首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neotropical seasonally dry forests and Quaternary vegetation changes   总被引:6,自引:0,他引:6  
Seasonally dry tropical forests have been largely ignored in discussions of vegetation changes during the Quaternary. We distinguish dry forests, which are essentially tree‐dominated ecosystems, from open savannas that have a xeromorphic fire‐tolerant, grass layer and grow on dystrophic, acid soils. Seasonally dry tropical forests grow on fertile soils, usually have a closed canopy, have woody floras dominated by the Leguminosae and Bignoniaceae and a sparse ground flora with few grasses. They occur in disjunct areas throughout the Neotropics. The Chaco forests of central South America experience regular annual frosts, and are considered a subtropical extension of temperate vegetation formations. At least 104 plant species from a wide range of families are each found in two or more of the isolated areas of seasonally dry tropical forest scattered across the Neotropics, and these repeated patterns of distribution suggest a more widespread expanse of this vegetation, presumably in drier and cooler periods of the Pleistocene. We propose a new vegetation model for some areas of the Ice‐Age Amazon: a type of seasonally dry tropical forest, with rain forest and montane taxa largely confined to gallery forest. This model is consistent with the distributions of contemporary seasonally dry tropical forest species in Amazonia and existing palynological data. The hypothesis of vicariance of a wider historical area of seasonally dry tropical forests could be tested using a cladistic biogeographic approach focusing on plant genera that have species showing high levels of endemicity in the different areas of these forests.  相似文献   

2.
Tree species distribution in lowland tropical forests is strongly associated with rainfall amount and distribution. Not only plant water availability, but also irradiance, soil fertility, and pest pressure covary along rainfall gradients. To assess the role of water availability in shaping species distribution, we carried out a reciprocal transplanting experiment in gaps in a dry and a wet forest site in Ghana, using 2,670 seedlings of 23 tree species belonging to three contrasting rainfall distributions groups (dry species, ubiquitous species, and wet species). We evaluated seasonal patterns in climatic conditions, seedling physiology and performance (survival and growth) over a 2‐year period and related seedling performance to species distribution along Ghana's rainfall gradient. The dry forest site had, compared to the wet forest, higher irradiance, and soil nutrient availability and experienced stronger atmospheric drought (2.0 vs. 0.6 kPa vapor pressure deficit) and reduced soil water potential (?5.0 vs. ?0.6 MPa soil water potential) during the dry season. In both forests, dry species showed significantly higher stomatal conductance and lower leaf water potential, than wet species, and in the dry forest, dry species also realized higher drought survival and growth rate than wet species. Dry species are therefore more drought tolerant, and unlike the wet forest species, they achieve a home advantage. Species drought performance in the dry forest relative to the wet forest significantly predicted species position on the rainfall gradient in Ghana, indicating that the ability to grow and survive better in dry forests and during dry seasons may allow species to occur in low rainfall areas. Drought is therefore an important environmental filter that influences forest composition and dynamics. Currently, many tropical forests experience increase in frequency and intensity of droughts, and our results suggest that this may lead to reduction in tree productivity and shifts in species distribution.  相似文献   

3.
Aim This research examines environmental theories and remote sensing methods that have been hypothesized to be associated with tropical dry forest structure. Location Tropical dry forests of South Florida and the Neotropics. Methods Field measurements of stand density, basal area and tree height were collected from 22 stands in South Florida and 30 stands in the Neotropics. In South Florida, field measurements were compared to climatic (temperature, precipitation, hurricane disturbance) and edaphic (rockiness, soil depth) variables, spectral indices (NDVI, IRI, MIRI) from Landsat 7 ETM+, and estimates of tree height from the Shuttle Radar Topography Mission (SRTM) and the National Elevation Dataset (NED). Environmental variables associated with tropical dry forest structure in South Florida were compared to tropical dry forest in other Neotropical sites. Results There were significant correlations among temperature and precipitation, and stand density and tree height in South Florida. There were significant correlations between (i) stand density and mean NDVI and standard deviation of NDVI, (ii) MIRI and stand density, basal area and mean tree height, and (iii) estimates of tree height from SRTM with maximum tree height. In the Neotropics, there were no relationships between temperature or precipitation and tropical dry forest structure, however, Neotropical sites that experience hurricane disturbance had significantly shorter tree heights and higher stand densities. Main conclusions It is possible to predict and quantify the forest structure characteristics of tropical dry forests using climatic data, Landsat 7 ETM+ imagery and SRTM data in South Florida. However, results based on climatic data are region‐specific and not necessarily transferable between tropical dry forests at a continental spatial scale. Spectral indices from Landsat 7 ETM+ can be used to quantify forest structure characteristics, but SRTM data are currently not transferable to other regions. Hurricane disturbance has a significant impact on forest structure in the Neotropics.  相似文献   

4.
Aim We combine evidence from palaeoniche modelling studies of several tree species to estimate the extent of Central American forest during the Last Glacial Maximum (LGM). In particular, we ask whether the distributions of these species are likely to have changed since the LGM, and whether LGM distributions coincide with previously proposed Pleistocene refugia in this area. Location Central American wet and seasonally dry forests. Methods We developed ecological niche models using two simulations of Pleistocene climate and occurrence data for 15 Neotropical plant species. We focused on palaeodistribution models of three ‘focal’ tree species that occur in wet and seasonally dry Central American forests, where recent phylogeographic data suggest Pleistocene differentiation coincident with previously proposed refugia. We added predictions from six wet‐forest and six seasonally dry‐forest obligate plant species to gauge whether Pleistocene range shifts were specific to habitat type. Correlation analyses were performed between projected LGM and present distributions, LGM distributions and previously proposed refugia. We also asked whether modelled palaeodistributions were smaller than their current extents. Results According to our models, the ranges of the study species were not reduced during the LGM, and did not correlate with refugial models, regardless of habitat type. Relative range sizes between present and LGM distributions did not indicate significant range changes since the LGM. However, relative range sizes differed overall between the two palaeoclimate models. Main conclusions Many of the modelled palaeodistributions of study species were not restricted to refugia during the LGM, regardless of forest type. While constrained from higher elevations, most species found suitable habitat at coastal margins and on newly exposed land due to lowered sea levels during the LGM. These results offer no corroboration for Pleistocene climate change as a driver of genetic differentiation in the ‘focal’ species. We offer alternative explanations for genetic differentiation found in plant species in this area.  相似文献   

5.
Tree species distributions associated with rainfall are among the most prominent patterns in tropical forests. Understanding the mechanisms shaping these patterns is important to project impacts of global climate change on tree distributions and diversity in the tropics. Beside direct effects of water availability, additional factors co-varying with rainfall have been hypothesized to play an important role, including pest pressure and light availability. While low water availability is expected to exclude drought-intolerant wet forest species from drier forests (physiological tolerance hypothesis), high pest pressure or low light availability are hypothesized to exclude dry forest species from wetter forests (pest pressure gradient and light availability hypothesis, respectively). To test these hypotheses at the seed-to-seedling transition, the potentially most critical stage for species discrimination, we conducted a reciprocal transplant experiment combined with a pest exclosure treatment at a wet and a dry forest site in Panama with seeds of 26 species with contrasting origin. Establishment success after one year did not reflect species distribution patterns. However, in the wet forest, wet origin species had a home advantage over dry forest species through higher growth rates. At the same time, drought limited survival of wet origin species in the dry forest, supporting the physiological tolerance hypothesis. Together these processes sort species over longer time frames, and exclude species outside their respective home range. Although we found pronounced effects of pests and some effects of light availability on the seedlings, they did not corroborate the pest pressure nor light availability hypotheses at the seed-to-seedling transition. Our results underline that changes in water availability due to climate change will have direct consequences on tree regeneration and distributions along tropical rainfall gradients, while indirect effects of light and pests are less important.  相似文献   

6.
The effects of El Niño‐induced droughts on dipterocarp forests must be quantified to evaluate the implications of future global climatic changes for the tropical forests of Southeast Asia. We studied the mortality of trees ≥ 1 cm in diameter in a lowland dipterocarp forest in Borneo before, during, and after the 1997/1998 El Niño drought. The annual mortality rates were 1.30, 1.75, and 1.66 percent/yr for the pre‐drought, drought, and post‐drought periods, respectively. The effect of drought was tree size‐dependent being greater for larger trees. Modified logistic regression analysis revealed a significant interaction effect between species' habitat association and edaphic condition on mortality rates in all periods. For species associated with wet habitat, drought effect was greater in dry conditions than in wet conditions, in both the drought and post‐drought periods. The mortality rates of dry‐habitat species were less affected by the drought both in dry and wet conditions. A similar pattern was also found in common Dipterocarpaceae species; mortality rates increased more in species associated with wet‐habitat in the drought and post‐drought periods. Species and families with higher mortality in the pre‐drought period tended to experience greater mortality increases during the drought and post‐drought periods. These results suggest that changes in drought regimes alter the species composition and spatial distribution of dipterocarp forests.  相似文献   

7.
Drought and pests are primary abiotic and biotic factors proposed as selective filters acting on species distributions along rainfall gradients in tropical forests and may contribute importantly to species distributional limits, performance, and diversity gradients. Recent research demonstrates linkages between species distributions along rainfall gradients and physiological drought tolerance; corresponding experimental examinations of the contribution of pest pressure to distributional limits and potential interactions between drought and herbivory are limited. This study aims to quantitate differential performance and herbivory as a function of species range limits across a climatic and floristic transition in Southeast Asia. Khao Chong Botanical Garden, Thailand and Pasoh Forest Reserve, Malaysia straddle the Kangar‐Pattani Line. A reciprocal transplantation across a seasonality gradient was established using two groups of species (“widespread” taxa whose distributions include seasonally dry forests and “aseasonal” taxa whose distributions are limited to aseasonal forests). Growth, biomass allocation, survival, and herbivory were monitored for 19 months. Systematic differences in performance were a function of species distribution in relation to rainfall seasonality. In aseasonal Pasoh, aseasonal species had both greater growth and survivorship than widespread species. These differences were not a function of differential herbivory as widespread and aseasonal species experienced similar damage in the aseasonal forest. In seasonally dry Khao Chong, widespread species showed higher survivorship than aseasonal species, but these differences were only apparent during drought. We link this differential performance to physiological mechanisms as well as differential tolerance of biotic pressure during drought stress. Systematic decreases in seedling survival in aseasonal taxa during drought corresponded with previously documented physiological differences and may be exacerbated by herbivore damage. These results have important implications for tropical diversity and community composition in light of predicted increases in the frequency and severity of drought in hyperdiverse tropical forests.  相似文献   

8.
Seasonally dry tropical forests are an important global climatic regulator, a main driver of the global carbon sink dynamics and are predicted to suffer future reductions in their productivity due to climate change. Yet, little is known about how interannual climate variability affects tree growth and how climate-growth responses vary across rainfall gradients in these forests. Here we evaluate changes in climate sensitivity of tree growth along an environmental gradient of seasonally dry tropical vegetation types (evergreen forest – savannah – dry forest) in Northeastern Brazil, using congeneric species of two common neotropical genera: Aspidosperma and Handroanthus. We built tree-ring width chronologies for each species × forest type combinations and explored how growth variability correlated with local (precipitation, temperature) and global (the El Niño Southern Oscillation - ENSO) climatic factors. We also assessed how growth sensitivity to climate and the presence of growth deviations varied along the gradient. Precipitation stimulates tree growth and was the main growth-influencing factor across vegetation types. Trees in the dry forest site showed highest growth sensitivity to interannual variation in precipitation. Temperature and ENSO phenomena correlated negatively with growth and sensitivity to both climatic factors were similar across sites. Negative growth deviations were present and found mostly in the dry-forest species. Our results reveal a dominant effect of precipitation on tree growth in seasonally dry tropical forests and suggest that along the gradient, dry forests are the most sensitivity to drought. These forests may therefore be the most vulnerable to the deleterious effects of future climatic changes. These results highlight the importance of understanding the climatic sensitivity of different tropical forests. This understanding is key to predict the carbon dynamics in tropical regions, and sensitivity differences should be considered when prioritizing conservation measures of seasonally dry topical forests.  相似文献   

9.
Pith to bark specific gravity (SG) trends were investigated in 18 tropical dry forest and six montane rain forest tree species of Costa Rica. Eleven dry forest species showed statistically significant increases in SG with distance from pith. The increases ranged from 20–80%; the greatest changes were exhibited by species which are known to occur in tropical wet as well as tropical dry forests. The other seven species showed no change in SG with distance from pith. Of the montane forest species, one showed a significant decrease of 20%, and three showed significant increases ranging from 20–40%. Two species exhibited no change in SG. Comparison of these changes with trends found in tropical wet forest and temperate forest suggests that the increase in SG with size is most common in tropical wet forest, least common in temperate forest, and intermediate in tropical dry and montane forests.  相似文献   

10.
To predict the response of aquatic ecosystems to future global climate change, data on the ecology and distribution of keystone groups in freshwater ecosystems are needed. In contrast to mid‐ and high‐latitude zones, such data are scarce across tropical South America (Neotropics). We present the distribution and diversity of chironomid species using surface sediments of 59 lakes from the Andes to the Amazon (0.1–17°S and 64–78°W) within the Neotropics. We assess the spatial variation in community assemblages and identify the key variables influencing the distributional patterns. The relationships between environmental variables (pH, conductivity, depth, and sediment organic content), climatic data, and chironomid assemblages were assessed using multivariate statistics (detrended correspondence analysis and canonical correspondence analysis). Climatic parameters (temperature and precipitation) were most significant in describing the variance in chironomid assemblages. Temperature and precipitation are both predicted to change under future climate change scenarios in the tropical Andes. Our findings suggest taxa of Orthocladiinae, which show a preference to cold high‐elevation oligotrophic lakes, will likely see range contraction under future anthropogenic‐induced climate change. Taxa abundant in areas of high precipitation, such as Micropsectra and Phaenopsectra, will likely become restricted to the inner tropical Andes, as the outer tropical Andes become drier. The sensitivity of chironomids to climate parameters makes them important bio‐indicators of regional climate change in the Neotropics. Furthermore, the distribution of chironomid taxa presented here is a vital first step toward providing urgently needed autecological data for interpreting fossil chironomid records of past ecological and climate change from the tropical Andes.  相似文献   

11.
Frequent Amazonian fires over the last decade have raised the alarm about the fate of the Earth's most biodiverse forest. The increased fire frequency has been attributed to altered hydrological cycles. However, observations over the past few decades have demonstrated hydrological changes that may have opposing impacts on fire, including higher basin‐wide precipitation and increased drought frequency and severity. Here, we use multiple satellite observations and climate reanalysis datasets to demonstrate compelling evidence of increased fire susceptibility in response to climate regime shifts across Amazonia. We show that accumulated forest loss since 2000 warmed and dried the lower atmosphere, which reduced moisture recycling and resulted in increased drought extent and severity, and subsequent fire. Extremely dry and wet events accompanied with hot days have been more frequent in Amazonia due to climate shift and forest loss. Simultaneously, intensified water vapor transport from the tropical Pacific and Atlantic increased high‐altitude atmospheric humidity and heavy rainfall events, but those events did not alleviate severe and long‐lasting droughts. Amazonia fire risk is most significant in the southeastern region where tropical savannas undergo long seasonally dry periods. We also find that fires have been expanding through the wet–dry transition season and northward to savanna–forest transition and tropical seasonal forest regions in response to increased forest loss at the “Arc of Deforestation.” Tropical forests, which have adapted to historically moist conditions, are less resilient and easily tip into an alternative state. Our results imply forest conservation and fire protection options to reduce the stress from positive feedback between forest loss, climate change, and fire.  相似文献   

12.
Global plant trait studies have revealed fundamental trade-offs in plant resource economics. We evaluated such trait trade-offs during secondary succession in two species-rich tropical ecosystems that contrast in precipitation: dry deciduous and wet evergreen forests of Mexico. Species turnover with succession in dry forest largely relates to increasing water availability and in wet forest to decreasing light availability. We hypothesized that while functional trait trade-offs are similar in the two forest systems, the successful plant strategies in these communities will be different, as contrasting filters affect species turnover. Research was carried out in 15 dry secondary forest sites (5-63 years after abandonment) and in 17 wet secondary forest sites (<1-25 years after abandonment). We used 11 functional traits measured on 132 species to make species-trait PCA biplots for dry and wet forest and compare trait trade-offs. We evaluated whether multivariate plant strategies changed during succession, by calculating a ‘Community-Weighted Mean’ plant strategy, based on species scores on the first two PCA-axes. Trait spectra reflected two main trade-off axes that were similar for dry and wet forest species: acquisitive versus conservative species, and drought avoiding species versus evergreen species with large animal-dispersed seeds. These trait associations were consistent when accounting for evolutionary history. Successional changes in the most successful plant strategies reflected different functional trait spectra depending on the forest type. In dry forest the community changed from having drought avoiding strategies early in succession to increased abundance of evergreen strategies with larger seeds late in succession. In wet forest the community changed from species having mainly acquisitive strategies to those with more conservative strategies during succession. These strategy changes were explained by increasing water availability during dry forest succession and increasing light scarcity during wet forest succession. Although similar trait spectra were observed among dry and wet secondary forest species, the consequences for succession were different resulting from contrasting environmental filters.  相似文献   

13.
Seedling Traits Determine Drought Tolerance of Tropical Tree Species   总被引:3,自引:0,他引:3  
Water availability is the most important factor determining tree species distribution in the tropics, but the underlying mechanisms are still not clear. In this study, we compared functional traits of 38 tropical tree species from dry and moist forest, and quantified their ability to survive drought in a dry‐down experiment in which wilting and survival were monitored. We evaluated how seedling traits affect drought survival, and how drought survival determines species distribution along the rainfall gradient. Dry forest species tended to have compound leaves, high stem dry matter content (stem dry mass/fresh mass), and low leaf area ratio, suggesting that reduction of transpiration and avoidance of xylem cavitation are important for their success. Three functional groups were identified based on the seedling traits: (1) drought avoiders with a deciduous leaf habitat and taproots; (2) drought resisters with tough tissues (i.e., a high dry matter content); and (3) light‐demanding moist forest species with a large belowground foraging capacity. Dry forest species had a longer drought survival time (62 d) than moist forest species (25 d). Deciduousness explained 69 percent of interspecific variation in drought survival. Among evergreen species, stem density explained 20 percent of the drought survival. Drought survival was not related to species distribution along the rainfall gradient, because it was mainly determined by deciduousness, and species with deciduous seedlings are found in both dry and moist forests. Among evergreen species, drought survival explained 28 percent of the variation in species position along the rainfall gradient. This suggests that, apart from drought tolerance, other factors such as history, dispersal limitation, shade tolerance, and fire shape species distribution patterns along the rainfall gradient.  相似文献   

14.
The wet and dry seasons in tropical rain forests can differ in precipitation, soil moisture and irradiance more significantly than often assumed. This could potentially affect the water relations of many tree species that may exhibit either increased transpiration in the dry season as a response to the increased irradiance or decreased transpiration as a result of decreases in soil moisture and increases in atmospheric vapor pressure deficit (VPD). Atmospheric data, soil moisture data and sap fluxes in Iriartea deltoidea palms were measured in eastern Ecuador during the wet and dry seasons. There were no differences between total daily sap fluxes in I. deltoidea palms during the wet and dry seasons; however, evaporative demand was significantly higher in the dry season and therefore, transpiration was more restricted by stomatal closure during the dry season than the wet season. This is likely the result of larger atmospheric VPD during the dry season compared with the wet season and possibly the result of reduced soil moisture availability. Additionally, based on published tree abundances in this area, measured sap fluxes in I. deltoidea were scaled up to the hectare level. Transpiration from I. deltoidea palms was estimated to be around 0.03 mm/d, which could represent about 1 percent of total transpiration in this area of the Amazon rain forest. If climate change predictions for more lengthy tropical dry periods are realized, greater stomatal control of dry-season sap flux has the potential to become even more prevalent in tropical species.  相似文献   

15.
Widely documented for temperate and cold forests in both hemispheres, variations in tree growth responses to climate along environmental gradients have rarely been investigated in the tropics. Seven tree‐ring chronologies of Centrolobium microchaete (Fabaceae) in the Cerrado tropical forests of Bolivia are used to determine the growth responses to climate along a precipitation gradient. Chronologies are distributed from the humid Guarayos forests (annual precipitation > 1600 mm) in the transition to the Amazonia to the dry‐mesic Chiquitos forests (annual precipitation < 1200 mm) in the proximity to the dry Chaco. On a large spatial scale, radial growth is positively influenced by rainfall and negatively by temperature at the end of the dry season. However, this regional pattern in climate‐tree growth relationship shows differences along the precipitation gradient. Relationships with climate are highly significant and extend over longer periods of the year in sites with low rainfall and extremely severe dry seasons. At wet sites, larger water soil capacity and endogenous forest dynamics partially mask the direct influence of climate on tree growth. Stronger similarities in tree‐growth responses to climate occur between sites in the dry Central Chiquitos and in the transition to the Guarayos forests. In contrast, the relationships show fewer similarities between sites in the humid Guarayos. We conclude that growth responses to climate in the tropics are more similar between sites with limited rainfall and severe and prolonged dry seasons. Our study points to a convergence in the patterns of growth responses of tropical trees to climate, modulated by scarce rainfall and marked seasonality. The negative impact of water deficits on tree physiological processes induces not only the documented reduction in forest species richness, but also a convergence in tree‐growth responses to climate in dry tropical forests.  相似文献   

16.
The increasing aridity during the Last Glacial Maximum (LGM) has been proposed as a major factor affecting Neotropical species. The character and intensity of this change, however, remains the subject of ongoing debate. This review proposes an approach to test contrasting paleoecological hypotheses by way of their expected demographic and genetic effects on Neotropical cloud forest species. We reviewed 48 paleoecological records encompassing the LGM in the Neotropics. The records show contrasting evidence regarding the changes in precipitation during this period. Some regions remained fairly moist and others had a significantly reduced precipitation. Many paleoecological records within the same region show apparently conflicting evidence on precipitation and forest stability. From these data, we propose and outline two demographic/genetic scenarios for cloud forests species based on opposite precipitation regimes: the dry refugia and the moist forests hypotheses. We searched for studies dealing with the population genetic structure of cloud forest and other montane taxa and compared their results with the proposed models. To date, the few available molecular studies show insufficient genetic evidence on the predominance of glacial aridity in the Neotropics. In order to disentangle the climatic history of the Neotropics, the present study calls for a general multi‐disciplinary approach to conduct future phylogeographic studies. Given the contradictory paleoecological information, population genetic data on Neotropical cloud forest species should be used to explicitly test the genetic consequences of competing paleoecological models.  相似文献   

17.
1. Long‐term studies in ecology are essential for understanding natural variability and in interpreting responses to disturbances and human perturbations. We assessed the long‐term variability, stability and persistence of macroinvertebrate communities by analysing data from three regions in northern California with a mediterranean‐climate. During the study period, precipitation either increased or decreased, and extreme drought events occurred in each region. 2. Temporal trends in precipitation resulted in shifts from ‘dry‐year’ communities, dominated by taxa adapted to no or low flow, to ‘wet‐year’ communities dominated by taxa adapted to high flows. The abundance of chironomid larvae was an important driver of community change. Directional change in community composition occurred at all sites and was correlated with precipitation patterns, with more dramatic change occurring in smaller streams. 3. All communities exhibited high to moderate persistence (defined by the presence/absence of a species) and moderate to low stability (defined by changes in abundance) over the study period. Stability and persistence were correlated with climatic variation (precipitation and El Niño Southern Oscillation) and stream size. Stability and persistence increased as a result of drought in small streams (first‐order) but decreased in larger streams (second‐ and third‐order). Communities from the dry season were less stable than those from the wet‐season. 4. This study demonstrates the importance of long‐term studies in capturing the effects of and recovery from rare events, such as the prolonged and extreme droughts considered here.  相似文献   

18.
Tropical dry forests (TDF) are highly important tropical forest ecosystems. Yet, these forests are highly threatened, usually neglected and only poorly studied. Understanding the long-term influences of environmental conditions on tree growth in these forests is crucial to understand the functioning, carbon dynamics and potential responses to future climate change of these forests. Dendrochronology can be used as a tool to provide these insights but has only scantly been applied in (dry) tropical forests. Here we evaluate the dendrochronological potential of four Caatinga neotropical dry forest tree species – Aspidosperma pyrifolium, Ziziphus joazeiro, Tabebuia aurea, and Libidibia ferrea – collected in two locations in northeastern Brazil (Sergipe state). We provide an anatomical characterization of the ring boundaries for the four species and investigate correlations of their growth with local and regional climatic variables. All four species form annual rings and show high inter-correlation (up to 0.806) and sensitivity (up to 0.565). Growth of all species correlated with local precipitation as well as with sea-surface temperatures in the tropical Atlantic and/or tropical Pacific oceans. We also show teleconnections between growth and the El Niño South Oscillation. The strong dependence of tree on precipitation is worrisome, considering that climate change scenarios forecast increased drought conditions in the Caatinga dry forest. Including more species and expanding dendrochronological studies to more areas would greatly improve our understanding of tree growth and functioning in TDFs. This type of knowledge is essential to assist the conservation, management and restoration of these critical tropical ecosystems.  相似文献   

19.
We studied the decomposition of Cyrilla racemiflora logs over a 13‐yr period in tropical dry and wet forests in Puerto Rico. The mean mass loss, ratio of soft to hard wood, nutrient concentrations, and the diversity of wood‐inhabiting organisms were greater in logs decomposing in the dry forest than in the wet forest. Termites were also more abundant in the logs collected from the tropical dry forest than the tropical wet forest. High moisture content and a low animal diversity on the logs in the wet forest seem to retard wood decay in this habitat. Wood decay rates in the tropical dry forest can be related to the high diversity of species and functional groups of wood‐inhabiting organisms.  相似文献   

20.
Tropical dry forests have been less studied in terms of their resident epiphyte flora compared to wet forests. We studied five species of epiphytic orchids in two dry forest fragments differing in tree composition, stature and rainfall regime. We compared the vertical distribution within the host tree, epiphyte-host associations and seasonal variation in microclimatic conditions in a tropical dry deciduous (Celestún) and a semi-deciduous forest (Kaxil-Kiuic) of the Yucatan Peninsula, Mexico, during the wet, early dry and dry seasons. Light, vapor pressure deficit, air temperature, and dew were measured on two heights (1.5 and 3.5 m) of the host with the highest abundance of orchids. Surprisingly, orchid abundance was higher in the Celestún deciduous forest, the site with low precipitation. High epiphyte abundance in the middle canopy stratum of the hosts in both forests was arguably related to a favorable combination of micro-environmental factors. In both forests, about 90% of all orchids grew on a single host tree species. Although bark roughness and the area of the substrate were the most important host characteristics that influenced the abundance of orchids in the Celestún deciduous forest, this did not explain this preference. Climatic variation was greater among seasons than between microenvironments in the host trees. The most abundant species, Encyclia nematocaulon, had a great capacity to occupy different strata in both forests, even in tree tops with very large micro-environmental fluctuations during the year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号