首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Opabinia regalis Walcott is an enigmatic fossil from the Middle Cambrian Burgess Shale of uncertain affinities. Recent suggestions place it in a clade with Anomalocaris Whiteaves from the Burgess Shale and Kerygmachela Budd from the Greenlandic Sirius Passet Fauna; these taxa have been interpreted as 'lobopods'. Consideration of available Opabinia specimens demonstrates that reflective extensions from the axial region, previously thought to be either gut diverticula or musculature, can be accommodated in neither the trunk nor the lateral lobes that arise from it. They must therefore be external structures independent of the lateral lobes. On the basis of their sub-triangular appearance, size and taphonomy, they are considered here to represent lobopod limbs. Some evidence for the existence of terminal claws is also presented. The question of whether Kerygmachela, Opabinia and Anomalocaris constitute a monophyletic or paraphyletic grouping is considered. While they share several characters, most of these are plesiomorphies. Further, Opabinia and Anomalocaris share several arthropod-like characters not possessed by Kerygmachela. It is concluded that these three taxa probably form a paraphyletic grouping at the base of the arthropods. Retention of lobopod-like characters within the group provides important documentation of the lobopod-arthropod transition. A proper understanding of Opabinia and its close relatives, which may include the tardigrades, opens the way for a reconstruction of the arthropod stem-group. This in turn allows the construction of a speculative but satisfying scenario for the evolution of major arthropod features, including the origin of the biramous limb, tergites and arthropod segmentation. 'Arthropodization' may thus be seen not to be a single event but a series of adaptive innovations. OPABINIA, ANOMALOCARIS, KERYGMACHELA, Burgess Shale, problematica, Lobopodia, Arthropoda.  相似文献   

2.
Opabinia regalis has long been regarded as a curious animal, with its five eyes, its long flexible anterior process, and gill lamellae carried on the outside of overlapping lateral lobes. More recently, Opabinia has been reconstructed with lobopod limbs lying adaxial but separate from the lateral lobes. This version of Opabinia represented a lobopod–arthropod transition and prompted a hypothesis for the origin of the biramous limb that involved uniting the lobopod limb with a lateral lobe. New evidence of elemental maps is consistent with previous interpretations of the triangular structures in Opabinia as lateral extensions of the gut; there is no convincing evidence for the presence of lobopod limbs. Re-examination of critical specimens reveals that the gill lamellae are not on the outside of the lateral lobes. The limbs of Opabinia resemble the phyllopodous exopod of arthropods; the posterior margin is fringed with blades. Opabinia remains on the stem of euarthropods but not as a part of a paraphyletic Lobopodia. The Lobopodia is a clade of Cambrian armoured lobopods and onychophorans. A new hypothesis for the origin of the arthropod biramous limb from an exopod like that in Opabinia is presented, which involves an endite-bearing phyllopodous limb as an intermediate stage.  相似文献   

3.
Magadictyon haikouensis (Luo and Hu, 1999) from the Early Cambrian Chengjiang Lagerstätte, an incomplete specimen of a large lobopod with strong appendages, has been regarded as related to the lobopods Microdictyon and Onychodictyon. Newly discovered complete specimens of Magadictyon cf. haikouensis (found by the Early Life Institute field team) show that the taxon, in addition to its strong appendages with appendicules, also had a head bearing similar caecum‐like structures to those of the arthropod Naraoia and Chelicerate, ‘Peytoia’‐like mouthparts and frontal appendages. Because of their similarity, the caecum‐like structures of Magadictyon cf. haikouensis are considered to be homologous with those of stem‐group arthropods. The ‘Peytoia’‐like mouthparts and the frontal appendages are similar to those of the AOPK (Anomalocaris–Opabinia–Pambdelurion–Kerygmachela) group. In addition, the appendages with appendicules show that Magadictyon cf. haikouensis is closely related to Onychodictyon. Therefore, Magadictyon cf. haikouensis is regarded here as a rare transitional form between lobopods and arthropods. Besides, together with other lobopods, the morphology of Magadictyon cf. haikouensis demonstrates that the Cambrian lobopods appear to have been diverse and not particularly closely related to one another, and do not seem to represent a monophyletic clade.  相似文献   

4.
Anomalocarid arthropod is the largest known predatory animal of middle Cambrian. Studies on Anomalocaris have been piled up in the past two decades since the first reasonable reconstruction had achieved in 1980s. Recent finding of legs beneath lobes on Parapeytoia Yunnanensis shows arthropod affinities, however, many researchers believe that it must be a powerful swimmer by the use of developed lobes. In this work, we investigate swimming behaviour of Anomalocaris in water by performing hydrodynamical calculation. As a result of simulation using moving particle method possible swimming motion of Anomalocaris is obtained. In the computer we can change the morphology from known bauplan of Anomalocaris found as fossil record. It makes us possible to discuss on the variants of Anomalocaris at the intermediate state of evolution process. Such new methodology using computer reveals how and from where Anomalocaris evolved.  相似文献   

5.
The Cambrian fauna can now reasonably be seen as containing many taxa that lie in the stem-groups of the extant phyla. As such, these fossils suggest how both the ‘body plans’ of extant phyla were assembled, and also how various ‘minor’ phyla relate to the larger groupings of today such as the arthropods and annelids.

The various arthropod and lobopod taxa of the Cambrian faunas have been controversial and have generally been considered either as lying in the crown or (occasionally) stem groups of the euarthropods, onychophorans and tardigrades. However, phylogenetic analysis strongly suggests that many of even the most euarthropod-like taxa do not lie within the euarthropod crown-group but are more basal. Further, the commonly expressed view that Cambrian lobopods are in effect stem- or crown-group onychophorans also seems not to be well supported. Lobopods in the Cambrian appear to be diverse and not particularly closely related to one another, and certainly cannot be combined in a monophyletic clade.

Both these advances offer hope that the tardigrades (placed as the sister group to the euarthropods in many analyses of extant taxa, here collectively named the Tactopoda) may be more closely related to some of these Cambrian taxa than others. The challenge for both neontologists and palaeontologists is to refine the systematic analysis of both living and fossil taxa in order to maximise the usefulness of the (admittedly few) characters that unite tardigrades to their Cambrian forbears.  相似文献   


6.
Membership of Arthropoda in a clade of molting animals, the Ecdysozoa, has received a growing body of support over the past 10 years from analyses of DNA sequences from many genes together with morphological characters involving the cuticle and its molting. Recent analyses based on broad phylogenomic sampling strengthen the grouping of cycloneuralian worms and arthropods as Ecdysozoa, identify the velvet worms (Phylum Onychophora) as the closest living relatives of arthropods, and interpret segmentation as having separate evolutionary origins in arthropods and annelid worms. Determining whether the water bears (Phylum Tardigrada) are more closely related to onychophorans and arthropods or to unsegmented cycloneuralians such as roundworms (Nematoda) is an open question. Fossil taxa such as the Cambrian anomalocaridids provide a combination of arthropod and cycloneuralian characters that is not observed in any living ecdysozoan. Fossils break up long branches and help to resolve the sequence of character acquisition at several critical nodes in the arthropod tree, notably in a suite of Cambrian lobopodians that may include the stem groups of each of the major panarthropod lineages.  相似文献   

7.
Lin, J.‐P., Ivantsov, A.Y. & Briggs, D.E.G. 2011: The cuticle of the enigmatic arthropod Phytophilaspis and biomineralization in Cambrian arthropods. Lethaia, Vol. 44, pp. 344–349. Many non‐trilobite arthropods occur in Cambrian Burgess Shale‐type (BST) biotas, but most of these are preserved in fine‐grained siliciclastics. Only one important occurrence of Cambrian non‐trilobite arthropods, the Sinsk biota (lower Sinsk Formation, Botomian) from the Siberian Platform, has been discovered in carbonates. The chemical compositions of samples of the enigmatic arthropod Phytophilaspis pergamena Ivantsov, 1999 and the co‐occurring trilobite Jakutus primigenius Ivantsov in Ponomarenko, 2005 from this deposit were analysed. The cuticle of P. pergamena is composed of mainly calcium phosphate and differs from the cuticle of J. primigenius, which contains only calcium carbonate. Phosphatized cuticles are rare among large Cambrian arthropods, except for aglaspidids and a few trilobites. Based on recent phylogenetic studies, phosphatization of arthropod cuticle is likely to have evolved several times. □arthropod cuticle, Burgess Shale‐type preservation, fossil‐diagenesis, phosphatization.  相似文献   

8.
Although the fossil record of biramous arthropods commences in the Lower Cambrian, unequivocal uniramous arthropods do not appear until the Upper Silurian, in association with terrestrial biotas. Here we report an Upper Cambrian marine arthropod from East Siberia that possesses some significant myriapodan features. The new arthropod,Xanthomyria spinosa n. gen., n. sp., closely resembles examples of archipolypodans from the Late Palaeozoic. If this resemblance genuinely represents myriapod affinities, this would be the first convincing myriapod from the Cambrian. Suggestions of an early branching point of the myriapods from other arthropods would be consistent with this. Conversely, an as yet poorly known clade of multi-segmented arthropods may exist in the Cambrian, with no close affinities to the myriapods.   相似文献   

9.
A new bivalved arthropod is described from the Lower Cambrian (?Upper Atdabanian) Buen Formation of North Greenland. Pauloterminus spinodorsalis gen. et sp. nov. possesses a bivalved carapace that covers the head, which has a single pair of antennae, and anteriormost thorax. No mouthparts are visible. The five‐segmented abdomen was limbless and terminated in a telson plus a pair of large, lobate uropods. A suite of at least six biramous thoracic limbs are present: the short endopods are made up of small, serial podomeres, while the exopods are lobate and may have functioned as gills as well as in swimming. Partially infilled guts are occasionally visible, suggesting that this animal may have been a sediment feeder. It is compared to other Cambrian bivalved arthropods, especially the waptiids Chuandianella ovata from the Lower Cambrian Chengjiang fauna (China) and Waptia fieldensis from the Middle Cambrian Burgess Shale (British Columbia). Of these three animals, the Greenland and Chinese taxa appear to be the most closely related. P. spinodorsalis possesses many typical arthropod features, but it also demonstrates more primitive characters that are more reminiscent of the lobopodians.  相似文献   

10.
11.
The first arthropod trackways are described from the Middle Cambrian Burgess Shale Formation of Canada. Trace fossils, including trackways, provide a rich source of biological and ecological information, including direct evidence of behaviour not commonly available from body fossils alone. The discovery of large arthropod trackways is unique for Burgess Shale-type deposits. Trackway dimensions and the requisite number of limbs are matched with the body plan of a tegopeltid arthropod. Tegopelte, one of the rarest Burgess Shale animals, is over twice the size of all other benthic arthropods known from this locality, and only its sister taxon, Saperion, from the Lower Cambrian Chengjiang biota of China, approaches a similar size. Biomechanical trackway analysis demonstrates that tegopeltids were capable of rapidly skimming across the seafloor and, in conjunction with the identification of gut diverticulae in Tegopelte, supports previous hypotheses on the locomotory capabilities and carnivorous mode of life of such arthropods. The trackways occur in the oldest part (Kicking Horse Shale Member) of the Burgess Shale Formation, which is also known for its scarce assemblage of soft-bodied organisms, and indicate at least intermittent oxygenated bottom waters and low sedimentation rates.  相似文献   

12.
Three-dimensional preservation of arthropod soft integument occurs in Middle Cambrian sediments of the Georgina Basin, western Queensland, Australia. The beds are referred to the Monastery Creek Phosphorite Formation, Gowers Formation, Inca Shale Formation and Devon-court Limestone Formation. The finds include arthropod type-A larvae previously described by Müller & Walossek and several complete appendages, possibly of early Palaeozoic 'ostracodes', as well as indeterminable cuticular remains. The Australian sediments were in part deposited under high water-energy conditions, whereas previously known occurrences of three-dimensional soft-integument preservation have been from environments of lower water energy. Such preservation may thus be more widespread in the Early Paleozoic than hitherto known. □ Phosphatization, arthropods, type-A larvae, appendages, Middle Cambrian, Geogina Basin, Australia, three-dimensional preservation.  相似文献   

13.
The Chengjiang Lagerstätte in the Lower Cambrian of South China yields a small, larva‐like arthropod, which was considered to be a protaspis of naraoiids by many authors. The discovery of a large number of well‐preserved specimens from many new localities has allowed the original study to be revised. The relatively large size, stable morphology and unusual structure of the appendages indicate that these specimens represent adults of a new arthropod, Primicaris larvaformis. The larva‐like outline is considered to have arisen by the heterochronic process of progenesis. In addition, this animal displays primitive aspects of bodyplan and limb morphology that suggest a basal position within arachnomorphs, or perhaps even arthropods, and the similarities to the Vendian arthropod‐like animal Parvancorina probably provide an evolutionary link between Vendian forms and Cambrian arthropods.  相似文献   

14.
The ancestor of the arthropods is widely thought to have possessed a hydrostatic skeleton surrounded by peripheral longitudinal and circular musculature, as exhibited by the extant onychophorans. However, the transition to a lever-style musculature system with an articulating exoskeleton poses a difficult problem in functional evolution: did the musculature or the exoskeleton evolve first, and how? Here, by reference to the musculature of the Lower Cambrian stem-group arthropod Pambdelurion, the problem is resolved in terms of preadaptation and functional degeneracy without recourse to saltational notions. Cambrian taxa lying in the stem-groups of the modern phyla may thus be shown to provide unique evidence for the functional progression involved in the assembly of the extant body plans and obviate the need for exotic genetic or developmental mechanisms to explain the evolution of integrated and complex body plans. The notion of the phylum representing a particularly significant level of organization is thereby brought into question.  相似文献   

15.
The controversy about a Cambrian "explosion" of morphological disparity (followed by decimation), cladogenesis and fossilization is of central importance for the history of life. This paper revisits the controversy (with emphasis in onychophorans, which include emblematic organisms such as Hallucigenia), presents new data about the Chengjiang (Cambrian of China) faunal community and compares it and the Burgess Shale (Cambrian of Canada) with an ecologically similar but modern tropical marine site where onychophorans are absent, and with a modern neotropical terrestrial onychophoran community. Biovolume was estimated from material collected in Costa Rica and morphometric measurements were made on enlarged images of fossils. Cambrian tropical mudflats were characterized by the adaptive radiation of two contrasting groups: the vagile arthropods and the sessile poriferans. Arthropods were later replaced as the dominant benthic taxon by polychaetes. Vagility and the exoskeleton may explain the success of arthropods from the Cambrian to the modern marine and terrestrial communities, both in population and biovolume. Food ecological displacement was apparent in the B. Shale, but not in Chengjiang or the terrestrial community. When only hard parts were preserved, marine and terrestrial fossil deposits of tropical origin are even less representative than deposits produced by temperate taxa, Chengjiang being an exception. Nutrient limitations might explain why deposit feeding is less important in terrestrial onychophoran communities, where carnivory, scavenging and omnivory (associated with high motility and life over the substrate) became more important. Fossil morphometry supports the interpretation of "lobopod animals" as onychophorans, whose abundance in Chengjiang was equal to their abundance in modern communities. The extinction of marine onychophorans may reflect domination of the infaunal habitat by polychaetes. We conclude that (1) a mature ecological community structure was generalized during the Cambrian, and even biodiversity and equitability indices were surprisingly close to modern values; (2) the morphological diversity and geographic distribution of onychophorans indicate a significant pre-Cambrian evolutionary history which does not support the "explosion" hypothesis; (3) disparity among phyla was not as important as the explosion-decimation model predicts, but in the case of onychophorans, disparity within the phylum was greater than it is today and its reduction may have been associated with migration into the sediment when large predators evolved.  相似文献   

16.
Hox genes and the phylogeny of the arthropods   总被引:12,自引:0,他引:12  
The arthropods are the most speciose, and among the most morphologically diverse, of the animal phyla. Their evolution has been the subject of intense research for well over a century, yet the relationships among the four extant arthropod subphyla - chelicerates, crustaceans, hexapods, and myriapods - are still not fully resolved. Morphological taxonomies have often placed hexapods and myriapods together (the Atelocerata) [1, 2], but recent molecular studies have generally supported a hexapod/crustacean clade [2-9]. A cluster of regulatory genes, the Hox genes, control segment identity in arthropods, and comparisons of the sequences and functions of Hox genes can reveal evolutionary relationships [10]. We used Hox gene sequences from a range of arthropod taxa, including new data from a basal hexapod and a myriapod, to estimate a phylogeny of the arthropods. Our data support the hypothesis that insects and crustaceans form a single clade within the arthropods to the exclusion of myriapods. They also suggest that myriapods are more closely allied to the chelicerates than to this insect/crustacean clade.  相似文献   

17.
Due to divergent taphonomic selection, corresponding body and trace fossils are rarely found in the same rocks. In addition to this general rule, arthropod trackways are preferentially preserved in particular settings: (1) lithographic limestones, where toxic bottom waters account for the exceptional preservation of body fossils at the end of their “mortichnial” trackways; (2) estuarine and lacustrine biolaminites that yield blurred surface tracks as well as the sharper undertracks; and (3) Cambrian intertidal sands before the Precambrian/Cambrian substrate revolution had reached this environment. In all these ichnotopes, the original presence of protective microbial films can be inferred from sedimentary structures. By analogy, it is hypothesised that microbes (“bioglue”) may have been involved in the preservation of trackways in eolian dune sands. The absence of arthropod tracks in Ediacaran sands and silts means either that arthropods had not yet evolved or that they were as yet too tiny to pierce the tougher biomats of the time.  相似文献   

18.
Extant arthropods are diverse and ubiquitous, forming a major constituent of most modern ecosystems. Evidence from early Palaeozoic Konservat Lagerstätten indicates that this has been the case since the Cambrian. Despite this, the details of arthropod origins remain obscure, although most hypotheses regard the first arthropods as benthic predators or scavengers such as the fuxianhuiids or megacheirans (‘great-appendage’ arthropods). Here, we describe a new arthropod from the Tulip Beds locality of the Burgess Shale Formation (Cambrian, series 3, stage 5) that possesses a weakly sclerotized thorax with filamentous appendages, encased in a bivalved carapace, and a strongly sclerotized, elongate abdomen and telson. A cladistic analysis resolved this taxon as the basal-most member of a paraphyletic grade of nekto-benthic forms with bivalved carapaces. This grade occurs at the base of Arthropoda (panarthropods with arthropodized trunk limbs) and suggests that arthrodization (sclerotization and jointing of the exoskeleton) evolved to facilitate swimming. Predatory and fully benthic habits evolved later in the euarthropod stem-lineage and are plesiomorphically retained in pycnogonids (sea spiders) and euchelicerates (horseshoe crabs and arachnids).  相似文献   

19.

Background

We examine the physiological and lifestyle adaptations which facilitated the emergence of ostracods as the numerically dominant Phanerozoic bivalve arthropod micro-benthos.

Methodology/Principal Findings

The PO2 of modern normoxic seawater is 21 kPa (air-equilibrated water), a level that would cause cellular damage if found in the tissues of ostracods and much other marine fauna. The PO2 of most aquatic breathers at the cellular level is much lower, between 1 and 3 kPa. Ostracods avoid oxygen toxicity by migrating to waters which are hypoxic, or by developing metabolisms which generate high consumption of O2. Interrogation of the Cambrian record of bivalve arthropod micro-benthos suggests a strong control on ecosystem evolution exerted by changing seawater O2 levels. The PO2 of air-equilibrated Cambrian-seawater is predicted to have varied between 10 and 30 kPa. Three groups of marine shelf-dwelling bivalve arthropods adopted different responses to Cambrian seawater O2. Bradoriida evolved cardiovascular systems that favoured colonization of oxygenated marine waters. Their biodiversity declined during intervals associated with black shale deposition and marine shelf anoxia and their diversity may also have been curtailed by elevated late Cambrian (Furongian) oxygen-levels that increased the PO2 gradient between seawater and bradoriid tissues. Phosphatocopida responded to Cambrian anoxia differently, reaching their peak during widespread seabed dysoxia of the SPICE event. They lacked a cardiovascular system and appear to have been adapted to seawater hypoxia. As latest Cambrian marine shelf waters became well oxygenated, phosphatocopids went extinct. Changing seawater oxygen-levels and the demise of much of the seabed bradoriid micro-benthos favoured a third group of arthropod micro-benthos, the ostracods. These animals adopted lifestyles that made them tolerant of changes in seawater O2. Ostracods became the numerically dominant arthropod micro-benthos of the Phanerozoic.

Conclusions/Significance

Our work has implications from an evolutionary context for understanding how oxygen-level in marine ecosystems drives behaviour.  相似文献   

20.
The crustaceans, like the other major living groups of arthropods, have a long evolutionary history. The earliest examples occur in the Cambrian, and fossils of this age are a critical source of evidence of relationships both within the Crustacea, and between the Crustacea and other major arthropod groups. Canadaspis perfecta, from the Middle Cambrian Burgess Shale, is important as one of the oldest well-documented crustaceans. The evidence for reconstructing its remarkable combination of primitive and derived characters is reviewed, and its possible phylogenetic significance re-assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号