首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have purified a protein with hemagglutinating activity from the seeds of a West African legume, Bowringia milbraedii. The purified protein, designated BMA, has a native Mr = 38,000 on gel filtration and a subunit size of Mr = 16,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing or nonreducing conditions. Hemagglutination was inhibited most effectively by Man alpha 1----2 linked sugars. Affinity chromatography of oligosaccharides on BMA-Sepharose showed that Man alpha 1----2Man alpha 1----2Man alpha 1----3Man beta 1----4GlcNAcol (where GlcNAcol is N-acetylglucosaminitol) and Man alpha 1----2Man alpha 1----3Man beta 1----4GlcNAcol were retarded on the column, whereas Man alpha 1----3Man beta 1----4GlcNAcol did not bind. Oligomannosidic-type glycans obtained by treatment of [3H] mannose-labeled baby hamster kidney cells with endo-beta-N-acetylglucosaminidase H bound more strongly to BMA-Sepharose and required 10 or 200 mM methyl-alpha-mannoside for elution. Oligosaccharides bearing the sequence Man alpha 1----2Man alpha 1----6Man alpha 1----6Man, i.e. Man9GlcNAc and certain isomers of Man8GlcNAc and Man7GlcNAc, bound more tightly than other Man8 GlcNAc and Man7GlcNAc isomers lacking this sequence. Man6GlcNAc and Man5GlcNAc were weakly bound. These results suggest that BMA binds preferentially to glycoproteins that are subjected to early steps of oligosaccharide processing in the endoplasmic reticulum but not to glycoproteins that are exposed to more extensive processing by Golgi mannosidases. Staining of permeabilized cells with BMA-chromophore conjugates revealed a reticular cytoplasmic pattern consistent with a preferential visualization of the endoplasmic reticulum. BMA staining was less evident in the juxtanuclear regions that were stained brightly with wheat germ agglutinin, a lectin that binds preferentially to sialylated glycoproteins located in Golgi compartments.  相似文献   

2.
Structural changes in N-linked oligosaccharides of glycoproteins during seed development of Ginkgo biloba have been explored to discover possible endogenous substrate(s) for the Ginko endo-beta-N-acetylglucosaminidase (endo-GB; Kimura, Y., et al. (1998) Biosci. Biotechnol. Biochem., 62, 253-261), which should be involved in the production of high-mannose type free N-glycans. The structural analysis of the pyridylaminated oligosaccharides with a 2D sugar chain map, by ESI-MS/MS spectroscopy, showed that all N-glycans expressed on glycoproteins through the developmental stage of the Ginkgo seeds have the xylose-containing type (GlcNAc2 approximately 0Man3Xyl1Fuc1 approximately 0GlcNAc2) but no high-mannose type structure. Man3Xyl1Fuc1GlcNAc2, a typical plant complex type structure especially found in vacuolar glycoproteins, was a dominant structure through the seed development, while the amount of expression of GlcNAc2Man3Xyl1Fuc1GlcNAc2 and GlcNAc1Man3Xyl1Fuc1GlcNAc2 decreased as the seeds developed. The dominantly occurrence of xylose-containing type structures and the absence of the high-mannose type structures on Ginkgo glycoproteins were also shown by lectin-blotting and immunoblotting of SDS-soluble glycoproteins extracted from the developing seeds at various developmental stages. Concerning the endogenous substrates for plant endo-beta-N-acetylglucosaminidase, these results suggested that the endogenous substrates might be the dolicol-oligosaccharide intermediates or some glycopeptides with the high-mannose type N-glycan(s) derived from misfolded glycoproteins in the quality control system for newly synthesized glycoproteins.  相似文献   

3.
Glycan structures of glycoproteins secreted in the spent medium of tobacco BY2 suspension-cultured cells were analyzed. The N-glycans were liberated by hydrazinolysis and the resulting oligosaccharides were labeled with 2-aminopyridine. The pyridylaminated (PA) glycans were purified by reversed-phase and size-fractionation HPLC. The structures of the PA sugar chains were identified by a combination of the two-dimensional PA sugar chain mapping, MS analysis, and exoglycosidase digestion. The ratio (40:60) of the amount of glycans with high-mannose-type structure to that with plant-complex-type structure of extracellular glycoproteins is significantly different from that (ratio 10:90) previously found in intracellular glycoproteins [Palacpac et al., Biosci. Biotechnol. Biochem. 63 (1999) 35-39]. Extracellular glycoproteins have six distinct N-glycans (marked by *) from intracellular glycoproteins, and the high-mannose-type structures account for nearly 40% (Man5GlcNAc2, 28.8%; Man6GlcNAc2*, 6.4%; and Man7GlcNAc2*, 3.8%), while the plant-complex-type structures account for nearly 60% (GlcNAc2Man3Xyl1GlcNAc2*, 32.1%; GlcNAc1Man3Xyl1GlcNAc2 (containing two isomers)*, 6.2%; GlcNAc2Man3GlcNAc2*, 4.9%; Man3Xyl1Fuc1GlcNAc2, 8.3%; and Man3Xyl1GlcNAc2, 3.7%).  相似文献   

4.
Herscovics A 《Biochimie》2001,83(8):757-762
Class I alpha 1,2-mannosidases (glycosylhydrolase family 47) are conserved through eukaryotic evolution. This protein family comprises three subgroups distinguished by their enzymatic properties. The first subgroup includes yeast (Saccharomyces cerevisiae) and human alpha 1,2-mannosidases of the endoplasmic reticulum that primarily form Man(8)GlcNAc(2) isomer B from Man(9)GlcNAc(2). The second subgroup includes mammalian Golgi alpha 1,2-mannosidases, as well as enzymes from insect cells and from filamentous fungi, that trim Man(9)GlcNAc(2) to Man(8)GlcNAc(2) isomers A and/or C intermediates toward the formation of Man(5)GlcNAc(2). Yeast and mammalian proteins of the third subgroup have no enzyme activity with Man(9)GlcNAc(2) as substrate. The members of subgroups 1 and 3 participate in endoplasmic reticulum quality control and promote proteasomal degradation of misfolded glycoproteins. The yeast endoplasmic reticulum alpha 1,2-mannosidase has served as a model for structure-function studies of this family. Its structure was determined by X-ray crystallography as an enzyme-product complex. It consists of a novel (alpha alpha)(7) barrel containing the active site that includes essential acidic residues and calcium. The structures of the subgroup 1 human endoplasmic reticulum alpha 1,2-mannosidase and of a subgroup 2 fungal alpha 1,2-mannosidase were determined by molecular replacement. Comparison of the enzyme structures is providing some insight into the reasons for their different specificities.  相似文献   

5.
Synthesis of the N-linked oligosaccharides of Saccharomyces cerevisiae glycoproteins has been studied in vivo by labeling with [2-3H]mannose and gel filtration analysis of the products released by endoglycosidase H. Both small oligosaccharides, Man8-14GlcNAc, and larger products, Man greater than 20GlcNAc, were labeled. The kinetics of continuous and pulse-chase labeling demonstrated that Glc3Man9GlcNAc2, the initial product transferred to protein, was rapidly (t1/2 congruent to 3 min) trimmed to Man8GlcNAc2 and then more slowly (t1/2 = 10-20 min) elongated to larger oligosaccharides. No oligosaccharides smaller than Man8GlcNAc2 were evident with either labeling procedure. In confirmation of the trimming reaction observed in vivo, 3H-labeled Man9-N-acetylglucosaminitol from bovine thyroglobulin and [14C]Man9GlcNAc2 from yeast oligosaccharide-lipid were converted in vitro by broken yeast cells to 3H-labeled Man8-N-acetylglucosaminitol and [14C]Man8GlcNAc2. Man8GlcNAc and Man9GlcNAc from yeast invertase and from bovine thyroglobulin were purified by gel filtration and examined by high field 1H-NMR analysis. Invertase Man8GlcNAc (B) and Man9GlcNAc (C) were homogeneous compounds, which differed from the Man9GlcNAc (A) of thyroglobulin by the absence of a specific terminal alpha 1,2-linked mannose residue. The Man9GlcNAc of invertase (C) had an additional terminal alpha 1,6-linked mannose and appeared identical in structure with that isolated from yeast containing the mnn1 and mnn2 mutations (Cohen, R. E., Zhang, W.-j., and Ballou, C. E. (1982) J. Biol. Chem. 257, 5730-5737). It is concluded that Man8GlcNAc2, formed by removal of glucose and a single mannose from Glc3Man9GlcNAc2, is the ultimate product of trimming and the minimal precursor for elongation of the oligosaccharides on yeast glycoproteins. The results suggest that removal of a particular terminal alpha 1,2-linked mannose from Man9GlcNAc2 by a highly specific alpha-mannosidase exposes the nascent Man-alpha 1,6-Man backbone for elongation with additional alpha 1,6-linked mannose residues, according to the following scheme: (formula, see text).  相似文献   

6.
Previous studies in our laboratory have shown that specific glycan structures are required for the normal secretion of some glycoproteins. Bromoconduritol is known to inhibit the removal of the innermost glucose moiety from the Glc3Man9(GlcNAc)2 precursor of N-linked glycoproteins. We have used this inhibitor to investigate the possible role of glycan structure in the intracellular transport of secretory glycoproteins of Hep G2 cultures. Cells were pretreated with 1mM bromoconduritol for 1h, pulsed with [35S]-methionine for 10min and chased for varying intervals. Specific glycoproteins and albumin were immunoprecipitated from the cell lysate and medium. We found that bromoconduritol-treatment inhibited the secretion of alpha 1-protease inhibitor, ceruloplasmin, alpha 2-macroglobulin, transferrin, and alpha-fetoprotein. Apparently, the glucosylated high-mannose intermediate is not secreted, since glycoproteins in the medium are of complex form. We conclude that the removal of the innermost glucose residue from secretory glycoprotein represents an important regulatory step in the intracellular transport pathway.  相似文献   

7.
Carbohydrate recognition by bovine serum conglutinin has been investigated by inhibition and direct binding assays using glycoproteins and polysaccharides from Saccharomyces cerevisiae (baker's yeast), and neoglycolipids derived from N-acetylglucosamine oligomers, mannobiose and human milk oligosaccharides. The results clearly show that conglutinin is a lectin which binds terminal N-acetylglucosamine, mannose and fucose residues as found in chitobiose (GlcNAc beta 1-4GlcNAc), mannobiose (Man alpha 1-3Man) and lacto-N-fucopentaose II [Fuc alpha 1-4(Gal beta 1-3)GlcNAc beta 1-3Gal beta 1-4Glc] respectively.  相似文献   

8.
Human immunoglobulin G is known to contain 16 different biantennary complex-type asparagine-linked sugar chains, each of which occurs in a nonsialylated, monosialylated, or disialylated form. These oligosaccharides can be separated into 14 fractions by sequential affinity chromatography with Aleuria aurantia lectin (AAL)-Sepharose, RCA120-WG003, and E4-phytohemagglutinin-agarose columns. Twelve of them were found to contain a single oligosaccharide, while the fraction which passed through all three columns was shown to contain two oligosaccharides, GlcNAc beta 1----2Man alpha 1----6(+/- GlcNAc beta 1----4) (GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4GlcNAcOT. The fraction, which bound to the AAL-Sepharose column and passed through the remaining two lectin columns, also contained two oligosaccharides, GlcNAc beta 1----2Man alpha 1----6(+/- GlcNAc beta 1----4) (GlcNAc beta 1----2Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4 (Fuc alpha 1----6)GlcNAcOT. These results indicated that serial affinity chromatography with the three lectin columns can be used effectively to detect changes in the sugar chains of IgG resulting from diseases such as rheumatoid arthritis.  相似文献   

9.
The study of the glycosylation pathway of a mannosylphosphoryldolichol-deficient CHO mutant cell line (B3F7) reveals that truncated Glc(0-3)Man5GlcNAc2 oligosaccharides are transferred onto nascent proteins. Pulse-chase experiments indicate that these newly synthesized glycoproteins are retained in intracellular compartments and converted to Man4GlcNAc2 species. In this paper, we demonstrate that the alpha1,2 mannosidase, which is involved in the processing of Man5GlcNAc2 into Man4GlcNAc2, is located in the rough endoplasmic reticulum. The enzyme was shown to be inhibited by kifunensine and deoxymannojirimycin, indicating that it is a class I mannosidase. In addition, Man4GlcNAc2 species were produced at the expense of Glc1Man5GlcNAc2 species. Thus, the trimming of Man5GlcNAc2 to Man4GlcNAc2, which is catalyzed by this mannosidase, could be involved in the control of the glucose-dependent folding pathway.  相似文献   

10.
Hen oviduct membranes are shown to catalyze the following enzyme reaction: GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)Man beta 1-4GlcNAc beta 1-4(Fuc alpha 1-6)GlcNAc-Asn + UDP-GlcNAc leads to GlcNAc beta 1-2Man alpha 1-6(GlcNAc beta 1-2Man alpha 1-3)GlcNAc beta 1-4)Man beta 1-4GlcNAc beta 1-4(Fuc alpha 1-6)GlcNAc-Asn + UDP. The enzyme catalyzing this reaction has been named UDP-GlcNAc:glycopeptide beta 4-N-acetylglucosaminyltransferase III (GlcNAc-transferase III) to distinguish it from two other GlcNAc-transferases (I and II) present in hen oviduct and previously described in several mammalian tissues. GlcNAc-transferases I and II, respectively, attach GlcNAc in beta 1-2 linkage to the Man alpha 1-3 and Man alpha 1-6 arms of Asn-linked oligosaccharide cores. A specific assay for GlcNAc-transferase III was devised by using concanavalin A/Sepharose columns to separate the product of transferase III from other interfering radioactive glycopeptides formed in the reaction. The specific activity of GlcNAc-transferase III in hen oviduct membranes is about 5 nmol/mg of protein/h. Substrate specificity studies have shown that GlcNAc-transferase III requires both terminal beta 1-2-linked GlcNAc residues in its substrate for maximal activity. Removal of the GlcNAc residue on the Man alpha 1-6 arm reduces activity by at least 85% and removal of both GlcNAc residues reduces activity by at least 93%. Two large scale preparations of product were subjected to high resolution proton NMR spectroscopy to establish the incorporation by the enzyme of a GlcNAc in beta 1-4 linkage to the beta-linked Man. This GlcNAc residue is called a "bisecting" GlcNAc and appears to play important control functions in the synthesis of complex N-glycosyl oligosaccharides. Several enzymes in the biosynthetic scheme are unable to act on glycopeptide substrates containing a bisecting GlcNAc residue.  相似文献   

11.
Oligosaccharides of a non-oligomannoside type were released from porcine alpha-mannosidase by hydrazinolysis, and were fractionated into at least 15 homogeneous oligosaccharides. Most of them are oligosaccharides with galactose and N-acetylglucosamine residues attached to a common core, alpha Man2 beta Man beta GlcNAc(+/- alpha-L-Fuc)beta GlcNAc. About 50% of the oligosaccharides contain one or two outer chains composed of one beta-linked N-acetylglucosamine and two beta-linked galactose residues attached to the core portions, and the others seem to be metabolic intermediates. Based on the results of studies on the binding of alpha-mannosidase to RCA (Ricinus communis agglutinin) I-agarose and MBP (mannan-binding protein)-Sepharose, which are specific for glycoproteins possessing N-acetyllactosamine-type and oligomannoside-type (including oligomannosides with N-acetylglucosamine at the reducing termini) oligosaccharides, respectively, about 85% of the enzyme molecules were found to have both types of oligosaccharides. Similarly, it was shown that of the several acid hydrolases present in the lysosomes purified from rat liver, only alpha-mannosidase has both types of oligosaccharides, and the greater parts of beta-glucuronidase, acid phosphatase and beta-N-acetylhexosaminidase seem to have only oligomannoside-type oligosaccharides.  相似文献   

12.
Structure of the carbohydrate moieties of bovine rhodopsin.   总被引:7,自引:0,他引:7  
The sugar chains of bovine rhodopsin were released from the polypeptide moiety by hydrazinolysis and reduced with NaB[3H]4 after N-acetylation. The radioactive oligosaccharides thus obtained were fractionated into three components by paper chromatography. The structures of these components were elucidated as GlcNAc beta 1 leads to 2Man alpha 1 leads to 3 (Man alpha 1 leads to 6)Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc, GlcNAc beta 1 leads to 2Man alpha 1 leads to 3(Man alpha 1 leads to 3 and 6 Man alpha 1 leads to 6)Man beta leads to 4GlcNAc beta 1 leads to 4GlcNAc, and GlcNAc beta 1 leads to 2Man alpha 1 leads to 3(Man alpha 1 leads to 3 (Man alpha 1 leads to 6)Man alpha 1 leads to 6)Man beta 1 leads to 4GlcNAc beta 1 leads to 4GlcNAc, by sequential exoglycosidase digestion, methylation analysis, and endo-beta-N-acetylglucosaminidase D digestion. The unusual features of the sugar chains of rhodopsin molecule seem to support the proposed processing pathway for the biosynthesis of asparagine-linked sugar chains of glycoproteins.  相似文献   

13.
We are interested in determining whether carbohydrates are important regulatory determinants in the intracellular transport and secretion of glycoproteins. In the present study, we have used swainsonine, an indolizidine alkaloid, to modify the structure of N-glycosidically linked complex oligosaccharides. By inhibiting Golgi mannosidase II, swainsonine prevents the trimming of GlcNAc(Man)5(GlcNAc)2 to GlcNAc-(Man)3(GlcNAc)2, resulting in the formation of hybrid-type oligosaccharides. We find, from pulse-chase experiments using [35S]methionine and immunoprecipitation of individual proteins from culture media, that swainsonine treatment (1 microgram/ml) accelerated the secretion of glycoproteins (transferrin, ceruloplasmin, alpha 2-macroglobulin, and alpha 1-antitrypsin) by decreasing the lag period by 10-15 min relative to untreated cultures. The enhanced secretion was specific for glycoproteins since the secretion of albumin, a nonglycoprotein, was unaffected. When alpha 1-antitrypsin was immunoprecipitated from the cell lysates, sodium dodecyl sulfate-polyacrylamide gel electrophoresis fluorographic analysis demonstrated that the conversion of the high-mannose precursor to the hybrid form in swainsonine-treated cells occurred more rapidly (by about 10 min) than the conversion to the complex form in control cells. Since both the hybrid and complex forms of alpha 1-antitrypsin are terminally sialylated by sialyltransferase in the trans-Golgi, these results suggest that swainsonine-modified glycoproteins traverse the Golgi more rapidly than their normal counterparts. Therefore, accelerated transport within this organelle may account for the decreased lag period of glycoprotein secretion in the swainsonine-treated cultures.  相似文献   

14.
Elsewhere, we characterized the structure of twelve N-glycans purified from royal jelly glycoproteins (Kimura, Y. et al., Biosci. Biotechnol. Biochem., 64, 2109-2120 (2000)). Structural analysis showed that the typical high-mannose type structure (Man9-4GlcNAc2) accounts for about 72% of total N-glycans, a biantennary-type structure (GlcNAc2Man3GlcNAc2) about 8%, and a hybrid-type structure (GlcNAc1Man4GlcNAc2) about 3%. During structural analysis of minor N-glycans of royal jelly glycoproteins, we found that one had an N-acetyl-galactosaminyl residue at the non reducing end; most of such residues have been found in N-glycans of mammalian glycoproteins. By exoglycosidase digestion, methylation analysis, ion-spray (IS)-MS analysis, and 1H NMR spectroscopy, we identified the structure of the N-glycan containing GalNAc as; GlcNAc(beta)1-2Man(alpha)1-6(GalNAcbeta1 - 4GIcNAcbeta1 - 2Man(alpha)1 - 3)Manbeta1 - 4GlcNAc(beta)1-4GlcNAc. This result suggested that a beta1-4 GalNAc transferase is present in hypopharyngeal and mandibular glands of honeybees.  相似文献   

15.
A series of high mannose oligosaccharides with the size range Man8-14GlcNAc was purified from Saccharomyces cerevisiae invertase, and the composition of each was determined by chemical analysis. Purity and composition were verified by 1H NMR spectroscopy at 500 MHz, and structures were assigned on the basis of chemical shifts in C1-H and C2-H protons of similarly substituted compounds of known structure. Such analyses showed that these invertase oligosaccharides were a homologous series of homogeneous compounds, each related to the next member by addition of 1 mol of mannose in a specific alpha-linked configuration. Man8GlcNAc purified from the total glycoprotein fraction of disrupted yeast was the smallest species found and had the same homogeneous structure as that previously reported for the Man8GlcNAc from invertase (Byrd, J. C., Tarentino, A. L., Maley, F., Atkinson, P. H., and Trimble, R. B. (1982) J. Biol. Chem. 257, 14657-14666). Digestion of Man8-13GlcNAc species from invertase with Aspergillus satoi alpha 1,2-mannosidase provided products that were consistent with the structures assigned by 1H NMR as did fast atom bombardment-mass spectroscopy fragmentation analysis of the Man9,10GlcNAc oligosaccharides. These results lead to the proposal that Man8GlcNAc is the only trimming intermediate in Saccharomyces sp., and the remaining Man9-14GlcNAc oligosaccharides are biosynthetic intermediates which define the principal pathway of single-step mannose addition in the formation of the inner core of yeast mannan.  相似文献   

16.
The lipid-linked oligosaccharide Glc3-Man9(GlcNAc)2 (Glc, glucose; Man, mannose; GlcNAc, N-acetylglucosamine) serves as a precursor for the biosynthesis of the inner core portion of the asparagine-linked polysaccharide of Saccharomyces cerevisiae mannoproteins. It has been shown previously that incubation of a microsomal preparation from this organism with UDP-N-acetylglucosamine and GDP-[14C]mannose gives rise to a series of lipid-linked oligosaccharides of the general structure Mann(GlcNAc)2, with n from 1 to 9. A structural characterization of Man1- to Man5(GlcNAc)2 oligosaccharides indicated that the major structures among these were identical to the intermediates proposed for the biosynthesis of animal glycoproteins (C. Prakash and I. K. Vijay, Biochemistry 21:4810-4818, 1982). In the present study, the structural characterization of the Man6- through Man9(GlcNAc)2 species was conducted. The Man6- through Man8(GlcNAc)2 species have two isomers, whereas Man9(GlcNAc)2 is monoisomeric. One isomer each of Man6- through Man8(GlcNAc)2 and the monoisomeric Man9(GlcNAc)2 are identical to the intermediates for the biosynthesis of asparagine-linked glycoproteins in animal systems. It is proposed that the steps of the lipid-linked assembly of the carbohydrate precursor for S. cerevisiae mannoproteins are identical to those of the major pathway in animal systems. A lack of acceptor substrate specificity by the mannosyltransferases, as observed with in vitro studies with animal systems, also might be responsible for the biosynthesis of multiple isomers reported here.  相似文献   

17.
The kinetics of N-linked oligosaccharide processing and the structures of the processing intermediates have been examined in normal parental BW5147 mouse lymphoma cells and the alpha-glucosidase II-deficient PHAR2.7 mutant cells. The mutant cells accumulated glucosylated intermediates but were able to deglucosylate and process about 40% of their oligosaccharides to complex-type. This processing was not due to residual alpha-glucosidase II activity since the alpha-glucosidase inhibitors 1-deoxynojirimycin (DNJ) and N-butyl-DNJ did not prevent it. Parent cells also showed alpha-glucosidase II-independent processing in the presence of DNJ and N-butyl-DNJ. Membrane preparations from both parent and mutant cells had endo alpha-mannosidase activity, that is, split Glc1,2Man9GlcNAc to Glc1,2Man plus Man8GlcNAc, indicating that this was a candidate for an alternate route to complex oligosaccharide formation in the mutant cells. A balance study in which the cellular glycoproteins, intracellular water soluble saccharides, and saccharides secreted into the medium were isolated and analyzed from [2-3H]mannose-labeled mutant cells showed that the cells formed the di- and trisaccharides Glc1Man and Glc2Man in amounts equivalent to the deglucosylated oligosaccharides found in the cellular glycoproteins. This result shows unequivocally that the alpha-glucosidase II-deficient mutant cells use endo alpha-mannosidase as a bypass route for N-linked oligosaccharide processing.  相似文献   

18.
Processing glycosidases play an important role in N-glycan biosynthesis in mammalian cells by trimming Glc(3)Man(9)GlcNAc(2) and thus providing the substrates for the formation of complex and hybrid structures by Golgi glycosyltransferases. Processing glycosidases also play a role in the folding of newly formed glycoproteins and in endoplasmic reticulum quality control. The properties and molecular nature of mammalian processing glycosidases are described in this review. Membrane-bound alpha-glucosidase I and soluble alpha-glucosidase II of the endoplasmic reticulum remove the alpha1,2-glucose and alpha1,3-glucose residues, respectively, beginning immediately following transfer of Glc(3)Man(9)GlcNAc(2) to nascent polypeptides. The alpha-glucosidases participate in glycoprotein folding mediated by calnexin and calreticulin by forming the monoglucosylated high mannose oligosaccharides required for the interaction with the chaperones. In some mammalian cells, Golgi endo alpha-mannosidase provides an alternative pathway for removal of glucose residues. Removal of alpha1,2-linked mannose residues begins in the endoplasmic reticulum where trimming of mannose residues in the endoplasmic reticulum has been implicated in the targeting of malfolded glycoproteins for degradation. Removal of mannose residues continues in the Golgi with the action of alpha1, 2-mannosidases IA and IB that can form Man(5)GlcNAc(2) and of alpha-mannosidase II that removes the alpha1,3- and alpha1,6-linked mannose from GlcNAcMan(5)GlcNAc(2) to form GlcNAcMan(3)GlcNAc(2). These membrane-bound Golgi enzymes have been cloned and shown to have very distinct patterns of tissue-specific expression. There are also broad specificity alpha-mannosidases that can trim Man(4-9)GlcNAc(2) to Man(3)GlcNAc(2), and provide an alternative pathway toward complex oligosaccharide formation. Cloning of the remaining alpha-mannosidases will be required to evaluate their specific functions in glycoprotein maturation.  相似文献   

19.
The mannose analogue, 1-deoxymannojirimycin, which inhibits Golgi alpha-mannosidase I but not endoplasmic reticulum (ER) alpha-mannosidase has been used to determine the role of the ER alpha-mannosidase in the processing of the asparagine-linked oligosaccharides on glycoproteins in intact cells. In the absence of the inhibitor, the predominant oligosaccharide structures found on the ER glycoprotein 3-hydroxy-3-methylglutaryl-CoA reductase in UT-1 cells are single isomers of Man6GlcNAc and Man8GlcNAc. In the presence of 150 microM 1-deoxymannojirimycin, the Man8GlcNAc2 isomer accumulates indicating that the 1-deoxymannojirimycin-resistant ER alpha-mannosidase is responsible for the conversion of Man9GlcNAc2 to Man8GlcNAc2 on reductase. The processing of Man8GlcNAc2 to Man6GlcNAc2, however, must be attributed to a 1-deoxymannojirimycin-sensitive alpha-mannosidase. When cells were radiolabeled with [2-(3)H]mannose for 15 h in the presence of 1-deoxymannojirimycin and then further incubated for 3 h in nonradioactive medium without inhibitor, the Man8GlcNAc2 oligosaccharides which accumulated during the labeling period were partially trimmed to Man6GlcNAc. This finding suggests that a second alpha-mannosidase, sensitive to 1-deoxymannojirimycin, resides in the crystalloid ER and is responsible for trimming the reductase oligosaccharide chain from Man8GlcNAc2 to Man6GlcNAc2. To determine if ER alpha-mannosidase is responsible for trimming the oligosaccharides of all glycoproteins from Man9GlcNAc to Man8GlcNAc, the total asparagine-linked oligosaccharides of rat hepatocytes labeled with [2-(3)H]mannose in the presence or absence of 1.0 mM 1-deoxymannojirimycin were examined. the inhibitor prevented the formation of complex oligosaccharides and caused a 30-fold increase in the amount of Man9GlcNAc2 and a 13-fold increase in the amount of Man8GlcNAc2 present on secreted glycoproteins. This result suggests that only one-third of the secreted glycoproteins is initially processed by ER alpha-mannosidase, and two-thirds are processed by Golgi alpha-mannosidase I or another 1-deoxymannojirimycin-sensitive alpha-mannosidase. The inhibitor caused only a 2.6-fold increase in the amount of Man9GlcNAc2 on cellular glycoproteins suggesting that a higher proportion of these glycoproteins are initially processed by the ER alpha-mannosidase. We conclude that some, but not all, hepatocyte glycoproteins are substrates for ER alpha-mannosidase which catalyzes the removal of a specific mannose residue from Man9GlcNAc2 to form a single isomer of Man8GlcNAc2.  相似文献   

20.
The pollen of Ginkgo biloba is one of the allergens that cause pollen allergy symptoms. The plant complex type N-glycans bearing beta1-2 xylose and/or alpha1-3 fucose residue(s) linked to glycoallergens have been considered to be critical epitopes in various immune reactions. In this report, the structures of N-glycans of total glycoproteins prepared from Ginkgo biloba pollens were analyzed to confirm whether such plant complex type N-glycans occur in the pollen glycoproteins. The glycoproteins were extracted by SDS-Tris buffer. N-Glycans liberated from the pollen glycoprotein mixture by hydrazinolysis were labeled with 2-aminopyridine and the resulting pyridylaminated (PA-)N-glycans were purified by a combination of size-fractionation HPLC and reversed-phase HPLC. The structures of the PA-sugar chains were analyzed by a combination of two-dimensional sugar chain mapping, IS-MS, and MS/MS. The plant complex type structures (GlcNAc2Man3Xyl1Fuc1GlcNAc2 (31%), GlcNAc2Man3Xyl1GlcNAc2 (5%), Man3Xyl1Fuc1GlcNAc2 (13%), GlcNAc1Man3Xyl1Fuc1GlcNAc2 (8%), and GlcNAc1Man3Xyl1GlcNAc2 (17%)) have been found among the N-glycans of the glycoproteins of Ginkgo biloba pollen, which might be candidates for the epitopes involved in Ginkgo pollen allergy. The remaining 26% of the total pollen N-glycans have the typical high-mannose type structures: Man8GlcNAc2 (11%) and Man6GlcNAc2 (15%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号