首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Heat shock and ethanol stress of brewing yeast strains resulted in the induction of a set of proteins referred to as heat shock proteins (HSPs). At least six strongly induced HSPs were identified in a lager brewing strain and four HSPs in an ale brewing strain. Four of these HSPs with molecular masses of approximately 70, 38, 26 and 23 kDa were also identified in two laboratory strains ofSaccharomyces cerevisiae. The appearance of HSPs correlated with increased survival of strains at elevated temperatures and high concentrations of ethanol. These results suggest that HSPs may play a role in the ethanol and thermotolerance of yeasts. The properties of these proteins and membrane fatty acids in relation to heat and ethanol shock are being investigated.  相似文献   

2.
Heat stress is a major abiotic stress limiting plant growth and productivity in many areas of the world. Understanding mechanisms of plant adaptation to heat stress would facilitate the development of heat-tolerant cultivars for improving productivity in warm climatic regions. Protein metabolism involving protein synthesis and degradation is one of the most sensitive processes to heat stress. Changes in the level and expression pattern of some proteins may play an important role in plant adaptation to heat stress. The identification of stress-responsive proteins and pathways has been facilitated by an increasing number of tools and resources, including two-dimensional electrophoresis and mass spectrometry, and the rapidly expanding nucleotide and amino acid sequence databases. Heat stress may induce or enhance protein expression or cause protein degradation. The induction of heat-responsive proteins, particularly heat shock proteins (HSPs), plays a key role in plant tolerance to heat stress. Protein degradation involving various proteases is also important in regulating plant responses to heat stress. This review provides an overview of recent research on proteomic profiling for the identification of heat-responsive proteins associated with heat tolerance, heat induction and characteristics of HSPs, and protein degradation in relation to plant responses to heat stress.  相似文献   

3.
Heat stress is a major abiotic stress limiting plant growth and productivity in many areas of the world. Understanding mechanisms of plant adaptation to heat stress would facilitate the development of heat-tolerant cultivars for improving productivity in warm climatic regions. Protein metabolism involving protein synthesis and degradation is one of the most sensitive processes to heat stress. Changes in the level and expression pattern of some proteins may play an important role in plant adaptation to heat stress. The identification of stress-responsive proteins and pathways has been facilitated by an increasing number of tools and resources, including two-dimensional electrophoresis and mass spectrometry, and the rapidly expanding nucleotide and amino acid sequence databases. Heat stress may induce or enhance protein expression or cause protein degradation. The induction of heat-responsive proteins, particularly heat shock proteins (HSPs), plays a key role in plant tolerance to heat stress. Protein degradation involving various proteases is also important in regulating plant responses to heat stress. This review provides an overview of recent research on proteomic profiling for the identification of heat-responsive proteins associated with heat tolerance, heat induction and characteristics of HSPs, and protein degradation in relation to plant responses to heat stress.  相似文献   

4.
The ability of photosynthetic organisms to adapt to increases in environmental temperatures is becoming more important with climate change. Heat stress is known to induce heat-shock proteins (HSPs) many of which act as chaperones. Traditionally, it has been thought that protein denaturation acts as a trigger for HSP induction. However, increasing evidence has shown that many stress events cause HSP induction without commensurate protein denaturation. This has led to the membrane sensor hypothesis where the membrane's physical and structural properties play an initiating role in the heat shock response. In this review, we discuss heat-induced modulation of the membrane's physical state and changes to these properties which can be brought about by interaction with HSPs. Heat stress also leads to changes in lipid-based signaling cascades and alterations in calcium transport and availability. Such observations emphasize the importance of membranes and their lipids in the heat shock response and provide a new perspective for guiding further studies into the mechanisms that mediate cellular and organismal responses to heat stress.  相似文献   

5.
Heat-shock proteins (HSPs), or so-called stress proteins may play an important role in cutaneous pathophysiology. HSPs are a group of highly conserved molecules that are expressed by all cells when subjected to heat or other forms of physical or chemical stress. The physiological roles of stress proteins are varied and are important in stress and nonstress conditions. They bind to other cellular proteins and participate in protein folding pathways during stress and also during the synthesis of new polypeptides. HSPs are also essential for thermotolerance and for prevention and repair of damage caused in DNA after ultraviolet exposure. Although HSPs are expressed in the skin in both epidermis and dermis, HSPs may influence many other cellular processes in the inflammatory and immune skin response. Many authors have speculated on a link between HSPs and human skin disease characterized by inflammation and proliferation.Abbreviations HSP heat-shock protein - IL-1 interleukin-1  相似文献   

6.
Heat shock proteins (HSPs) are highly conserved proteins whose syntheses are induced by a variety of stresses, including heat stress. Since the expression of HSPs, including HSP70, protects cells from heat-induced apoptosis, HSP expression has been considered to be a complicating factor in hyperthermia. On the other hand, recent reports have shown the importance of HSPs, such as HSP70, HSP90 and glucose-regulated protein 96 (gp96), in immune reactions. If HSP expression induced by hyperthermia is involved in tumor immunity, novel cancer immunotherapy based on this novel concept can be developed. In such a strategy, a tumor-specific hyperthermia system, which can heat the local tumor region to the intended temperature without damaging normal tissue, would be highly advantageous. To achieve tumor-specific hyperthermia, we have developed an intracellular hyperthermia system using magnetite nanoparticles. This novel hyperthermia system can induce necrotic cell death via HSP expression, which induces antitumor immunity. In the present article, cancer immunology and immunotherapy based on hyperthermia, and HSP expression are reviewed and discussed. This article forms part of the Symposium in Writing "Thermal stress-related modulation of tumor cell physiology and immune responses", edited by Elfriede Noessner.  相似文献   

7.
Plants synthesize several families of low molecular weight (LMW) heat shock proteins (HSPs) in response to elevated temperatures. We have characterized two cDNAs, HSP18.1 and HSP17.9, that encode members of the class I family of LMW HSPs from pea (Pisum sativum). In addition, we investigated the expression of these HSPs at the mRNA and protein levels during heat stress and recovery. HSP18.1 and HSP17.9 are 82.1% identical at the amino acid level and are 80.8 to 92.9% identical to class I LMW HSPs of other angiosperms. Heat stress experiments were performed using intact seedlings subjected to a gradual temperature increase and held at a maximum temperature of 30 to 42 degrees Celsius for 4 hours. HSP18.1 and HSP17.9 mRNA levels peaked at the beginning of the maximum temperature period and declined rapidly after the stress period. Antiserum against a HSP18.1 fusion protein recognized both HSP18.1 and HSP17.9 but not members of other families of LMW HSPs. The accumulation of HSP18.1-immunodetected protein was proportional to the severity of the heat stress, and the protein had a half-life of 37.7 ± 8 hours. The long half-life of these proteins supports the hypothesis that they are involved in establishing thermotolerance.  相似文献   

8.
Increased mechanical stress induced by stretch is an important growth stimulus in skeletal muscle. Heat shock proteins (HSPs) are an important family of endogenous, protective proteins. HSP90 and HSP70 families show elevated levels under beat stress. Mechanical stress, such as physical exercise, is known to induce not only muscular hypertrophy but also the elevation of HSPs expression in skeletal muscle. The purpose of this study was to determine whether heat stress facilitates the stretch-induced hypertrophy of skeletal muscle cells. Cultured rat myotubes (L6) were plated on collagenized Silastic membranes and incubated at 41 degrees C for 60 and 75 minutes (heat shock). Following the incubation, the cells were subjected two-second stretching and four-second releasing for 4 days at 37 degrees C. Protein concentrations in the homogenates and pellets of the cultured skeletal muscle cells increased under heat shock and/or mechanical stretching. The protein concentration of cells following mechanical stretching following heat shock was significantly higher than that following either heat shock or mechanical stretching alone. HSP72 in supernatants and HSP90 in pellets increased under heat shock and/or mechanical stretching. HSP90 in supernatants decreased following heat shock and/or mechanical stretching. Changes in HSPs and cellular protein concentrations in stressed cells suggest that the expression of HSPs may be closely related with muscular hypertrophy.  相似文献   

9.
Protein turnover reflects the balance between synthesis and degradation of proteins, and it is a crucial process for the maintenance of the cellular protein pool. The folding of proteins, refolding of misfolded proteins, and also degradation of misfolded and damaged proteins are involved in the protein quality control (PQC) system. Correct protein folding and degradation are controlled by many different factors, one of the most important of which is the heat shock protein family. Heat shock proteins (HSPs) are in the class of molecular chaperones, which may prevent the inappropriate interaction of proteins and induce correct folding. On the other hand, these proteins play significant roles in the degradation pathways, including endoplasmic reticulum-associated degradation (ERAD), the ubiquitin–proteasome system, and autophagy. This review focuses on the emerging role of HSPs in the regulation of protein turnover; the effects of HSPs on the degradation machineries ERAD, autophagy, and proteasome; as well as the role of posttranslational modifications in the PQC system.  相似文献   

10.
Heat stress elicits the expression of heat shock proteins (HSPs) in honey bee subspecies. These highly conserved proteins have significant role in protecting cells from thermal-induced stresses. Honey bees in subtropical regions face extremely dry and hot environment. The expression of HSPs in the nurses and foragers of indigenous (Apis mellifera jemenitica) and imported European (Apis mellifera ligustica and Apis mellifera carnica) honey bee subspecies after heat shock treatment were compared using SDS-PAGE. Hsp70 and Hsp82 were equally expressed in the nurses of all tested bee subspecies when exposed to 40 °C and 45 °C for 4 h. The forager bees exhibited differential expression of HSPs after heat stress. No HSPs was expressed in the foragers of A. m. jemenitica, and Hsp70 was expressed only in the foragers of A. m. ligustica and A. m. carnica at 40 °C. A prominent diversity in HSPs expression was also exhibited in the foragers at 45 °C with one HSP (Hsp70) in A. m. jemenitica, two HSPs (Hsp40 and Hsp70) in A. m. carnica, and three HSPs (Hsp40, Hsp60 and Hsp70) in A. m. ligustica. No HSPs was expressed in the control nurse and forager bees at any of the tested temperatures. These findings illustrated the differences in HSP expression among nurse and forager bees. It is obvious that the native foragers are more heat tolerant with least HSPs expression than exotic bee races. Further investigations will help to understand the potential role of HSPs in the adaptability, survival, and performance of bee subspecies in harsh climate of the subtropical regions.  相似文献   

11.
In anti-neutrophilic cytoplasmic antibody (ANCA)-associated vasculitis (AAV) genetic predisposition, ANCA autoantibodies, neutrophil extracellular traps (NETs), complement activation, and toll-like receptor signaling are implicated in AAV pathogenesis. Heat shock proteins (HSPs), a highly conserved group of small-sized molecular chaperones, take part in protein folding during cellular stress. Although HSPs were initially observed intracellularly, it has been shown that they can be secreted in the extracellular space and modulate the immune response in various autoimmune diseases including AAV. The scope of the present study is to investigate the role of heat shock protein 60 (HSP60) and 70 (HSP70) in the long renal effects in an ANCA vasculitis cohort. In this cohort of ANCA-associated vasculitis, 29 patients were followed up over 20 years. At diagnosis, immunohistochemistry was performed for HSP60 and HSP70 within the various nephron compartments. Higher renal HSP60 expression was associated with increased interstitial inflammatory infiltrates at diagnosis, while HSP70 expression was associated with a greater extent of interstitial fibrosis at diagnosis. Notably, intense tissue expression of HSP70 at the time of biopsy was associated with a worsened kidney survival. Renal HSP70 expression was associated with poor renal outcomes during long-term follow-up. This finding may indicate a role of HSPs in renal disease progression in ANCA vasculitis. Further validating studies are needed to verify a causative association between HSP70 expression and renal outcomes in ANCA-associated vasculitis.  相似文献   

12.
Heat shock proteins are ubiquitously expressed intracellular proteins and act as molecular chaperones in processes like protein folding and protein trafficking between different intracellular compartments. They are induced during stress conditions like oxidative stress, nutritional deficiencies and radiation. They are released into extracellular compartment during necrosis. However, recent research findings highlights that, they are not solely present in cytoplasm, but also released into extracellular compartment during normal conditions and even in the absence of necrosis. When present in extracellular compartment, they have been shown to perform various functions like antigen presentation, intercellular signaling and induction of pro-inflammatory cytokines. Heat shock proteins represents as dominant microbial antigens during infection. The phylogenetic similarity between prokaryotic and eukaryotic heat shock proteins has led to proposition that, microbial heat shock proteins can induce self reactivity to host heat shock proteins and result in autoimmune diseases. The self-reactivity of heat shock proteins protects host against disease by controlling induction and release of pro-inflammatory cytokines. However, antibodies to self heat shock proteins haven been implicated in pathogenesis of autoimmune diseases like arthritis and atherosclerosis. Some heat shock proteins are potent inducers of innate and adaptive immunity. They activate dendritic cells and natural killer cells through toll-like receptors, CD14 and CD91. They play an important role in MHC-antigen processing and presentation. These immune effector functions of heat shock proteins are being exploited them as therapeutic agents as well as therapeutic targets for various infectious diseases and cancers.  相似文献   

13.
14.
植物热激蛋白的功能及其基因表达的调控   总被引:23,自引:0,他引:23  
本文介绍了植物热激蛋白的产生、分布和分类。着重论述了热激反应的特点、植物热激蛋白的功能、热激基因表达与调控的研究进展  相似文献   

15.
When a cell encounters external stressors, such as lack of nutrients, elevated temperatures, changes in pH or other stressful environments, a key set of evolutionarily conserved proteins, the heat shock proteins (hsps), become overexpressed. Hsps are classified into six major families with the hsp90 family being the best understood; an increase in cell stress leads to increased levels of hsp90, which leads to cellular protection. A hallmark of hsp90 inhibitors is that they induce a cell rescue mechanism, the heat shock response. We define the unique molecular profile of a compound (SM145) that regulates hormone receptor protein levels through hsp90 inhibition without inducing the heat shock response. Modulation of the binding event between heat shock protein 90 and the immunophilins/homologs using SM145, leads to a decrease in hormone receptor protein levels. Unlike N-terminal hsp90 inhibitors, this hsp90 inhibitor does not induce a heat shock response. This work is proof of principle that controlling hormone receptor expression can occur by inhibiting hsp90 without inducing pro-survival protein heat shock protein 70 (hsp70) or other proteins associated with the heat shock response. Innovatively, we show that blocking the heat shock response, in addition to hsp90, is key to regulating hsp90-associated pathways.  相似文献   

16.
Rising temperatures are severely affecting the mortality, laying performance, and meat quality of duck. Our aim was to investigate the effect of acute heat stress on the expression of heat shock proteins (HSPs: HSP90, 70, 60, 40, and 10) and inflammatory factors (nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2)) and antioxidant enzyme activity (superoxide dismutase (SOD), malondialdehybe (MDA), catalase (CAT), total antioxidant capacity (T-AOC)) in livers of ducks and to compare the thermal tolerance of Pekin and Muscovy ducks exposed to acute heat stress. Ducks were exposed to heat at 39 ± 0.5 °C for 1 h and then returned to 20 °C for 1 h followed by a 3-h recovery period. The liver and other tissues were collected from each individual for analysis. The mRNA levels of HSPs (70, 60, and 40) increased in both species, except for HSP10, which was upregulated in Muscovy ducks and had no difference in Pekin ducks after heat stress. Simultaneously, the mRNA level of HSP90 decreased in the stress group in both species. Morphological analysis indicated that heat stress induced tissue injury in both species, and the liver of Pekin ducks was severely damaged. The activities of several antioxidant enzymes increased in Muscovy duck liver, but decreased in Pekin duck. The mRNA levels of inflammatory factors were increased after heat stress in both duck species. These results suggested that heat stress could influence HSPs, inflammatory factors expression, and the activities of antioxidant enzymes. Moreover, the differential response to heat stress indicated that the Muscovy duck has a better thermal tolerance than does the Pekin duck.  相似文献   

17.
A conserved reaction of all organisms exposed to heat stress is an increased expression of heat shock proteins (HSPs). Several studies have proposed that HSP expression in heat‐stressed plant cells is triggered by an increased fluidity of the plasma membrane. Among the main lines of evidence in support of this model are as follows: (a) the degree of membrane lipid saturation was higher in cells grown at elevated temperatures and correlated with a lower amplitude of HSP expression upon a temperature upshift, (b) membrane fluidizers induce HSP expression at physiological temperatures, and (c) membrane rigidifier dimethylsulfoxide dampens heat‐induced HSP expression. Here, we tested whether this holds also for Chlamydomonas reinhardtii. We show that heat‐induced HSP expression in cells grown at elevated temperatures was reduced because they already contained elevated levels of cytosolic HSP70A/90A that apparently act as negative regulators of heat shock factor 1. We find that membrane rigidifier dimethylsulfoxide impaired translation under heat stress conditions and that membrane fluidizer benzyl alcohol not only induced HSP expression but also caused protein aggregation. These findings support the classical model for the cytosolic unfolded protein response, according to which HSP expression is induced by the accumulation of unfolded proteins. Hence, the membrane fluidity model should be reconsidered.  相似文献   

18.
Heat stress has detrimental effects on livestock via diverse immune and physiological changes; heat-stressed animals are rendered susceptible to diverse diseases. However, there is relatively little information available regarding the altered immune responses of domestic animals in heat stress environments, particularly in cattle steers. This study aimed to determine the changes in the immune responses of Holstein and Jersey steers under heat stress. We assessed blood immune cells and their functions in the steers of two breeds under normal and heat stress conditions and found that immune cell proportions and functions were altered in response to different environmental conditions. Heat stress notably reduced the proportions of CD21+MHCII+ B cell populations in both breeds. We also observed breed-specific differences. Under heat stress, in Holstein steers, the expression of myeloperoxidase was reduced in the polymorphonuclear cells, whereas heat stress reduced the WC1+ γδ T cell populations in Jersey steers. Breed-specific changes were also detected based on gene expression. In response to heat stress, the expression of IL-10 and IL-17A increased in Holstein steers alone, whereas that of IL-6 increased in Jersey steers. Moreover, the mRNA expression pattern of heat shock protein genes such as Hsp70 and Hsp90 was significantly increased in only Holstein steers. Collectively, these results indicate that altered blood immunological profiles may provide a potential explanation for the enhanced susceptibility of heat-stressed steers to disease. The findings of this study provide important information that will contribute to developing new strategies to alleviate the detrimental effects of heat stress on steers.  相似文献   

19.
Heat shock proteins (HSPs) have been described as potent tumor vaccines in animal models and are currently studied in clinical trials. The underlying immune response relies on immunogenic peptides that the HSPs have acquired intracellularly by interfering with the classical antigen processing pathways. There have been numerous reports shedding light on how HSPs are able to gain this function and a number of important requirements for HSP-mediated specific immunity have been described: first, the ability of HSPs to bind immunogenic peptides. Second, the acquisition of HSPs by specialized antigen presenting cells with efficient antigen processing pathways capable of inducing cellular immune responses. Third, the existence of specific receptors on the surfaces of antigen presenting cells, allowing efficient and rapid uptake of HSP-peptide complexes from the extracellular fluid. And fourth, the ability of heat shock proteins to activate antigen presenting cells, enabling the latter to prime cytotoxic T cell responses against the peptides associated to HSPs.  相似文献   

20.
To better understand how diatoms are capable of responding to environmental stress, protein expression during heat treatment of a thermo-intolerant ( Phaeodactylum tricornutum ) and thermo-tolerant ( Chaetoceros muelleri ) diatom (Chrysophyta) was investigated. The stress response is a universal and conserved mechanism of cell survival to unfavorable conditions. Typically, a 10 to 15° C temperature elevation above cell growth optimal causes constitutively expressed proteins to decrease and heat shock proteins (HSPs) to increase. HSPs are categorized by molecular weight among five classes with each apparently specialized for a particular function that enhances cell survival. One-dimensional SDS-PAGE of diatoms subjected to heat treatment revealed that P. tricornutum exhibited a typical stress response, but C. muelleri did not exhibit a characteristic response even at a greatly elevated temperature (50° C). This result was confirmed by total soluble protein assays. Chaetoceros muelleri may contain higher basal levels of HSPs than P. tricornutum allowing C. muelleri to better tolerate elevated temperatures. Western blot analysis using pea HSP70 (70 kDa) antisera of heat-treated P. tricornutum and C. muelleri validated the hypothesis that thermo-tolerant cells contain higher levels of constitutively expressed HSPs. Two-dimensional gel electrophoresis of heat-treated cells indicate that the small HSPs (17–30 kDa) played a role in the stress response similar to that found in vascular plants. Ongoing work is focused on the manipulation of the stress response through over-expression of key hsp genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号