首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antibiotics are widely used to improve human and animal health and treat infections. Antibiotics are often used in livestock farms and fisheries to prevent diseases and promote growth. Recently, there has been increasing interest in the presence of antibiotics in aquatic environments. Low levels of antibiotic components are frequently detected in surface water, seawater, groundwater, and even drinking water. Antibiotics are consistently and continually discharged into the natural environment as parent molecules or metabolites, which are usually soluble and bioactive, and this results in a pseudo and persistent pollution. The effects of environmental antibiotic toxicity on non-target organisms, especially aquatic organisms, have become an increasing concern. Although antibiotics have been detected worldwide, their ecological and developmental effects have been poorly investigated, particularly in non-target organisms. This review describes the toxicity and underlying mechanism of antibiotic contamination in aquatic organisms, including the effects on vertebrate development. A considerable number of antibiotic effects on aquatic organisms have been investigated using acute toxicity assays, but only very little is known about the long-term effects. Aquatic photosynthetic autotrophs, such as Pseudokirchneriella subcapitata, Anabaena flos-aquae, and Lemna minor, were previously used for antibiotic toxicity tests because of low cost, simple operation, and high sensitivity. Certain antibiotics show a different degree of potency in algal toxicity tests on the basis of different test algae. Antibiotics inhibit protein synthesis, chloroplast development, and photosynthesis, ultimately leading to growth inhibition; some organisms exhibit growth stimulation at certain antibiotic concentrations. Daphnia magna and other aquatic invertebrates have also been used for checking the toxicity priority of antibiotics. When investigating the acute effect of antibiotics (e.g., growth inhibition), concentrations in standard laboratory organisms are usually about two or three orders of magnitude higher than the maximal concentrations in the aquatic environment, resulting in the underestimation of antibiotic hazards. Vertebrate organisms show a promising potential for chronic toxicity and potentially subtle effects of antibiotics, particularly on biochemical processes and molecular targets. The adverse developmental effects of macrolides, tetracyclines, sulfonamides, quinolones, and other antibiotic groups have been evaluated in aquatic vertebrates such as Danio rerio and Xenopus tropicalis. In acute toxicity tests, low levels of antibiotics have systematic teratogenic effects on fish. The effects of antibiotics on oxidative stress enzymes and cytochrome P450 have been investigated. Cytotoxicity, neurotoxicity, and genotoxicity have been observed for certain antibiotic amounts. However, there are no firm conclusions regarding the chronic toxicity of antibiotics at environmentally relevant levels because of the lack of long-term exposure studies. Herein, future perspectives and challenges of antibiotic toxicology were discussed. Researchers should pay more attention to the following points: chronic toxicity and potentially subtle effects of environmentally relevant antibiotics on vertebrates; effects of toxicity on biochemical processes and mode of action; combined toxicity of antibiotics and other antibiotics, metabolites, and heavy metals; and environmental factors such as temperature and pH.  相似文献   

2.
环境污染物对水生生物产生氧化压力的分子生物标志物   总被引:12,自引:0,他引:12  
王丽平  郑丙辉  孟伟 《生态学报》2007,27(1):380-388
为了能够建立一种简单、快速、准确的环境污染监测预警体系,人们进行了广泛的研究,其中有关环境污染物对分子生物标志物的影响已成为研究热点。生物体内的氧自由基和其它活性氧分子(ROS)对组织和细胞成分造成的伤害,称之为氧化压力,环境中的有毒物质能够对生物体产生不同程度的氧化压力。生物体内的强氧化剂或体外因素(如环境污染物)引起的强氧化物与抗氧化防御系统之间的平衡能够用于评估环境压力对生物体产生影响的程度,尤其适合于评估不同种化学物质引起氧化损伤的程度。这些抗氧化防御系统及其对氧化压力的敏感性在环境毒物学研究中占有非常重要的地位,大量研究结果表明:过渡金属、多环芳烃、有机氯和有机磷农药、多氯联苯、二氧芑和其它异型物质都能够对生物体产生氧化压力。这些有毒物质能够引起各种有害影响,如对膜脂、DNA和蛋白产生损伤;改变抗氧化酶的活性等。总结了这种氧化压力的研究进展情况,并讨论了这些分子生物标志物在水生生物中的应用。  相似文献   

3.
叔丁基对羟基茴香醚和诺氟沙星对水生生物的影响   总被引:3,自引:0,他引:3  
采用急性毒性试验的方法,研究了叔丁基对羟基茴香醚(Butylated hydroxyanisole,BHA)和诺氟沙星(Norfloxacin,NFLX)对水生生物斜生栅藻和大型溞的毒性效应。结果表明大型溞在BHA和NFLX暴露下48h的LC50分别为3.15mg·L-1和194.98mg·L-1。BHA和NFLX对斜生栅藻也有明显的毒性作用,其96h的EC50分别为6.19mg·L-1和50.18mg·L-1。大型蚤对BHA暴露的敏感性强于斜生栅藻,而斜生栅藻对NFLX的敏感性比大型溞强。根据化学物质对鱼类和溞类的毒性评价标准,BHA和NFLX分别属于中等和低等毒性的化合物。  相似文献   

4.
The relative importance of colony size ratio of interacting species was studied in Tomioka Bay, Japan. Six encrusting colonial species belonging to the following three different taxonomic groups were tested: Ascidia (three species), Bryozoa (two) and Porifera (one). Colonies of these organisms were grown in the community of sessile organisms developed on plastic panels. Logistic regression analysis was carried out to determine the effect of size ratio on the competitive outcome of interacting colonies. The results between all possible combinations among these six species did not show a significant size effect in competitive outcome (i.e. a larger colony size did not always prove important in the success of a competitive interaction with smaller colonies of other species). On the contrary, competitive success depends on the types of species interacting. Certain species such asDidemnum moseleyi (ascidian) andHaliclona sp. (sponge), in spite of being smaller in colony size, won in competitive interactions with larger colonies of other species such asDiplosoma mitsukurii (ascidian) andWatersipora subovoidea (bryozoan). These results contradict the one reported earlier: that the larger the colony size, the more chance the colony will have to win in competitive interactions.  相似文献   

5.
Global climate change has become a dire reality and its impact is expected to rise dramatically in the near future. Combined with the day‐to‐day human activities the climatic changes heavily affect the environment. In particular, a global temperature increase accompanied by a number of anthropogenic chemicals falling within the freshwater ecosystem results in a dramatic enhancement of the overall stress for most aquatic organisms. This leads to a significant shift in the species inventory and potential breakdown of the water ecosystem with severe consequences for local economies and water supply. In order to understand and predict the influence of climatic changes on the physiological and biochemical processes that take place in living aquatic organisms we explore the application of optical spectroscopy for monitoring and quantitative assessment of antioxidant enzymes activity in benthic amphipods of Lake Baikal. We demonstrate that the changes of the enzymes activity in Baikal amphipods undergoing thermal and/or hypoxia stress can be observed and documented by UV and optical spectroscopy both in vivo and in vitro. (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
The use of DNA adduct measurement as a biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs) is now well established in ecotoxicology. In particular, DNA adduct levels in aquatic organisms has been found to produce a better correlation with PAH exposure than PAH concentrations in organisms. DNA adducts levels are most commonly determined using the 32P-postlabelling assay which measures total aromatic adducts. The relationship between relative DNA adduct formation and carcinogenicity has been investigated for a number of carcinogenic and non-carcinogenic PAHs using an in vitro system. Our results demonstrate that relatively high levels of DNA adducts can be produced by some non-carcinogenic PAHs, while other non-carcinogenic compounds do not produce detectable adducts. In addition, it has been shown that all carcinogenic PAHs investigated produce DNAadducts and that a relationship exists between relative adduct formation and carcinogenic potency. An investigation of adduct levels in fish liver and crustacean hepatopancreas in Oxley Ck, Brisbane has shown that higher than expected DNA adduct levels were correlated with the presence of carcinogenic and non-carcinogenic PAHs with high relative adduct forming potential.  相似文献   

7.
The use of DNA adduct measurement as a biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs) is now well established in ecotoxicology. In particular, DNA adduct levels in aquatic organisms has been found to produce a better correlation with PAH exposure than PAH concentrations in organisms. DNA adducts levels are most commonly determined using the 32P-postlabelling assay which measures total aromatic adducts. The relationship between relative DNA adduct formation and carcinogenicity has been investigated for a number of carcinogenic and non-carcinogenic PAHs using an in vitro system. Our results demonstrate that relatively high levels of DNA adducts can be produced by some non-carcinogenic PAHs, while other non-carcinogenic compounds do not produce detectable adducts. In addition, it has been shown that all carcinogenic PAHs investigated produce DNAadducts and that a relationship exists between relative adduct formation and carcinogenic potency. An investigation of adduct levels in fish liver and crustacean hepatopancreas in Oxley Ck, Brisbane has shown that higher than expected DNA adduct levels were correlated with the presence of carcinogenic and non-carcinogenic PAHs with high relative adduct forming potential.  相似文献   

8.
水生生物粒径谱/生物量谱研究进展   总被引:7,自引:0,他引:7  
周林滨  谭烨辉  黄良民  连喜平 《生态学报》2010,30(12):3319-3333
介绍了水生生物粒径谱概念,粒径谱理论的提出背景及其发展历程。综述了浮游生物、底栖生物、微型生物和鱼类粒径谱的研究现状;并以粒径谱理论在鱼类潜在产量估算方面的应用为重点,介绍了粒径谱理论的应用。回顾了国内生物粒径谱研究现状;结合新陈代谢理论、宏生态学与粒径谱理论的联系,新的粒径测量手段的应用,传统分类方法与粒径方法的关系,以及粒径谱模型研究的特点,展望未来粒径谱研究的前景。认为粒径谱研究已经历了半个多世纪的发展和多个领域的应用,给人们以区别于传统物种分类的崭新视角,成为生态学研究,尤其是水生生态学研究的热点。目前水生生物包括浮游生物、底栖生物、微型生物和鱼类粒径谱/生物量谱的分析方法、模型和理论研究已取得了一些进展,但由于各类生物个体形态、结构呈现多样化,数据获取的难度以及其他各种因素影响,使得研究工作发展缓慢,海洋生物粒径谱研究尤其困难。随着海洋生物资源评估、利用与渔业生态系统管理的需要,应重视加强粒径谱/生物量谱的研究,包括不同类型生物的粒径分布曲线、捕食与被捕食之间的关系、新陈代谢特征、时空尺度变异、粒径谱模型的假设条件和新模型的建立,以及先进测量技术应用等,这将是今后粒径谱/生物量谱研究需要引起关注的重点内容。  相似文献   

9.
Abundance prediction of aquatic insects (Ephemeroptera, Plecoptera, Trichoptera = EPT) based on environmental variables (precipitation, discharge, temperature) and abundance of the parent generation with Artificial Neural Nets (ANN) was carried out successfully. A general model for all species does not exist. Easy to understand models for individual species were restricted to stream sections with a characteristic set of variables. The amount of zero-values in the data did not affect the models. Transfer of one model to other stream sections resulted in a decrease of the determination coefficient B. Sufficient models for populations that have larvae in the stream all the year round required more information than for species with a diapause. All scaling options used decreased prediction quality. Long term mean values of variables and the deviation of actual from long term data were the best predictors, indicating a successful temporal link between seasonal variables and univoltine life cycles of most species tested. Prediction of monthly emergence in individual years was adequate with determination coefficients > 0.8 for five, and < 0.5 for only two out of ten years.  相似文献   

10.
In this study, we examined how the biomass and species composition of aquatic plant communities relates to cottage development of Canadian Shield lakes. Within the North Kawartha Region of Ontario, we sampled the macrophyte communities at two water depths (0.5 m and 1.5 m) in lakes (n = 12) having a range of cottage densities (0-23 cottages km−1 of shoreline). Across all lakes, 39 species were found, with individual lake richness ranging from six to ten. Macrophyte biomass decreased with increasing cottage density, irrespective of depth (ANCOVA dev’t*depth p = 0.925). In contrast, only the shallower depth showed a relationship between cottage development and richness and diversity; highly developed lakes had three or fewer species and diversities less than 1.5. There was also a shift in structural plant type from floating leaf and emergent on undeveloped lakes to submersed and submersed low-lying on developed lakes. Ordination analysis demonstrated that cottage development (and to a lesser extent, lake area) was strongly correlated (p = 0.05) with community species composition in southern Ontario lakes. Our results thus demonstrate that the management of cottage development should minimize the loss of biomass and species richness of aquatic plants given the likely negative effects of these alterations on other taxa in littoral zones and foodwebs in lake ecosystems.  相似文献   

11.
The allometric relationships for plant daily biomass production rates, different measures of body size (dry weight and length) and photosynthetic biomass per plant are reported for two mutants of Arabidopsis thaliana (abi1-1, insensitive to ABA; era1-2, hypersensitive to ABA). Scaling relationships, such as daily rate of growth (G) vs body mass (M), plant body length or plant height (L) vs body mass (M), photosynthetic biomass (M p ) vs non-photosynthetic biomass (M n ), and daily rate of growth (G) vs. photosynthetic biomass (M p ) were significantly different in abi1-1 and era1-2. It is implied that the sensitivity to abscisic acid may change the scaling relationships for plant biomass production rate and body size in Arabidopsis thaliana. Because these scaling relationships are closely related to sensitivity to abscisic acid, they are of importance for phytohormonal ecology.  相似文献   

12.
The impact of heated effluents from the condenser outfall of the Madras Atomic Power Station (MAPS), on the flora and fauna settled on an iron pile in the discharge area was studied. At temperatures ranging between 27.2 to 31.0 °C, the sedentary community was composed of epiphytic algae, sea anemones, tubeworms, polychaetes, crabs, amphipods, barnacles, periwinkles, mussels and ascidians. During January–February, ambient temperature ranged between 37.0 to 37.6 °C, and almost all the macroepifauna and flora, except for periwinkles and Cthamalid barnacles perished.  相似文献   

13.
14.
A model is proposed to link the basic parameters of a population obtained by the areal method of count. The model is based on regular changes of occurrence and abundance consequent upon changes in the area of the sample plot. This method is applicable to the conditions of aggregation of counted species on the plot under study.  相似文献   

15.
长江天鹅洲故道和老河故道水生生物多样性的比较研究   总被引:6,自引:0,他引:6  
本文报道了长江中游开敞式天鹅洲故道和封闭式老河故道浮游植物、浮游动物、底栖动物及水生维管束植物四大类水生生物多样性的异同和变化。浮游植物、浮游动物和水生维管束植物的多样性都是老河故道高于天鹅洲故道,底栖动物的多样性则是天鹅洲故道高于老河故道。预期随着天鹅洲故道由开敞式向封闭式的演变,其水生生物的多样性也将不断增大  相似文献   

16.
Bee foraging ranges and their relationship to body size   总被引:3,自引:0,他引:3  
Bees are the most important pollinator taxon; therefore, understanding the scale at which they forage has important ecological implications and conservation applications. The foraging ranges for most bee species are unknown. Foraging distance information is critical for understanding the scale at which bee populations respond to the landscape, assessing the role of bee pollinators in affecting plant population structure, planning conservation strategies for plants, and designing bee habitat refugia that maintain pollination function for wild and crop plants. We used data from 96 records of 62 bee species to determine whether body size predicts foraging distance. We regressed maximum and typical foraging distances on body size and found highly significant and explanatory nonlinear relationships. We used a second data set to: (1) compare observed reports of foraging distance to the distances predicted by our regression equations and (2) assess the biases inherent to the different techniques that have been used to assess foraging distance. The equations we present can be used to predict foraging distances for many bee species, based on a simple measurement of body size. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Stuart J. Marsden  Kay Royle 《Ibis》2015,157(2):219-229
Estimates of population density and abundance change (differences in density or encounter rates across land uses or time periods) form the cornerstone of much of our knowledge of species' responses to environmental conditions, extinction risks and potential conservation actions. Gathering baseline data on abundance of the world's c. 10 000 bird species and monitoring trends in the light of rapidly changing environmental and harvest pressures is a daunting prospect. With this in mind, we review literature on population densities and abundance changes across habitats in one of the world's largest and most threatened bird families, the parrots (Psittaciformes), to identify gaps in knowledge, model phylogenetic and other influences on abundance, and seek patterns that might guide thinking for data‐deficient taxa and situations. Density estimates were found for only 25% of 356 parrot species. Abundance change data were similarly limited and most came from logged forest, with very few comparisons across different anthropogenic habitats. Threatened species were no more likely to have a density estimate than non‐threatened species, and were less likely to have estimates of abundance change. Exploratory generalized linear mixed models indicated that densities are most influenced by genus, and are generally higher within protected areas than outside. It is unclear whether the latter effect stems from habitat protection, a reduction in poaching or both, but protected areas appear to be beneficial for parrots. Individual members of the ‘parakeet’ genera (e.g. Pyrrhura and Eos) were predictably abundant, whereas within larger‐bodied genera such as Ara (macaws), species were predictably uncommon (< 10 individuals per km2) and there was a long tail of extreme rarity. Responses of parrots to habitat change were highly variable, with natural variation in parrot abundance across different primary forests as great as that between primary forest and human‐altered forests. The speed at which environmental change is affecting the world's parrots far outstrips that of our current capacity to track their abundance and we assess the likely scale of data deficiency in this and other bird groups. Developments in survey and analysis methods such as variants of distance sampling and the integration of niche modelling with point density estimation may increase our effectiveness in monitoring parrots and other important and threatened bird groups.  相似文献   

18.
The effects ofDugesia dorotocephala (Woodworth), a proven predator of aquatic Diptera, on 17 species of nontarget aquatic organisms were determined under controlled laboratory conditions. Only 3 of the nontarget organisms,Aeolosoma sp.,Cyclops sp. andToxorhynchites amboinensis (Doleschall), were significantly affected byD. dorotocephala. No significant difference in prey preference was found when planaria were maintained together with the target organism,Aedes aegypti, and the 3 adversely affected nontarget organisms. Results of this initial evaluation indicate thatD. dorotocephala is potentially safe to integrate as a biological control with most nontarget aquatic organisms tested. The opinions or assertions contained herein are the private views of the author(s) and are not to be construed as official or as reflecting the view of the Department of the Army or the Deparmtment of Defense.  相似文献   

19.
By infecting multiple host species and acting as a food resource, parasites can affect food web topography and contribute to ecosystem energy transfer. Owing to the remarkable secondary production of some taxa, parasite biomass – although cryptic – can be comparable to other invertebrate and vertebrate groups. More resolved estimates of parasite biomass are therefore needed to understand parasite interactions, their consequences for host fitness, and potential influences on ecosystem energetics. We developed an approach to quantify the masses of helminth parasites and compared our results with those of biovolume‐based approaches. Specifically, we massed larval and adult parasites representing 13 species and five life stages of trematodes and cestodes from snail and amphibian hosts. We used a replicated regression approach to quantify dry mass and compared these values with indirect biovolume estimates to test the validity of density assumptions. Our technique provided precise estimates (R2 from 0.69 to 0.98) of biomass across a wide range of parasite morphotypes and sizes. Individual parasites ranged in mass from 0.368 ± 0.041 to 320 ± 98.1 μg. Among trematodes, adult parasites tended to be the largest followed by rediae, with nonclonal larval stages (metacercariae and cercariae) as the smallest. Among similar morphotypes, direct estimates of dry mass and the traditional biovolume technique provided generally comparable estimates (although important exceptions also emerged). Finally, we present generalized length‐mass regression equations to calculate trematode mass from length measurements, and discuss the most efficient use of limited numbers of parasites. By providing a novel method of directly estimating parasite biomass while also helping to validate more traditional methods involving length‐mass conversion, our findings aim to facilitate future investigations into the ecological significance of parasites, particularly with respect to ecosystem energetics. In addition, this novel technique can be applied to a wide range of difficult‐to‐mass organisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号