首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synchronous and intermittent plant reproduction has been identified widely in diverse biomes. While synchronous flowering is normally observed within the same species, different species also flower in synchrony. A well-known example of interspecific synchrony is “general flowering" in tropical rain forests of Southeast Asia. Environmental factors, such as low temperature and drought, have been considered as major trigger of general flowering. However, environmental cues are not enough to explain general flowering because some trees do not flower even when they encounter favorable environmental cues. We propose alternative explanation of general flowering; “pollinator coupling”. When species flower synchronously, the elevated pollen and nectar resource may attract increased numbers of generalist pollinators, with a concomitant enhancement of pollination success (facilitation). However, under these circumstances, plants of different species may compete with one another for limited pollinator services, resulting in declines in pollination success for individual species (competition). Here, we present a model describing resource dynamics of individual trees serviced by generalist pollinators. We analyze combinations of conditions under which plants reproduce intermittently with synchronization within species, and/or (sometimes) between different species. We show that plants synchronize flowering when the number of pollinators attracted to an area increases at an accelerating rate with increasing numbers of flowers. In this case, facilitation of flowering by different species exceeds the negative influence of interspecific plant competition. We demonstrate mathematically that co-flowering of different species occurs under a much narrower range of circumstances than intraspecific co-flowering.  相似文献   

2.
The sclerophyllous, evergreen vegetation found in Mexico under tropical climate is named 'Mexical' (MEX) and presents many traits that have been thought to converge under a Mediterranean climate. Flowering phenology is strongly similar across Mediterranean-type ecosystems (MTEs) and this paper investigates MEX plant phenology in this context. The common history of the vegetation and the differences in the climatic conditions experienced by MEX and MTE taxa provide an ideal scenario to infer the relative importance of natural selection and historical constraints in the phenological response of plants to climatic conditions. This study has involved collecting field and bibliographic data on flowering phenology of MEX communities to detect (1) similarities at the community level between MTEs and MEX, (2) similarities between Tertiary and Quaternary taxa in MTEs and MEX, and (3) similarities between congeneric taxa from MEX and MTEs (taxa sharing a common ancestor but having evolved under different climates). Flowering in MEX does not occur mainly in spring, as in MTEs, but in summer, suggesting a response that maximizes water use in the rainy season. Flowering phenology of MEX species differed from their MTE congeneric species, suggesting that even though a common ancestor is shared, environmental pressures have led to different phenological responses in MEX and MTE plants. The flowering season for species that originated in the Tertiary and Quaternary did not differ in MEX, as expected, because of climatic uniformity along the whole time line. In MTEs, flowering differences between Tertiary and Quaternary species were not congruent, suggesting that the balance between the historical constraints and the selective force of the Mediterranean climate is different among the three MTEs, and a particular explanation is needed for each. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 138 , 297–303.  相似文献   

3.
The relative importance of natural selection in the diversification of organisms can be assessed indirectly using matrix correspondence. The present study determines the environmental and genetic correlates of microgeographical variation in the growth form, leaf form and flower morphology in populations of four Aeonium species from section Leuconium using partial regression methods. The phylogeny of the four species and the other 12 species in the section was deduced from amplified fragment length polymorphism (AFLP). Pubescence of floral organs and flower size correlate with the phylogeny while traits related to growth form, leaf form, flower construction and inflorescence size correlate with ecological factors. The variation in the latter four traits may therefore reflect selection by current ecological conditions while variation in pubescence and flower size may reflect historical events like neutral mutations, founder events and drift. Additionally, the morphological analyses revealed a large amount of variation in all traits within populations. This suggests a possible influence of microhabitat on the variation in morphology of Aeonium in the Canary Islands.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 76 , 521–533.  相似文献   

4.
Continually flowering plants bloom continuously throughout the year, as often seen in plants distributed along the roadsides or in the understory layers in Southeast Asia's tropical rain forests. Dillenia suffruticosa (Griff. ex Hook. f. & Thomson) Martelli (Dilleniaceae) is one such continually flowering shrub that flowers during periods of community‐wide mass flowering, general flowering (GF), and non‐GF. During irregularly occurring GF periods, when species of all forest layers flower synchronously for several months, some pollinators migrate to the canopy layer, where GF promotes the pollination success of participating plants. Continually flowering plants share the available pollinator community with GF plants, and the reproductive success of continually flowering plants may be affected during the GF period. To assess the effects of GF on the reproductive success of a diverse range of continually flowering plants, we examined the differences in pollinator density and reproductive success between GF and non‐GF periods in D. suffruticosa at four different research sites. Although the seed set differed among the four research sites, pollinator density and fruit set did not differ between GF and non‐GF periods or research sites. Our results suggest that the reproductive success of D. suffruticosa was maintained at an approximately constant level, regardless of the flowering phenology of the canopy layer or other vegetation components.  相似文献   

5.
Litter‐trapping plants have specialized growth habits and morphologies that enable them to capture falling leaf litter and other debris, which the plants use for nutrition after the litter has decayed. Litter is trapped via rosettes of leaves, specially modified leaves and/or upward‐growing roots (so‐called ‘root baskets’). Litter‐trappers, both epiphytic and terrestrial, are found throughout the tropics, with only a few extra‐tropical species, and they have evolved in many plant families. The trapped litter mass is a source of nutrients for litter‐trapping plants, as well as food and housing for commensal organisms. Despite their unique mode of life, litter‐trapping plants are not well documented, and many questions remain about their distribution, physiology and evolution.–© 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 554–586.  相似文献   

6.
The study of phenological aspects of plants involves the observation, recording and interpretation of the timing of their life history events. This review considers the phenology of leafing, flowering and fruit production in a range of species and communities. The selective forces (both abiotic and biotic) that influence the timing of these events are discussed. Within the limits imposed by phylogenetic constraints, the phenological patterns (timing, frequency, duration, degree of synchrony, etc.) of each phase are probably the result of a compromise between a variety of selective pressures, such as seasonal climatic changes, resource availability, and the presence of pollinators, predators and seed dispersers. Many studies on flowering times stress the role of interactions between plant species which share pollinators or predators. The timing of fruiting plays a key role in controlling the abundance and variety of obligate frugivores in many tropical communities. The importance of long-term recording is stressed, particularly in species which fruit irregularly. An understanding of the phenology of plants is crucial to the understanding of community function and diversity.  相似文献   

7.
The first systematic observation of a general flowering, a phenomenon unique to lowland mixed-dipterocarp forests in Southeast Asia, is presented. During general flowering, which occurs at irregular intervals of 3–10 yr, nearly all dipterocarp species together with species of other families come heavily into flower. We monitored reproductive phenology of 576 individual plants representing 305 species in 56 families in Sarawak, Malaysia. Observations continued for 53 mo from August 1992 and covered one episode of a general flowering cycle. Among 527 effective reproductive events during 43 mo, 57% were concentrated in the general flowering period (GFP) of 10 mo in 1996. We classified 257 species into flowering types based on timing and frequency of flowering. The most abundant type was “general flowering” (35%), which flowered only during GFP. The others were “supra-annual” (19%), “annual” (13%), and “sub-annual” (5%) types. General flowering type and temporal aggregation in reproductive events were commonly found among species in various categories of taxonomic groups, life forms, pollination systems, and fruit types. Possible causes for general flowering, such as promotion of pollination brought about by interspecific synchronization and paucity of climatic cues suitable for flowering trigger, are proposed, in addition to the predator satiation hypothesis of Janzen (1974) .  相似文献   

8.
The study explores whether or not there are convergent patterns in floral scent composition among plant species that completely or partially rely on butterflies for pollination. Floral scent compounds were analysed from 22 flowering butterfly-pollinated plant species, representing 13 families which originate mainly from temperate North Europe but also from tropical and temperate America. Scents were collected using the dynamic headspace adsorption method and identified with coupled gas chromatography and mass spectrometry (GC-MS). In total, 217 floral scent compounds were identified, with the number per species ranging from 8 to 65. The major emerging pattern is the occurrence of certain compounds emitted exclusively by the flowers of many of the investigated species in major amounts – the benzenoids phenylacetaldehyde and 2-phenylethanol, the monoterpenes linalool and linalool oxide (furanoid) I and II and the irregular terpene oxoisophorone. It is likely that these compounds serve as a signal to attract pollinating butterflies, and may have evolved in conjunction with the sensory capabilities of butterflies as a specific group of pollinators. While there is convergence in terms of the compounds sharing this function there has been a geographical divergence in terms of their relative abundance. The predominance (in terms of both numbers and relative amount) of benzenoids in many of the scent blends of the European temperate species and of linalool and its derivatives in those of the American species constitute two discernible groups among these plants.  © 2002. The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 140 , 129–153.  相似文献   

9.
Herbivory is one of the key interactions affecting plant fitness. Despite the large amount of data available on the effects of herbivores on various plant groups, we still know very little information about the interactions of herbivores with individuals having different ploidy levels. We studied the relationship of diploid and tetraploid Centaurea phrygia in natural and experimental garden conditions to the community of pre‐dispersal seed predators developing in flower heads of the plants. In addition, we collected a set of data on flowering phenology, and flower head morphology and chemistry to investigate potential mechanisms underlying the differences between cytotypes. The two cytotypes are strongly differentiated in their flower head morphology and chemistry as well as in their flowering phenology, with flower heads of diploids being larger, containing more secondary metabolites and flowering later. Also, the two cytotypes strongly differed in the composition of insect communities in the flower heads and tetraploids suffered higher seed damage than the diploids. The differences between cytotypes in seed damage were generally consistent across datasets, indicating that the differences are not due to differences in the habitats in which the cytotypes occur but are due to differences in particular biological characteristics of the plants. The diversity and composition of insect communities, however, strongly varied between years and environments. Flowering phenology could explain part, but not all of the differences observed between cytotypes, indicating that other factors such as flower head morphology or chemistry could also play a role. The study indicated that the differences between the two cytotypes are important determinant of the plant–herbivore interactions in the system. Although we identified multiple factors that could explain the different associations, further research is needed to assess the relative importance of each of these factors. © 2015 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 115 , 270–287.  相似文献   

10.
Flowering synchrony is essential for plant reproductive success, especially in the case of small‐sized populations of self‐incompatible species. Closely related to synchrony, flowering intensity influences pollinator attraction and pollinator movements. Thus, a high flowering intensity may increase pollinator attraction but, at the same time, may also increase the probability of geitonogamous pollinations. Depending on the mating system, the female fitness of plants in small populations may be affected by both the positive effects of higher flowering synchrony and pollinator attraction and the negative effects of geitonogamous pollinations induced by a high flowering intensity. It was hypothesized that different‐sized plants in a population would show contrasting flowering patterns, resulting in differences in pollinator behaviour. These influences could result in differences in mating and female reproductive success. This hypothesis was tested by studying the flowering pattern of Erodium paularense (Geraniaceae), a rare and endangered endemic of central Spain. The temporal distribution of flower production was explored throughout the reproductive season, and the probability of xenogamy and geitonogamy and their relationship to plant size and fitness components were calculated. The analysis of this partially self‐compatible species showed diverse flowering patterns related to different plant sizes. Small plants produced a larger number of seeds per fruit in spite of having lower values of flowering synchrony. By contrast, large plants produced a larger number of seeds from geitonogamous pollinations. The effect of different flower displays and outcrossing rates on seed set varied throughout the season in the different groups. Our findings highlight the relevance of individual plant size‐dependent phenology on female reproductive success and, in particular, on the relationship between flowering synchrony and fitness. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 156 , 227–236.  相似文献   

11.
Different kinds of species interactions can lead to different structures within ecological networks. Antagonistic interactions (such as between herbivores and host plants) often promote increasing host specificity within a compartmentalized network structure, whereas mutualistic networks (such as pollination networks) are associated with higher levels of generalization and form nested network structures. However, we recently showed that the host specificity of flower‐visiting beetles from three different feeding guilds (herbivores, fungivores, and predators) in an Australian rainforest canopy was equal to that of herbivores on leaves, suggesting that antagonistic herbivores on leaves are no more specialized than flower‐visitors. We therefore set out to test whether similarities in the host specificity of these different assemblages reflect similarities in underlying network structures. As shown before at the species level, mutualistic communities on flowers showed levels of specialization at the network scale similar to those of the antagonistic herbivore community on leaves. However, the network structure differed, with flower‐visiting assemblages displaying a significantly more nested structure than folivores, and folivores displaying a significantly more compartmentalized structure than flower‐visitors. These results, which need further testing in other forest systems, demonstrate that both antagonistic and mutualistic interactions can result in equally high levels of host specialization among beetle assemblages in tropical rainforests. If this is a widespread phenomenon, it may alter our current perceptions of food web dynamics, species diversity patterns, and co‐evolution in tropical rainforests. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2015, 114 , 287–295.  相似文献   

12.
Floral syndromes and pollination of three species of Phyllostachys bamboos were studied in Central China in 1999 and 2000. All were protogynous. Stigmas were receptive and had pollen deposited on them 2 days before anther dehiscence. The period of anthesis in the three bamboos was 3 days. Individual pollen grains of the three species were similar in size (30–40 μm in diameter) and had features typical of wind-pollinated plants. The ratios of pollen to ovules (p/o ratio) in P . nidularia , P . heteroclada and P . nuda were 6500, 12 700 and 33 000, respectively. Mean pollen loads on each flower (one ovule) of these three species were 7.3, 8.8 and 9.4 grains, respectively. Pollen transfer in P . heteroclada and P . nuda depended on wind, and no flower visitors were seen in the field. However, in P . nidularia , Apis cerana Fab. was a frequent pollen collector observed from 1200 to 1330 h. The visits undertaken by thousands of honeybees resulted in a large number of pollen grains being released from the anthers in a short time (10–15 min) in one day, which accelerated and synchronized the release of pollen from the anthers that seemed to enhance the chance of pollination. Given that honeybees played an indirect role in pollen transfer this could partly explain the low p/o ratio in P . nidularia . Reviewing the literature, we found insect visits to flowers of bamboos were not infrequent phenomena. We suggest pollination efficiency should be considered as one selective factor in attempts to understand mast flowering in bamboo. © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 138 , 1–7.  相似文献   

13.
At irregular intervals of 2 to 10 years the aseasonal tropical rain forests in west Malesia come into heavy mass flowering, followed by mast fruiting. During a heavy flowering almost half the mature individuals and over 80% of the canopy and emergent tree Species in a forest may flower. This involves over 200 tree species in a forest flowering over a short period of 3–4 months. The pollination needs during a mass flowering appears to be overcome in several ways. A rapid increase in the number of pollinators seems to occur in the forest. This is partly caused by the migration of pollinators from the fringes of the forest to forage on the superabundance of flowers. At the same time, some groups of plants which share common pollinators appear to reduce pollinator competition by flowering in interspecific sequence. Many members of the family Dipterocarpaceae have evolved sequential flowering too. They also share unique pollinators, common flower thrips which appear to build up rapidly in numbers by feeding and breeding on the millions of dipterocarp flower buds which are present several weeks before the flowering. The environmental cue for this irregular, but widespread mass flowering can be traced to a small dip of about 2° C below mean night-time temperature for 4 or 5 nights. The conditions for such temperature drops occur during El Nino events.  相似文献   

14.
Many species of Dipterocarpaceae and other plant families reproduce synchronously at irregular, multi‐year intervals in Southeast Asian forests. These community‐wide general flowering events are thought to facilitate seed survival through satiation of generalist seed predators. During a general flowering event, closely related Shorea species (Dipterocarpaceae) stagger their flowering times by several weeks, which may minimize cross pollination and interspecific competition for pollinators. Generalist, pre‐dispersal seed predators might also track flowering hosts and influence predator satiation. We addressed the question of whether pre‐dispersal seed predation differed between early and late flowering Shorea species by monitoring flowering, fruiting and seed predation intensity over two general flowering events at the Pasoh Research Forest, Malaysia. Pre‐dispersal insect seed predators killed up to 63 percent of developing seeds, with Nanophyes shoreae, a weevil that feeds on immature seeds being the most important predator for all Shorea species. This weevil caused significantly greater pre‐dispersal seed predation in earlier flowering species. Long larval development time precluded oviposition by adults that emerged from the earliest flowering Shorea on the final flowering Shorea. In contrast, larvae of weevils that feed on mature seeds before seed dispersal (Alcidodes spp.), appeared in seeds of all Shorea species almost simultaneously. We conclude that general flowering events have the potential to satiate post‐dispersal seed predators and pre‐dispersal seed predators of mature fruit, but are less effective at satiating pre‐dispersal predators of immature fruit attacking early flowering species.  相似文献   

15.
Forests with different flora and vegetation types harbor different assemblages of flower visitors, and plant-pollinator interactions vary among forests. In monsoon-dominated East and Southeast Asia, there is a characteristic gradient in climate along latitude, creating a broad spectrum of forest types with potentially diverse pollinator communities. To detect a geographical pattern of plant-pollinator interactions, we investigated flowering phenology and pollinator assemblages in the least-studied forest type, i.e., tropical monsoon forest, in the Vientiane plain in Laos. Throughout the 5-year study, we observed 171 plant species blooming and detected flower visitors on 145 species. Flowering occurred throughout the year, although the number of flowering plant species peaked at the end of dry season. The dominant canopy trees, including Dipterocarpaceae, bloomed annually, in contrast to the supra-annual general flowering that occurs in Southeast Asian tropical rain forests. Among the 134 native plant species, 68 were pollinated by hymenopterans and others by lepidopterans, beetles, flies, or diverse insects. Among the observed bees, Xylocopa, megachilids, and honeybees mainly contributed to the pollination of canopy trees, whereas long-tongued Amegilla bees pollinated diverse perennials with long corolla tubes. This is the first community-level study of plant-pollinator interactions in an Asian tropical monsoon forest ecosystem.  相似文献   

16.
Seed dispersal is a fundamental life history trait in plants. Although the recent surge of interest in seed dispersal by ants (myrmecochory) has added greatly to knowledge on the ecology of seed dispersal and ant–plant mutualisms, myrmecochory also represents a unique opportunity to examine the links between seed dispersal and evolution in flowering plants. Here we review the taxonomic, phylogenetic and biogeographic distribution of myrmecochory in flowering plants. Myrmecochory is mediated by elaiosomes, i.e., lipid-rich seed appendages that attract ants and serve as rewards for dispersal. We surveyed the literature for evidence of elaiosomes in angiosperm plants to estimate the global prevalence of myrmecochory. We then searched the literature for phylogenetic reconstructions to identify myrmecochorous lineages and to estimate the minimum number of independent evolutionary origins of myrmecochory. We found that myrmecochory is present in at least 11 000 species or 4.5% of all species, in 334 genera or 2.5% of all genera and in 77 families or 17% of all families of angiosperm plants. We identified at least 101, but possibly up to 147, independent origins of myrmecochory. We estimated three or more origins in 13 families and found that at least half the genera are myrmecochorous in 10 families. Most myrmecochorous lineages were Australian, South African or northern temperate (Holarctic). A mapping of families containing myrmecochorous genera on a dated angiosperm supertree showed that myrmecochory has evolved in most of the major angiosperm lineages and that it is more frequent in younger families (crown group age <80 million years) than in older ones. We suggest that the relatively low physiological and energetic costs of producing an elaiosome and the consistent selective benefits of myrmecochory (dispersal, protection from seed predators and fire, safe and nutrient-rich microsites) explain the numerous evolutionary and developmental origins of myrmecochory in angiosperm plants, and we propose that elaiosomes thus provide one of the most dramatic examples of convergent evolution in biology.  相似文献   

17.
Thousands of plant species worldwide are dependent on birds for pollination. While the ecology and evolution of interactions between specialist nectarivorous birds and the plants they pollinate is relatively well understood, very little is known on pollination by generalist birds. The flower characters of this pollination syndrome are clearly defined but the geographical distribution patterns, habitat preferences and ecological factors driving the evolution of generalist‐bird‐pollinated plant species have never been analysed. Herein I provide an overview, compare the distribution of character states for plants growing on continents with those occurring on oceanic islands and discuss the environmental factors driving the evolution of both groups. The ecological niches of generalist‐bird‐pollinated plant species differ: on continents these plants mainly occur in habitats with pronounced climatic seasonality whereas on islands generalist‐bird‐pollinated plant species mainly occur in evergreen forests. Further, on continents generalist‐bird‐pollinated plant species are mostly shrubs and other large woody species producing numerous flowers with a self‐incompatible reproductive system, while on islands they are mostly small shrubs producing fewer flowers and are self‐compatible. This difference in character states indicates that diverging ecological factors are likely to have driven the evolution of these groups: on continents, plants that evolved generalist bird pollination escape from pollinator groups that tend to maintain self‐pollination by installing feeding territories in single flowering trees or shrubs, such as social bees or specialist nectarivorous birds. This pattern is more pronounced in the New compared to the Old World. By contrast, on islands, plants evolved generalist bird pollination as an adaptation to birds as a reliable pollinator group, a pattern previously known from plants pollinated by specialist nectarivorous birds in tropical mountain ranges. Additionally, I discuss the evolutionary origins of bird pollination systems in comparison to systems involving specialist nectarivorous birds and reconstruct the bird pollination system of Hawaii, which may represent an intermediate between a specialist and generalist bird pollination system. I also discuss the interesting case of Australia, where it is difficult to distinguish between specialist and generalist bird pollination systems.  相似文献   

18.
In many plants, including orchids, differential fruit set along the inflorescence has been attributed to pollinator behaviour. For instance, the pollinator, moving up the inflorescence, becomes satiated with the resources and leaves before visiting the upper flowers. Consequently, the pollinators do not visit flowers as frequently higher up the inflorescence. Alternatively, flower size may vary along the inflorescence, making pollination ineffective as flowers decrease in size. I tested for the presence of differential pollination along the inflorescence in a pollinator-limited tropical epiphyte, Lepanthes rupestris Stimson, and determined the likely cause of the observed pattern. As this species has inflorescences with sequential flowering, pollinator behaviour, moving up the inflorescence as in synchronous multiflowering inflorescences, can be discounted as an explanation for differential fruit set. Fruit set is shown to be more frequent at the base of the inflorescence, but male reproductive success through pollinarium removal is basically independent of flower position. Moreover, cross-pollination by hand at variable flower positions along the inflorescence results in equal fruit set, suggesting that resources are not limiting and cannot explain the cause of differential fruit production along the inflorescence in natural populations. Furthermore, flower size is shown to diminish along the inflorescence, suggesting that the pollinator(s) may be ineffective at depositing the pollinarium in the smaller higher flowers. Consequently, pollinator behaviour and its interaction with flower size, and not resource limitation, is likely to be the main cause of differential fruit set along the inflorescence in L. rupestris .  © 2006 The Linnean Society of London, Botanical Journal of the Linnean Society , 2006, 151 , 405–410.  相似文献   

19.
Begonia L. is one of the largest flowering plant genera, a ubiquitous component of many tropical forests and an economically important ornamental plant. In the present study, we address the early evolution of Begonia by generating molecular phylogenies from approximately 7000 bases of chloroplast DNA and approximately 6000 bases of mitochondrial DNA for each of 30 exemplar Begonia species. Broadscale biogeographic patterns found in the phylogenies, together with previously estimated divergence dates, indicated that extant Begonia lineages first diversified in Africa and then subsequently in America and Asia. The phylogenies also revealed that the closest African relatives of the American and Asian Begonia are seasonally‐adapted species. Moderate to strong incongruence between the phylogenies suggested that they differ genealogically. These differences could have been the result of either interspecific hybridization and/or incomplete lineage sorting. The results obtained in the present study provide a much needed genus‐wide framework for future evolutionary studies of this exceptionally diverse tropical genus. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 243–250.  相似文献   

20.
Little is known of the potential coevolution of flowers and bees in changing, biodiverse environments. Female solitary bees, megachilids and Centris , and their nest pollen provisions were monitored with trap nests over a 17-year period in a tropical Mexican biosphere reserve. Invasion by feral Apis (i.e. Africanized honey bees) occurred after the study began, and major droughts and hurricanes occurred throughout. Honey bee competition, and ostensibly pollination of native plants, caused changes in local pollination ecology. Shifts in floral hosts by native bees were common and driven by plant phylogenetics, whereby plants of the same families or higher taxa were substituted for those dominated by honey bees or lost as a result of natural processes. Two important plant families, Anacardiaceae and Euphorbiaceae, were lost to competing honey bees, but compensated for by greater use of Fabaceae, Rubiaceae, and Sapotaceae among native bees. Natural disasters made a large negative impact on native bee populations, but the sustained presence of Africanized honey bees did not. Over 171 plant species comprised the pollen diets of the honey bees, including those most important to Centris and megachilids (72 and 28 species, respectively). Honey bee pollination of Pouteria (Sapotaceae) plausibly augmented the native bees' primary pollen resource and prevented their decline. Invasive generalist pollinators may, however, cause specialized competitors to fail, especially in less biodiverse environments.  No claim to original US government works. Journal compilation © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 98 , 152–160.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号