首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Retroviruses have a diploid genome and recombine at high frequency. Recombinant proviruses can be generated when two genetically different RNA genomes are packaged into the same retroviral particle. It was shown in several studies that recombinant proviruses could be generated in each round of HIV-1 replication, whereas the recombination rates of SNV and Mo-MuLV are 5 to 10-fold lower. The reason for these differences is not clear. One possibility is that these retroviruses may differ in their ability to copackage genomic RNAs produced at different chromosomal loci.

Results

To investigate whether there is a difference in the efficiency of heterodimer formation when two proviruses have the same or different chromosomal locations, we introduced two different Mo-MuLV-based retroviral vectors into the packaging cell line using either the cotransfection or sequential transfection procedure. The comparative study has shown that the frequency of recombination increased about four-fold when the cotransfection procedure was used. This difference was not associated with possible recombination of retroviral vectors during or after cotransfection and the ratios of retroviral virion RNAs were the same for two variants of transfection.

Conclusions

The results of this study indicate that a mechanism exists to enable the preferential copackaging of Mo-MuLV genomic RNA molecules that are transcribed on the same DNA template. The properties of Mo-MuLV genomic RNAs transport, processing or dimerization might be responsible for this preference. The data presented in this report can be useful when designing methods to study different aspects of replication and recombination of a diploid retroviral genome.  相似文献   

2.
How retroviruses regulate the amount of RNA genome packaged into each virion has remained a long-standing question. Our previous study showed that most HIV-1 particles contain two copies of viral RNA, indicating that the number of genomes packaged is tightly regulated. In this report, we examine the mechanism that controls the number of RNA genomes encapsidated into HIV-1 particles. We hypothesize that HIV-1 regulates genome packaging by either the mass or copy number of the viral RNA. These two distinct mechanisms predict different outcomes when the genome size deviates significantly from that of wild type. Regulation by RNA mass would result in multiple copies of a small genome or one copy of a large genome being packaged, whereas regulation by copy number would result in two copies of a genome being packaged independent of size. To distinguish between these two hypotheses, we examined the packaging of viral RNA that was larger (≈17 kb) or smaller (≈3 kb) than that of wild-type HIV-1 (≈9 kb) and found that most particles packaged two copies of the viral genome regardless of whether they were 17 kb or 3 kb. Therefore, HIV-1 regulates RNA genome encapsidation not by the mass of RNA but by packaging two copies of RNA. To further explore the mechanism that governs this regulation, we examined the packaging of viral RNAs containing two packaging signals that can form intermolecular dimers or intramolecular dimers (self-dimers) and found that one self-dimer is packaged. Therefore, HIV-1 recognizes one dimeric RNA instead of two copies of RNA. Our findings reveal that dimeric RNA recognition is the key mechanism that regulates HIV-1 genome encapsidation and provide insights into a critical step in the generation of infectious viruses.  相似文献   

3.
Flock house virus (FHV) is a bipartite, positive-strand RNA insect virus that encapsidates its two genomic RNAs in a single virion. It provides a convenient model system for studying the principles underlying the copackaging of multipartite viral RNA genomes. In this study, we used a baculovirus expression system to determine if the uncoupling of viral protein synthesis from RNA replication affected the packaging of FHV RNAs. We found that neither RNA1 (which encodes the viral replicase) nor RNA2 (which encodes the capsid protein) were packaged efficiently when capsid protein was supplied in trans from nonreplicating RNA. However, capsid protein synthesized in cis from replicating RNA2 packaged RNA2 efficiently in the presence and absence of RNA1. These results demonstrated that capsid protein translation from replicating RNA2 is required for specific packaging of the FHV genome. This type of coupling between genome replication and translation and RNA packaging has not been observed previously. We hypothesize that RNA2 replication and translation must be spatially coordinated in FHV-infected cells to facilitate retrieval of the viral RNAs for encapsidation by newly synthesized capsid protein. Spatial coordination of RNA and capsid protein synthesis may be key to specific genome packaging and assembly in other RNA viruses.  相似文献   

4.
Specificity of retroviral RNA packaging.   总被引:28,自引:25,他引:3  
  相似文献   

5.
Adenoviruses (Ads) are intermediate-sized mammalian DNA viruses with a double-stranded linear genome of 36 kb. The icosohedral virion has been shown to accommodate up to 105% of the wild-type genome length, and genomes larger than this size are either unpackageable or extremely unstable, frequently undergoing DNA rearrangement. Here we show that the Ad virion also has a lower packaging limit of approximately 75% of the wild-type genome length. We have constructed a series of vectors with sizes ranging from 15.1 to 33.6 kb and used these to show that in our Cre/loxP helper-dependent system (R. J. Parks, L. Chen, M. Anton, U. Sankar, M. A. Rudnicki, and F. L. Graham, Proc. Natl. Acad. Sci. USA 93:13565-13570, 1996), vectors with genomes greater than or equal to 27.7 kb are packaged with equal efficiencies, whereas vectors with smaller genomes are inefficiently packaged. A 15.1-kb vector, approximately half the size of the wild-type adenovirus genome, was packaged with an efficiency intermediate between that of the small (21.3- to 25.7-kb) and large (27.7- to 33.5-kb) vectors. Analysis of vector DNA after amplification in helper virus-infected cells showed that vectors below 75% of the Ad genome had undergone DNA rearrangements, whereas larger vectors were unaltered. The 15.1-kb vector was recovered primarily as a mix of head-to-tail and tail-to-tail covalent dimers, with a size of 30 kb. We conclude that the Ad virion can efficiently accommodate viral DNA of greater than 75% of the viral genome but that smaller viral genomes tend to undergo rearrangement, resulting in a final size of greater than approximately 27 kb before they can be efficiently packaged. Knowledge of the lower limit to Ad DNA packaging should allow for the design of better and more stable vectors.  相似文献   

6.
7.
It has been documented that spleen necrosis virus (SNV) can package murine leukemia virus (MLV) RNA efficiently and propagate MLV vectors to the same titers as it propagates SNV-based vectors. Although the SNV packaging signal (E) and MLV packaging signal (Ψ) have little sequence homology, similar double-hairpin RNA structures were predicted and supported by experimental evidence. To test whether SNV RNA can be packaged by MLV proteins, we modified an SNV vector to be expressed in an MLV-based murine helper cell line. Surprisingly, we found that MLV proteins could not support the replication of SNV vectors. The decrease in titer was approximately 2,000- to 20,000-fold in one round of retroviral replication. RNA analysis revealed that SNV RNA was not efficiently packaged by MLV proteins. RNA hybridization of the cellular and viral RNAs indicated that SNV RNA was packaged at least 25-fold less efficiently than MLV RNA, which was the sensitivity limit of the hybridization assay. The contrast between the MLV and SNV packaging specificity is striking. SNV proteins can recognize both SNV E and MLV Ψ, but MLV can recognize only MLV Ψ. This is the first demonstration of two retroviruses with nonreciprocal packaging specificities.  相似文献   

8.
Defective interfering (DI) RNAs are highly deleted forms of the infectious genome that are made by most families of RNA viruses. DI RNAs retain replication and packaging signals, are synthesized preferentially over infectious genomes, and are packaged as DI virus particles which can be transmitted to susceptible cells. Their ability to interfere with the replication of infectious virus in cell culture and their potential as antivirals in the clinic have long been known. However, until now, no realistic formulation has been described. In this review, we consider the early evidence of antiviral activity by DI viruses and, using the example of DI influenza A virus, outline developments that have led to the production of a cloned DI RNA that is highly active in preclinical studies not only against different subtypes of influenza A virus but also against heterologous respiratory viruses. These data suggest the timeliness of reassessing the potential of DI viruses as a novel class of antivirals that may have general applicability.  相似文献   

9.
10.
11.
Murine leukemia virus (MLV)-based vector RNA can be packaged and propagated by the proteins of spleen necrosis virus (SNV). We recently demonstrated that MLV proteins cannot support the replication of an SNV-based vector; RNA analysis revealed that MLV proteins cannot efficiently package SNV-based vector RNA. The domain in Gag responsible for the specificity of RNA packaging was identified using chimeric gag-pol expression constructs. A competitive packaging system was established by generating a cell line that expresses one viral vector RNA containing the MLV packaging signal (Psi) and another viral vector RNA containing the SNV packaging signal (E). The chimeric gag-pol expression constructs were introduced into the cells, and vector titers as well as the efficiency of RNA packaging were examined. Our data confirm that Gag is solely responsible for the selection of viral RNAs. Furthermore, the nucleocapsid (NC) domain in the SNV Gag is responsible for its ability to interact with both SNV E and MLV Psi. Replacement of the SNV NC with the MLV NC generated a chimeric Gag that could not package SNV RNA but retained its ability to package MLV RNA. A construct expressing SNV gag-MLV pol supported the replication of both MLV and SNV vectors, indicating that the gag and pol gene products from two different viruses can functionally cooperate to perform one cycle of retroviral replication. Viral titer data indicated that SNV cis-acting elements are not ideal substrates for MLV pol gene products since infectious viruses were generated at a lower efficiency. These results indicate that the nonreciprocal recognition between SNV and MLV extends beyond the Gag-RNA interaction and also includes interactions between Pol and other cis-acting elements.  相似文献   

12.
Human immunodeficiency virus type 2 (HIV-2) has been reported to have a distinct RNA packaging mechanism, referred to as cis packaging, in which Gag proteins package the RNA from which they were translated. We examined the progeny generated from dually infected cell lines that contain two HIV-2 proviruses, one with a wild-type gag/gag-pol and the other with a mutant gag that cannot express functional Gag/Gag-Pol. Viral titers and RNA analyses revealed that mutant viral RNAs can be packaged at efficiencies comparable to that of viral RNA from which wild-type Gag/Gag-Pol is translated. These results do not support the cis-packaging hypothesis but instead indicate that trans packaging is the major mechanism of HIV-2 RNA packaging. To further characterize the mechanisms of HIV-2 RNA packaging, we visualized HIV-2 RNA in individual particles by using fluorescent protein-tagged RNA-binding proteins that specifically recognize stem-loop motifs in the viral genomes, an assay termed single virion analysis. These studies revealed that >90% of the HIV-2 particles contained viral RNAs and that RNAs derived from different viruses were copackaged frequently. Furthermore, the frequencies of heterozygous particles in the viral population could be altered by changing a 6-nucleotide palindromic sequence at the 5'-untranslated region of the HIV-2 genome. This finding indicates that selection of copackaging RNA partners occurs prior to encapsidation and that HIV-2 Gag proteins primarily package one dimeric RNA rather than two monomeric RNAs. Additionally, single virion analyses demonstrated a similar RNA distribution in viral particles regardless of whether both viruses had a functional gag or one of the viruses had a nonfunctional gag, providing further support for the trans-packaging hypothesis. Together, these results revealed mechanisms of HIV-2 RNA packaging that are, contrary to previous studies, in many respects surprisingly similar to those of HIV-1.  相似文献   

13.
14.
15.
16.
Our previous studies using trans-complementation analysis of Kunjin virus (KUN) full-length cDNA clones harboring in-frame deletions in the NS3 gene demonstrated the inability of these defective complemented RNAs to be packaged into virus particles (W. J. Liu, P. L. Sedlak, N. Kondratieva, and A. A. Khromykh, J. Virol. 76:10766-10775). In this study we aimed to establish whether this requirement for NS3 in RNA packaging is determined by the secondary RNA structure of the NS3 gene or by the essential role of the translated NS3 gene product. Multiple silent mutations of three computer-predicted stable RNA structures in the NS3 coding region of KUN replicon RNA aimed at disrupting RNA secondary structure without affecting amino acid sequence did not affect RNA replication and packaging into virus-like particles in the packaging cell line, thus demonstrating that the predicted conserved RNA structures in the NS3 gene do not play a role in RNA replication and/or packaging. In contrast, double frameshift mutations in the NS3 coding region of full-length KUN RNA, producing scrambled NS3 protein but retaining secondary RNA structure, resulted in the loss of ability of these defective RNAs to be packaged into virus particles in complementation experiments in KUN replicon-expressing cells. Furthermore, the more robust complementation-packaging system based on established stable cell lines producing large amounts of complemented replicating NS3-deficient replicon RNAs and infection with KUN virus to provide structural proteins also failed to detect any secreted virus-like particles containing packaged NS3-deficient replicon RNAs. These results have now firmly established the requirement of KUN NS3 protein translated in cis for genome packaging into virus particles.  相似文献   

17.
As retroviruses assemble in infected cells, two copies of their full-length, unspliced RNA genomes are selected for packaging from a cellular milieu that contains a substantial excess of non-viral and spliced viral RNAs. Understanding the molecular details of genome packaging is important for the development of new antiviral strategies and to enhance the efficacy of retroviral vectors used in human gene therapy. Recent studies of viral RNA structure in vitro and in vivo and high-resolution studies of RNA fragments and protein-RNA complexes are helping to unravel the mechanism of genome packaging and providing the first glimpses of the initial stages of retrovirus assembly.  相似文献   

18.
BACKGROUND: Endogenous retroviruses contribute to the evolution of the host genome and can be associated with disease. Human endogenous retrovirus K (HERV-K) is related to the mouse mammary tumor virus and is present in the genomes of humans, apes and cercopithecoids (Old World monkeys). It is unknown how long ago in primate evolution the full-length HERV-K proviruses that are in the human genome today were formed. RESULTS: Ten full-length HERV-K proviruses were cloned from the human genome. Using provirus-specific probes, eight of the ten were found to be present in a genetically diverse set of humans but not in other extant hominoids. Intact preintegration sites for each of these eight proviruses were present in the apes. A ninth provirus was detected in the human, chimpanzee, bonobo and gorilla genomes, but not in the orang-utan genome. The tenth was found only in humans, chimpanzees and bonobos. Complete sequencing of six of the human-specific proviruses showed that full-length open reading frames for the retroviral protein precursors Gag-Pro-Pol or Env were each present in multiple proviruses. CONCLUSIONS: At least eight full-length HERV-K genomes that are in the human germline today integrated after humans diverged from chimpanzees. All of the viral open reading frames and cis-acting sequences necessary for HERV-K replication must have been intact during the recent time when these proviruses formed. Multiple full-length open reading frames for all HERV-K proteins are present in the human genome today.  相似文献   

19.
We describe biophysical and ultrastructural differences in genome release from adeno-associated virus (AAV) capsids packaging wild-type DNA, recombinant single-stranded DNA (ssDNA), or dimeric, self-complementary DNA (scDNA) genomes. Atomic force microscopy and electron microscopy (EM) revealed that AAV particles release packaged genomes and undergo marked changes in capsid morphology upon heating in physiological buffer (pH 7.2). When different AAV capsids packaging ss/scDNA varying in length from 72 to 123% of wild-type DNA (3.4 to 5.8 kb) were incrementally heated, the proportion of uncoated AAV capsids decreased with genome length as observed by EM. Genome release was further characterized by a fluorimetric assay, which demonstrated that acidic pH and high osmotic pressure suppress genome release from AAV particles. In addition, fluorimetric analysis corroborated an inverse correlation between packaged genome length and the temperature needed to induce uncoating. Surprisingly, scAAV vectors required significantly higher temperatures to uncoat than their ssDNA-packaging counterparts. However, externalization of VP1 N termini appears to be unaffected by packaged genome length or self-complementarity. Further analysis by tungsten-shadowing EM revealed striking differences in the morphologies of ssDNA and scDNA genomes upon release from intact capsids. Computational modeling and molecular dynamics simulations suggest that the unusual thermal stability of scAAV vectors might arise from partial base pairing and optimal organization of packaged scDNA. Our work further defines the biophysical mechanisms underlying adeno-associated virus uncoating and genome release.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号