional treatments, being minimally invasive with precise spatial‐temporal selectivity and reduced side effects. However, most clinically employed PDT agents are activated at visible (vis) wavelengths for which the tissue penetration and, hence, effective treatment depth are compromised. In addition, the lipophilicity of near‐infrared (NIR) photothermal agents limits their use and efficiency. To achieve combined PDT/PTT effects, both excitation wavelengths need to be tuned into the NIR spectral window of biological tissues. This paper reports the synthesis of neodymium‐doped upconversion nanoparticles (NaYF4:Yb,Er,Nd@NaYF4:Nd) that convert 800 nm light into vis wavelengths, which can then activate conventional photosensitizers on the nanoparticle surface for PDT. Covalently bonded IR‐780 dyes can readily be activated by 800 nm laser irradiation. The PEGylated nanoplatform exhibited a narrow size distribution, good stability and efficient generation of singlet oxygen under laser irradiation. The in vitro photocytotoxicity of this engineered nanoplatform as either a PDT or PTT agent in HeLa cells is demonstrated, while fluorescence microscopy in nanoplatform‐incubated cells highlights its potential for bioimaging.  相似文献   

3.
Meso-to-meso ethyne-bridged tris[(porphinato)zinc(II)] (PZn(3)) near-infrared (NIR) fluorophores (lambda(em)(max) approximately 800 nm) can be rendered sufficiently amphiphilic to enable their facile incorporation into the hydrophobic core of the apo form of low-density lipoprotein (apo-LDL). These NIR fluorophores are notable in that they manifest low energy excited states polarized exclusively along the long axis of the supermolecule, broad spectral coverage of the visible and high energy NIR spectral domains, intense S(0)-->S(1) transition moments, and comparably large S(1)-->S(0) emission dipole strengths. The reconstituted LDL(PZn(3)) proteins can be used to deliver rapidly hundreds of copies of PZn(3) to a given murine B16 melanoma cell via LDL receptor-mediated endocytosis. PZn(3)-based NIRFs and their corresponding LDL(PZn(3)) proteins have been shown to display minimal cytotoxicity. Confocal NIR fluorescence microscopy evinces that B16 cells can be imaged at very low doses (approximately nM) of NIRF. The highly attractive photophysical properties of PZn(3) and closely related chromophores, coupled with their lack of toxicity and compatibility with uptake into apo-LDL and subsequent rapid delivery to B16 cells via LDLr-mediated endocytosis, suggest the potential utility of this platform for NIR optical imaging of cancer cells in vivo.  相似文献   

4.
During atherogenesis, the extracellular pH of atherosclerotic lesions decreases. Here, we examined the effect of low, but physiologically plausible pH on aggregation of modified LDL, one of the key processes in atherogenesis. LDL was treated with SMase, and aggregation of the SMase-treated LDL was followed at pH 5.5-7.5. The lower the pH, the more extensive was the aggregation of identically prelipolyzed LDL particles. At pH 5.5-6.0, the aggregates were much larger (size >1 μm) than those formed at neutral pH (100-200 nm). SMase treatment was found to lead to a dramatic decrease in α-helix and concomitant increase in β-sheet structures of apoB-100. Particle aggregation was caused by interactions between newly exposed segments of apoB-100. LDL-derived lipid microemulsions lacking apoB-100 failed to form large aggregates. SMase-induced LDL aggregation could be blocked by lowering the incubation temperature to 15°C, which also inhibited the changes in the conformation of apoB-100, by proteolytic degradation of apoB-100 after SMase-treatment, and by HDL particles. Taken together, sphingomyelin hydrolysis induces exposure of protease-sensitive sites of apoB-100, whose interactions govern subsequent particle aggregation. The supersized LDL aggregates may contribute to the retention of LDL lipids in acidic areas of atherosclerosis-susceptible sites in the arterial intima.  相似文献   

5.
Interaction of human low-density lipoproteins (LDL) with discoidal complexes comprised of egg yolk phosphatidylcholine and human apolipoprotein A-I (molar ratio, 88:1, respectively) was investigated. The multicomponent gradient gel electrophoretic pattern of LDL is transformed to one that includes a predominant component with an apparent particle diameter larger than that of the initial major LDL but still in the size range of normal LDL. The apparent particle diameter increase (range, 0.2-3.5 nm) is proportional to the increase (range, 6-40%) in LDL phospholipid/protein weight ratio following incubation (37 degrees C; 6 and 24 h); the smaller the initial LDL diameter, the greater the apparent particle diameter increase and percentage of phospholipid uptake. The LDL unesterified cholesterol/protein weight ratio decreases (range, 33-39%), but does not correlate with the increase in apparent particle diameter value. Interaction products are round particles with intact apolipoprotein B and show no evidence of phospholipid degradation. The products appear more dense than expected from the size vs. density relationship observed for nonincubated LDL subspecies. In addition to products in the normal LDL size range, larger components (apparent particle diameter range, 29.0-41.2 nm) also form and may be association complexes of phospholipid-modified LDL. Our results indicate that phospholipid uptake by LDL may contribute to the particle size polydispersity observed in plasma LDL.  相似文献   

6.
Confluent monolayers of the human hepatoblastoma-derived cell line, Hep G2, were incubated in serum-free medium. Conditioned medium was ultracentrifugally separated into d less than 1.063 g/ml and d 1.063-1.20 g/ml fractions since very little VLDL was observed. The d less than 1.063 g/ml fraction was examined by electron microscopy; it contained particles of 24.5 +/- 2.3 nm diameter, similar in size to plasma LDL; a similar size was demonstrated by nondenaturing gradient gel electrophoresis. These particles possessed apoB-100 only. The d less than 1.063 g/ml fraction had a lipid composition unlike that of plasma LDL; unesterified cholesterol was elevated, there was relatively little cholesteryl ester, and triglyceride was the major core lipid. The d 1.063-1.20 g/ml fraction was heterogeneous in size and morphology. Electron microscopy revealed discoidal particles (14.9 +/- 3.2 nm long axis and 4.5 +/- 0.2 nm short axis) as well as small spherical ones (7.6 +/- 1.4 nm diameter). Nondenaturing gradient gel electrophoresis consistently showed the presence of peaks at 13.4 11.9, 9.7, and 7.4 nm. The latter peak was conspicuous and probably corresponded to the small spherical structures seen by electron microscopy. Unlike plasma HDL, Hep G2 d 1.063-1.20 g/ml lipoproteins contained little or no stainable material in the (HDL3a)gge region by gradient gel electrophoresis. Hep G2 d 1.063-1.20 g/ml lipoproteins differed significantly in composition from their plasma counterparts; unesterified cholesterol and phospholipid were elevated and the mole ratio of unesterified cholesterol to phospholipid was 0.8. Cholesteryl ester content was extremely low. ApoA-I was the major apolipoprotein, while apoE was the next most abundant protein; small quantities of apoA-II and apoCs were also present. Immunoblot analysis of the d 1.063-1.20 g/ml fraction after gradient gel electrophoresis showed that apoE was localized in the larger pore region of the gel (apparent diameter greater than 12.2 nm); the apoA-I distribution in this fraction was very broad (7.1-12.2 nm), and included a distinct band at 7.4 nm. Immunoblotting after gradient gel electrophoresis of concentrated medium revealed that a significant fraction of apoA-I in the uncentrifuged medium was in a lipid-poor or lipid-free form. This cell line may be a useful model for investigating the metabolism of newly formed HDL.  相似文献   

7.
Guinea pigs (n=10/group) were fed one of three diets: a high carbohydrate (CHO) (42% energy), low cholesterol (0.04%) diet (LChHC), a diet with the same amount of CHO but with 0.25% cholesterol (HChHC) or a diet with 11% of energy from CHO and 0.25% cholesterol (HChLC) for 12 weeks. VLDL- and LDL cholesterol (LDL-C) were higher in the HChLC and HChHC groups than in the LChHC group (P<.0001). Lipoprotein subclasses and size were analyzed by nuclear magnetic resonance. Dietary cholesterol (HChHC and HChLC groups) resulted in larger VLDL particles (71.1+/-6.9, 78.9+/-3.33 nm, respectively) than those in the LChHC group (44.3+/-10.8 nm). In addition, there were higher concentrations of the large VLDL (>60 nm) and the medium VLDL (>35 nm) in the high cholesterol groups (P<.01). Similarly, the concentration of the medium (>8.2 nm) and small HDL (>7.2 nm) was higher in the HChHC and HChLC groups (P<.001). In contrast, CHO restriction affected the concentrations of LDL subfractions. The number of total LDL particles was lower in the HChLC (291.3+/-85.0 nmol/L) than in the HChHC group (467.6+/-113.1 nmol/L), indicating that the cholesterol in LDL was distributed in less particles in the former group. The concentrations of medium LDL (>19.8 nm) (98.4+/-90.8) and small LDL (>18 nm) (29.3+/-24.9 nmol/L) were lower in the HChLC group than in the HChHC group (261.8+/-105.8 and 64.9+/-27.9 nmol/L, respectively). These results indicate that dietary cholesterol increased the atherogenicity of both VLDL and HDL while CHO restriction increased the number of large LDL and decreased the concentrations of the more atherogenic smaller LDL subfractions.  相似文献   

8.
Six water-soluble free-base porphyrin-Ru(II) conjugates, 1-3, and Zn(II) porphyrin-Ru(II) conjugates, 4-6, with different linkers between the hydrophobic porphyrin moiety and the hydrophilic Ru(II)-polypyridyl complex, have been synthesized. The linear and two-photon-induced photophysical properties of these conjugates were measured and evaluated for their potential application as dual in vitro imaging and photodynamic therapeutic (PDT) agents. Conjugates 1-3, with their high luminescence and singlet oxygen quantum yields, were selected for further study of their cellular uptake, subcellular localization, and cytotoxic and photocytotoxic (under linear and two-photon excitation) properties using HeLa cells. Conjugate 2, with its hydrophobic phenylethynyl linker, was shown to be highly promising for further development as a bifunctional probe for two-photon (NIR) induced PDT and in vitro imaging. Cellular uptake and subcellular localization properties were shown to be crucial to its PDT efficacy.  相似文献   

9.
alpha-Tocopheryl succinate (alpha-TS) is a potent inhibitor of tumor cell proliferation. The goal of the present study was to investigate whether and to what extent alpha-TS associates with plasma lipoproteins and if alpha-TS-enriched lipoproteins inhibit breast cancer cell growth in a manner comparable to the free drug. In vitro enrichment of human plasma revealed that alpha-TS readily associated with the main lipoprotein classes, findings confirmed in vivo in mice. At the highest alpha-TS concentrations, lipoproteins carrying 50000 (VLDL), 5000 (LDL) and 700 (HDL) alpha-TS molecules per lipoprotein particle were generated. alpha-TS enrichment generated lipoprotein particles with slightly decreased density and increased particle radius. To study whether the level of LDL-receptor (LDL-R) expression affects alpha-TS uptake from apoB/E containing lipoprotein particles human breast cancer cells with low (MCF-7) and normal (HBL-100) LDL-R expression were used. The uptake of free, VLDL- and (apoE-free) HDL(3)-associated alpha-TS was nearly identical for both cell lines. In contrast, uptake of LDL-associated alpha-TS by HBL-100 cells (normal LDL-R expression) was about twice as high as compared to MCF-7 cells (low LDL-R expression). VLDL and LDL-associated alpha-TS inhibited proliferation most effectively at the highest concentration of alpha-TS used (100% inhibition of MCF-7 growth with 20 microg/ml of lipoprotein-associated alpha-TS). However, also alpha-TS-free VLDL and LDL inhibited HBL-100 cell proliferation up to 55%. In both cell lines, alpha-TS-enriched HDL(3) inhibited cell growth by 40-60%. Incubation of both cell lines in the presence of free or lipoprotein-associated alpha-TS resulted in DNA fragmentation indicative of apoptosis. Collectively, the present findings demonstrate that: (1) alpha-TS readily associates with lipoproteins in vitro and in vivo; (2) the lipoprotein-enrichment efficacy was dependent on the particle size and/or the triglyceride content of the lipoprotein; (3) uptake of LDL-associated alpha-TS was apparently dependent on the level of LDL-R expression; and (4) lipoproteins were efficient alpha-TS carriers inducing reduced cell proliferation rates and apoptosis in human breast cancer cells as observed for the free drug.  相似文献   

10.
Based on data from sedimentation velocity experiments, electrophoresis, electron microscopy, cellular uptake studies, scanning molecular sieve chromatography using a quasi-three-dimensional data display and flow performance liquid chromatography (FPLC), models for the interaction of human serum low density lipoprotein (LDL) and of apolipoprotein B (apo B) with a ternary lipid microemulsion (ME) are proposed. The initial step in the interaction of LDL (Stokes radius 110 A) with the ternary microemulsion (Stokes radius 270 A) appears to be attachment of the LDL to emulsion particles. This attachment is followed by a very slow fusion into particles having a radius of approx. 280 A. Sonication of this mixture yields large aggregates. Electron micrographs of deoxycholate-solubilized apo B indicate an arrangement of apo B resembling strings of beads. During incubation, these particles also attach to the ternary microemulsion particles and, upon sonication, spherical particles result which resemble native LDL particles in size. Scanning chromatography corroborates the electron microscopy results. By appropriate choice of display angles in a quasi-three-dimensional display of the scanning data (corrected for gel apparent absorbance) taken at equal time intervals during passage of a sample through the column, changes in molecular radius of less than 10 A can be detected visually. Such a display gives a quantitative estimate of 101 +/- 2 A for these particles (compared to 110 A for native LDL). The LDL-ME particles and apo B-ME particles compete efficiently with native LDL for cellular binding and uptake. Cellular association studies indicate that both LDL- and apo B-ME particles are effective vehicles for lipid delivery into cells.  相似文献   

11.
最近几年,采用红至红外波长(600~1 100 nm)的低功率光照(low-dose light,LDL)疗法对组织代谢系统、神经系统、血液循环系统和免疫系统等方面的调节效应已经引起了广泛关注.同时,生物能学和光生物学基础研究的发展推动了低功率光照在疾病治疗领域的革新.有报道指出,巨噬细胞、肥大细胞、中性粒细胞和淋巴细胞等免疫细胞能响应低功率光照,产生细胞因子和保护性的蛋白质分子来缓解一些疾病的进程.因此,本文将从分子、细胞和组织水平对低功率光照改善的一些疾病的免疫学现象及机制进行归纳总结.  相似文献   

12.
Extracellular type I tumor necrosis factor receptors (TNFR1) are generated by two mechanisms, proteolytic cleavage of TNFR1 ectodomains and release of full-length TNFR1 in the membranes of exosome-like vesicles. Here, we assessed whether TNFR1 exosome-like vesicles circulate in human blood. Immunoelectron microscopy of human serum demonstrated TNFR1 exosome-like vesicles, with a diameter of 27-36 nm, while Western blots of human plasma showed a 48-kDa TNFR1, consistent with a membrane-associated receptor. Gel filtration chromatography revealed that the 48-kDa TNFR1 in human plasma co-segregated with LDL particles by size, but segregated independently by density, demonstrating that they are distinct from LDL particles. Furthermore, the 48-kDa exosome-associated TNFR1 in human plasma contained a reduced content of N-linked carbohydrates as compared to the 55-kDa membrane-associated TNFR1 from human vascular endothelial cells. Thus, a distinct population of TNFR1 exosome-like vesicles circulate in human plasma and may modulate TNF-mediated inflammation.  相似文献   

13.
The fractionation and physicochemical characterization of the complex molecular components composing the plasma lipoprotein spectrum in the goose, a potential model of liver steatosis, are described. Twenty lipoprotein subfractions (d less than 1.222 g/ml) were separated by isopycnic density gradient ultracentrifugation, and characterized according to their chemical composition, particle size and particle heterogeneity, electrophoretic mobility, and apolipoprotein content. Analytical ultracentrifugal analyses showed high density lipoproteins (HDL) to predominate (approximately 450 mg/dl plasma), the peak of its distribution occurring at d approximately 1.090 g/ml (F1.21 approximately 2.5). The HDL class displayed marked density heterogeneity, HDL1-like particles being detected up to a lower density limit of approximately 1.020 g/ml, particle size decreasing progressively from 17-19 nm at d 1.024-1.028 g/ml to 10.5-12 nm (d 1.055-1.065 g/ml), and then remaining constant (approximately 9 nm) at densities greater than 1.065 g/ml. HDL subfractions displayed multiple size species; five subspecies were present over the range d 1.103-1.183 g/ml with diameters of 10.5, 9.9, 9.0, 8.2, and 7.5 nm, four in the range d 1.090-1.103 g/ml (diameters 10.5, 9.9, 9.0, and 8.2 nm) and three over the range d 1.076-1.090 g/ml (diameters 10.5, 9.9, and 9.0 nm). ApoA-I (Mr 25,000-27,000) was the major apolipoprotein in all goose HDL subfractions, while the minor components (apparent Mr 100,000, 91,000, 64,000, 58,000, approximately 42,000, 18,000 and apoC-like proteins) showed marked quantitative and qualitative variation across this density range (i.e., 1.055-1.165 g/ml). The d 1.063 g/ml boundary for separation of goose low density lipoproteins (LDL) from HDL was inappropriate, since HDL-like particles were present in the density interval 1.024-1.063 g/ml, while particles enriched in apoB (Mr approximately 540,000) and resembling LDL in size (approximately 20.5 nm) were detected up to a density of approximately 1.076 g/ml. Goose LDL itself was a major component of the profile (90-172 mg/dl) with a single peak of high flotation rate (Sf approximately 10.5). The physicochemical properties and apolipoprotein content of intermediate density lipoproteins (IDL) and LDL varied but little over the range d 1.013-1.040 g/ml, presenting as two particle species (diameters 20.5 and 21 nm) of essentially constant chemical composition; LDL (d 1.019-1.040 g/ml) were separated from HDL1 by gel filtration chromatography and appeared to contain primarily apoB with lesser amounts of apoA-I.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Small, dense LDL particles are typical for FCHL. Intravascular lipid exchange and net transfer among HDL, LDL, and triglyceride-rich lipoproteins as well as lipolysis in the VLDL-IDL-LDL cascade regulate properties of LDL. We investigated postheparin plasma activities of hepatic lipase (HL) and LPL, and plasma activities of CETP and phospholipid transfer protein (PLTP) in 191 individuals from 37 Finnish FCHL families. LDL peak particle diameter (LDL size) was measured with 2-10% gradient polyacrylamide gel electrophoresis. LDL size was significantly smaller in affected FCHL family members (n = 68) as compared with nonaffected FCHL family members (n = 78) or spouses (n = 45) (25.3 +/- 1.5 nm, 26.8 +/- 1.2 nm, and 26.6 +/- 1.2 nm, respectively, P < 0.001 for both). In affected FCHL family members, serum triglycerides were the strongest correlate for LDL size (r = -0.71, P < 0.001). In univariate correlation analysis LDL size was not associated with HL, LPL, CETP, and PLTP activities. In multivariate stepwise regression analysis, however, serum triglycerides, CETP activity, HL activity, and HDL cholesterol were significant predictors of LDL size in affected FCHL subjects (adjusted r (2) = 0.642).We conclude that serum triglyceride concentration is strongly correlated with LDL size in affected FCHL subjects. After adjustment for serum triglycerides, HL and CETP activities are associated with LDL size in FCHL.  相似文献   

15.
The subendothelial retention of low density lipoproteins (LDL) is believed to be the central pathogenic event in atherosclerosis, as stated by the response-to-retention hypothesis. Sphingomyelinase, an enzyme present in the arteries, has been proven to promote LDL aggregation. This study investigates the hypothesis that the extent of LDL aggregation is determined by the molar ratio of sphingomyelinase (SMase)-to-LDL, rather than the absolute concentrations. A mass action model is used to describe the aggregation process, and binding and dissociation rate constants are determined by fitting of dynamic light scattering data. The model predicts aggregate sizes that agree well with experimental observations. This study also tests the hypothesis that monocyte uptake of LDL correlates with aggregate size. LDL aggregates of three specific sizes (75, 100, and 150 nm) were incubated with J774A.1 cells and the net accumulation of LDL was monitored by measuring changes in the cellular cholesterol and protein content. Relative to a control sample, cholesterol accumulation was enhanced for aggregate sizes of 75 and 150 nm. The intermediate size aggregates, 100 nm, led to a very striking result demonstrating that cholesterol accumulation was markedly greater than the other samples, and was sufficient to cause cell death. These results underscore an important role of colloidal aggregation, and the influence of LDL aggregate size, in atherosclerosis.  相似文献   

16.
An electrochromatographic method was developed for the in situ delipidation of intact low-density lipoprotein (LDL) particles immobilized on the inner wall of a 50-μm inner diameter silica capillary. In this method, the immobilized LDL particles were delipidated with nonionic surfactant Nonidet P-40 at pH 7.4 and 25 °C, resulting in an apolipoprotein B-100 (apoB-100)-coated capillary surface. The mobility of the electroosmotic flow marker dimethyl sulfoxide gave information about the surface charge, and the retention factors of β-estradiol, testosterone, and progesterone were informative of the surface hydrophobicity. The calculated distribution coefficients of the steroids produced specific information about the affinity interactions of the steroids, with capillary surfaces coated either with intact LDL particles or with apoB-100. Delipidation with Nonidet P-40 resulted in a strong decrease in the hydrophobicity of the LDL coating. Atomic force microscopy images confirmed the loss of lipids from the LDL particles and the presence of apoB-100 protein coating. The in situ delipidation of LDL particles in capillaries represents a novel approach for the isolation of immobilized apoB-100 and for the determination of its pI value. The technique requires extremely low quantities of LDL particles, and it is simple and fast.  相似文献   

17.

Background

Low-density lipoprotein (LDL) particles, the major carriers of cholesterol in the human circulation, have a key role in cholesterol physiology and in the development of atherosclerosis. The most prominent structural components in LDL are the core-forming cholesteryl esters (CE) and the particle-encircling single copy of a huge, non-exchangeable protein, the apolipoprotein B-100 (apoB-100). The shape of native LDL particles and the conformation of native apoB-100 on the particles remain incompletely characterized at the physiological human body temperature (37°C).

Methodology/Principal Findings

To study native LDL particles, we applied cryo-electron microscopy to calculate 3D reconstructions of LDL particles in their hydrated state. Images of the particles vitrified at 6°C and 37°C resulted in reconstructions at ∼16 Å resolution at both temperatures. 3D variance map analysis revealed rigid and flexible domains of lipids and apoB-100 at both temperatures. The reconstructions showed less variability at 6°C than at 37°C, which reflected increased order of the core CE molecules, rather than decreased mobility of the apoB-100. Compact molecular packing of the core and order in a lipid-binding domain of apoB-100 were observed at 6°C, but not at 37°C. At 37°C we were able to highlight features in the LDL particles that are not clearly separable in 3D maps at 6°C. Segmentation of apoB-100 density, fitting of lipovitellin X-ray structure, and antibody mapping, jointly revealed the approximate locations of the individual domains of apoB-100 on the surface of native LDL particles.

Conclusions/Significance

Our study provides molecular background for further understanding of the link between structure and function of native LDL particles at physiological body temperature.  相似文献   

18.
Photodynamic therapy (PDT) shows a limited antitumor effect in treating gastrointestinal tumors because of improper light penetration or insufficient photosensitizer uptake. The aim of this study was to evaluate the cytotoxic effect of PDT combined with paclitaxel on in vitro cancer cells. In vitro photodynamic therapy was performed in gastric cancer cells (NCI-N87) and bile duct cancer cells (YGIC-6B) using verteporfin (2 ug mL(-1)) and a PTH light source (1 000 W, Oriel Co.) with 665-675 nm narrow band pass filter. Cytotoxicity was compared using the MTT assay between cancer cells treated with PDT alone or pretreated with paclitaxel (IC(25)). Apoptotic changes were evaluated using DAPI staining, DNA fragmentation analysis, Annexin V-FITC apoptosis assay, cell cycle analysis, and western blots for cytochrome c, Bax, and Bid. The PDT-induced cytotoxicity was potentiated by pretreating with low dose paclitaxel (P < 0.001). The enhanced cytotoxicity was due to an augmented apoptotic response mediated by exaggerated cytochrome c released from mitochondria, without Bax or Bid activation. These results show that paclitaxel pretreatment enhances PDT-mediated cancer therapy.  相似文献   

19.
The photodynamic therapy of tumors (PDT) is a recent and promising technique for the treatment of tumors which can be reached by the light (directly or by endoscopic illumination). Excellent results are now obtained with hematoporphyrin derivatives such as Photofrin II, provided the concerned tumors are small and well delimited. Porphyrins are transported in blood mainly by lipoproteins, and the low density lipoprotein (LDL) receptor-mediated pathway is probably one of the important factors involved in the selective accumulation of porphyrins by tumor tissues, as cancer cells generally express much more LDL receptors than normal cells. In the present paper, after a brief presentation of the biochemical basis of the light-dependent cytotoxicity of porphyrins, we shall examine the role of lipoproteins, especially LDL, in the transport and the cellular uptake of these compounds. We shall also present recent approaches for the improvement of the PDT efficiency.  相似文献   

20.
The ability to preserve low density lipoprotein (LDL) preparations frozen for weeks and months without changes in structure or biological properties is of potential use in long-term comparative studies of LDL. We demonstrate that freeze-thawing of LDL causes marked alterations in its structure and biological behavior, and that such changes can be prevented by the addition of sucrose to the LDL solution prior to freezing. Freezing LDL at -70 degrees C in the absence of sucrose resulted in aggregation and fusion of particles as measured by electron microscopy, spectrophotometric absorption, and column gel filtration. This was associated with increased binding affinity of monoclonal antibodies at epitopes distant from the receptor binding region. Functional changes induced by freezing included 3- to 10-fold increases in binding at 4 degrees C and 37 degrees C, and uptake of LDL in fibroblasts, attributable mainly to increases in nonspecific binding processes. Cryopreservation of LDL in 10% sucrose (w/v) completely prevented the structural and functional changes incurred after short-term freezing, and LDL cryopreserved in sucrose for as long as 18 months displayed cell binding, uptake, and degradation very similar to that of freshly obtained LDL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号