首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Projections of future climate are highly sensitive to uncertainties regarding carbon (C) uptake and storage by terrestrial ecosystems. The Eucalyptus Free‐Air CO2 Enrichment (EucFACE) experiment was established to study the effects of elevated atmospheric CO2 concentrations (eCO2) on a native mature eucalypt woodland with low fertility soils in southeast Australia. In contrast to other FACE experiments, the concentration of CO2 at EucFACE was increased gradually in steps above ambient (+0, 30, 60, 90, 120, and 150 ppm CO2 above ambient of ~400 ppm), with each step lasting approximately 5 weeks. This provided a unique opportunity to study the short‐term (weeks to months) response of C cycle flux components to eCO2 across a range of CO2 concentrations in an intact ecosystem. Soil CO2 efflux (i.e., soil respiration or Rsoil) increased in response to initial enrichment (e.g., +30 and +60 ppm CO2) but did not continue to increase as the CO2 enrichment was stepped up to higher concentrations. Light‐saturated photosynthesis of canopy leaves (Asat) also showed similar stimulation by elevated CO2 at +60 ppm as at +150 ppm CO2. The lack of significant effects of eCO2 on soil moisture, microbial biomass, or activity suggests that the increase in Rsoil likely reflected increased root and rhizosphere respiration rather than increased microbial decomposition of soil organic matter. This rapid increase in Rsoil suggests that under eCO2, additional photosynthate was produced, transported belowground, and respired. The consequences of this increased belowground activity and whether it is sustained through time in mature ecosystems under eCO2 are a priority for future research.  相似文献   

2.
The ecological impacts of long‐term elevated atmospheric CO2 (eCO2) levels on soil microbiota remain largely unknown. This is particularly true for the arbuscular mycorrhizal (AM) fungi, which form mutualistic associations with over two‐thirds of terrestrial plant species and are entirely dependent on their plant hosts for carbon. Here, we use high‐resolution amplicon sequencing (Illumina, HiSeq) to quantify the response of AM fungal communities to the longest running (>15 years) free‐air carbon dioxide enrichment (FACE) experiment in the Northern Hemisphere (GiFACE); providing the first evaluation of these responses from old‐growth (>100 years) semi‐natural grasslands subjected to a 20% increase in atmospheric CO2. eCO2 significantly increased AM fungal richness but had a less‐pronounced impact on the composition of their communities. However, while broader changes in community composition were not observed, more subtle responses of specific AM fungal taxa were with populations both increasing and decreasing in abundance in response to eCO2. Most population‐level responses to eCO2 were not consistent through time, with a significant interaction between sampling time and eCO2 treatment being observed. This suggests that the temporal dynamics of AM fungal populations may be disturbed by anthropogenic stressors. As AM fungi are functionally differentiated, with different taxa providing different benefits to host plants, changes in population densities in response to eCO2 may significantly impact terrestrial plant communities and their productivity. Thus, predictions regarding future terrestrial ecosystems must consider changes both aboveground and belowground, but avoid relying on broad‐scale community‐level responses of soil microbes observed on single occasions.  相似文献   

3.
Elevated CO2 (eCO2) generally promotes increased grain yield (GY) and decreased grain protein concentration (GPC), but the extent to which these effects depend on the magnitude of fertilization remains unclear. We collected data on the eCO2 responses of GY, GPC and grain protein yield and their relationships with nitrogen (N) application rates across experimental data covering 11 field grown wheat (Triticum aestivum) cultivars studied in eight countries on four continents. The eCO2‐induced stimulation of GY increased with N application rates up to ~200 kg/ha. At higher N application, stimulation of GY by eCO2 stagnated or even declined. This was valid both when the yield stimulation was expressed as the total effect and using per ppm CO2 scaling. GPC was decreased by on average 7% under eCO2 and the magnitude of this effect did not depend on N application rate. The net effect of responses on GY and protein concentration was that eCO2 typically increased and decreased grain protein yield at N application rates below and above ~100 kg/ha respectively. We conclude that a negative effect on wheat GPC seems inevitable under eCO2 and that substantial N application rates may be required to sustain wheat protein yields in a world with rising CO2.  相似文献   

4.
No consensus has yet been reached on the major factors driving the observed increase in the seasonal amplitude of atmospheric CO2 in the northern latitudes. In this study, we used atmospheric CO2 records from 26 northern hemisphere stations with a temporal coverage longer than 15 years, and an atmospheric transport model prescribed with net biome productivity (NBP) from an ensemble of nine terrestrial ecosystem models, to attribute change in the seasonal amplitude of atmospheric CO2. We found significant (p < .05) increases in seasonal peak‐to‐trough CO2 amplitude (AMPP‐T) at nine stations, and in trough‐to‐peak amplitude (AMPT‐P) at eight stations over the last three decades. Most of the stations that recorded increasing amplitudes are in Arctic and boreal regions (>50°N), consistent with previous observations that the amplitude increased faster at Barrow (Arctic) than at Mauna Loa (subtropics). The multi‐model ensemble mean (MMEM) shows that the response of ecosystem carbon cycling to rising CO2 concentration (eCO2) and climate change are dominant drivers of the increase in AMPP‐T and AMPT‐P in the high latitudes. At the Barrow station, the observed increase of AMPP‐T and AMPT‐P over the last 33 years is explained by eCO2 (39% and 42%) almost equally than by climate change (32% and 35%). The increased carbon losses during the months with a net carbon release in response to eCO2 are associated with higher ecosystem respiration due to the increase in carbon storage caused by eCO2 during carbon uptake period. Air‐sea CO2 fluxes (10% for AMPP‐T and 11% for AMPT‐P) and the impacts of land‐use change (marginally significant 3% for AMPP‐T and 4% for AMPT‐P) also contributed to the CO2 measured at Barrow, highlighting the role of these factors in regulating seasonal changes in the global carbon cycle.  相似文献   

5.
To quantify stem respiration (RS) under elevated CO2 (eCO2), stem CO2 efflux (EA) and CO2 flux through the xylem (FT) should be accounted for, because part of respired CO2 is transported upwards with the sap solution. However, previous studies have used EA as a proxy of RS, which could lead to equivocal conclusions. Here, to test the effect of eCO2 on RS, both EA and FT were measured in a free‐air CO2 enrichment experiment located in a mature Eucalyptus native forest. Drought stress substantially reduced EA and RS, which were unaffected by eCO2, likely as a consequence of its neutral effect on stem growth in this phosphorus‐limited site. However, xylem CO2 concentration measured near the stem base was higher under eCO2, and decreased along the stem resulting in a negative contribution of FT to RS, whereas the contribution of FT to RS under ambient CO2 was positive. Negative FT indicates net efflux of CO2 respired below the monitored stem segment, likely coming from the roots. Our results highlight the role of nutrient availability on the dependency of RS on eCO2 and suggest stimulated root respiration under eCO2 that may shift vertical gradients in xylem [CO2] confounding the interpretation of EA measurements.  相似文献   

6.
Future increase in atmospheric CO2 concentrations will potentially enhance grassland biomass production and shift the functional group composition with consequences for ecosystem functioning. In the “GiFACE” experiment (Giessen Free Air Carbon dioxide Enrichment), fertilized grassland plots were fumigated with elevated CO2 (eCO2) year‐round during daylight hours since 1998, at a level of +20% relative to ambient concentrations (in 1998, aCO2 was 364 ppm and eCO2 399 ppm; in 2014, aCO2 was 397 ppm and eCO2 518 ppm). Harvests were conducted twice annually through 23 years including 17 years with eCO2 (1998 to 2014). Biomass consisted of C3 grasses and forbs, with a small proportion of legumes. The total aboveground biomass (TAB) was significantly increased under eCO2 (p = .045 and .025, at first and second harvest). The dominant plant functional group grasses responded positively at the start, but for forbs, the effect of eCO2 started out as a negative response. The increase in TAB in response to eCO2 was approximately 15% during the period from 2006 to 2014, suggesting that there was no attenuation of eCO2 effects over time, tentatively a consequence of the fertilization management. Biomass and soil moisture responses were closely linked. The soil moisture surplus (c. 3%) in eCO2 manifested in the latter years was associated with a positive biomass response of both functional groups. The direction of the biomass response of the functional group forbs changed over the experimental duration, intensified by extreme weather conditions, pointing to the need of long‐term field studies for obtaining reliable responses of perennial ecosystems to eCO2 and as a basis for model development.  相似文献   

7.
8.
Phosphorus (P) is an essential macro‐nutrient required for plant metabolism and growth. Low P availability could potentially limit plant responses to elevated carbon dioxide (eCO2), but consensus has yet to be reached on the extent of this limitation. Here, based on data from experiments that manipulated both CO2 and P for young individuals of woody and non‐woody species, we present a meta‐analysis of P limitation impacts on plant growth, physiological, and morphological response to eCO2. We show that low P availability attenuated plant photosynthetic response to eCO2 by approximately one‐quarter, leading to a reduced, but still positive photosynthetic response to eCO2 compared to those under high P availability. Furthermore, low P limited plant aboveground, belowground, and total biomass responses to eCO2, by 14.7%, 14.3%, and 12.4%, respectively, equivalent to an approximate halving of the eCO2 responses observed under high P availability. In comparison, low P availability did not significantly alter the eCO2‐induced changes in plant tissue nutrient concentration, suggesting tissue nutrient flexibility is an important mechanism allowing biomass response to eCO2 under low P availability. Low P significantly reduced the eCO2‐induced increase in leaf area by 14.3%, mirroring the aboveground biomass response, but low P did not affect the eCO2‐induced increase in root length. Woody plants exhibited stronger attenuation effect of low P on aboveground biomass response to eCO2 than non‐woody plants, while plants with different mycorrhizal associations showed similar responses to low P and eCO2 interaction. This meta‐analysis highlights crucial data gaps in capturing plant responses to eCO2 and low P availability. Field‐based experiments with longer‐term exposure of both CO2 and P manipulations are critically needed to provide ecosystem‐scale understanding. Taken together, our results provide a quantitative baseline to constrain model‐based hypotheses of plant responses to eCO2 under P limitation, thereby improving projections of future global change impacts.  相似文献   

9.
Free‐air CO2 enrichment (FACE) experiments have demonstrated increased plant productivity in response to elevated (e)CO2, with the magnitude of responses related to soil nutrient status. Whilst understanding nutrient constraints on productivity responses to eCO2 is crucial for predicting carbon uptake and storage, very little is known about how eCO2 affects nutrient cycling in phosphorus (P)‐limited ecosystems. Our study investigates eCO2 effects on soil N and P dynamics at the EucFACE experiment in Western Sydney over an 18‐month period. Three ambient and three eCO2 (+150 ppm) FACE rings were installed in a P‐limited, mature Cumberland Plain Eucalyptus woodland. Levels of plant accessible nutrients, evaluated using ion exchange resins, were increased under eCO2, compared to ambient, for nitrate (+93%), ammonium (+12%) and phosphate (+54%). There was a strong seasonality to responses, particularly for phosphate, resulting in a relatively greater stimulation in available P, compared to N, under eCO2 in spring and summer. eCO2 was also associated with faster nutrient turnover rates in the first six months of the experiment, with higher N (+175%) and P (+211%) mineralization rates compared to ambient rings, although this difference did not persist. Seasonally dependant effects of eCO2 were seen for concentrations of dissolved organic carbon in soil solution (+31%), and there was also a reduction in bulk soil pH (‐0.18 units) observed under eCO2. These results demonstrate that CO2 fertilization increases nutrient availability – particularly for phosphate – in P‐limited soils, likely via increased plant belowground investment in labile carbon and associated enhancement of microbial turnover of organic matter and mobilization of chemically bound P. Early evidence suggests that there is the potential for the observed increases in P availability to support increased ecosystem C‐accumulation under future predicted CO2 concentrations.  相似文献   

10.
The effects of elevated CO2 (eCO2) on the relative uptake of inorganic and organic nitrogen (N) are unclear. The uptake of different N sources by pak choi (Brassica chinensis L.) seedlings supplied with a mixture of nitrate, glycine and ammonium was studied using 15N‐labelling under ambient CO2 (aCO2) (350 ppm) or eCO2 (650 ppm) conditions. 15N‐labelled short‐term uptake and 15N‐gas chromatography mass spectrometry (GC–MS) were applied to measure the effects of eCO2 on glycine uptake and metabolism. Elevated CO2 increased the shoot biomass by 36% over 15 days, but had little effect on root growth. Over the same period, the N concentrations of shoots and roots were decreased by 30 and 2%, respectively. Elevated CO2 enhanced the uptake and N contribution of glycine, which accounted for 38–44% and 21–40% of total N uptake in roots and shoots, respectively, while the uptake of nitrate and ammonium was reduced. The increased glycine uptake resulted from the enhanced active uptake and enhanced metabolism in the roots. We conclude that eCO2 may increase the uptake and contribution of organic N forms to total plant N nutrition. Our findings provide new insights into plant N regulation under eCO2 conditions.  相似文献   

11.
Elevated atmospheric CO2 concentration and climate change may substantially alter soil carbon (C) dynamics, which in turn may impact future climate through feedback cycles. However, only very few field experiments worldwide have combined elevated CO2 (eCO2) with both warming and changes in precipitation in order to study the potential combined effects of changes in these fundamental drivers of C cycling in ecosystems. We exposed a temperate heath/grassland to eCO2, warming, and drought, in all combinations for 8 years. At the end of the study, soil C stocks were on average 0.927 kg C/m2 higher across all treatment combinations with eCO2 compared to ambient CO2 treatments (equal to an increase of 0.120 ± 0.043 kg C m?2 year?1), and showed no sign of slowed accumulation over time. However, if observed pretreatment differences in soil C are taken into account, the annual rate of increase caused by eCO2 may be as high as 0.177 ± 0.070 kg C m?2 year?1. Furthermore, the response to eCO2 was not affected by simultaneous exposure to warming and drought. The robust increase in soil C under eCO2 observed here, even when combined with other climate change factors, suggests that there is continued and strong potential for enhanced soil carbon sequestration in some ecosystems to mitigate increasing atmospheric CO2 concentrations under future climate conditions. The feedback between land C and climate remains one of the largest sources of uncertainty in future climate projections, yet experimental data under simulated future climate, and especially including combined changes, are still scarce. Globally coordinated and distributed experiments with long‐term measurements of changes in soil C in response to the three major climate change‐related global changes, eCO2, warming, and changes in precipitation patterns, are, therefore, urgently needed.  相似文献   

12.
A key part of the uncertainty in terrestrial feedbacks on climate change is related to how and to what extent nitrogen (N) availability constrains the stimulation of terrestrial productivity by elevated CO2 (eCO2), and whether or not this constraint will become stronger over time. We explored the ecosystem‐scale relationship between responses of plant productivity and N acquisition to eCO2 in free‐air CO2 enrichment (FACE) experiments in grassland, cropland and forest ecosystems and found that: (i) in all three ecosystem types, this relationship was positive, linear and strong (r2 = 0.68), but exhibited a negative intercept such that plant N acquisition was decreased by 10% when eCO2 caused neutral or modest changes in productivity. As the ecosystems were markedly N limited, plants with minimal productivity responses to eCO2 likely acquired less N than ambient CO2‐grown counterparts because access was decreased, and not because demand was lower. (ii) Plant N concentration was lower under eCO2, and this decrease was independent of the presence or magnitude of eCO2‐induced productivity enhancement, refuting the long‐held hypothesis that this effect results from growth dilution. (iii) Effects of eCO2 on productivity and N acquisition did not diminish over time, while the typical eCO2‐induced decrease in plant N concentration did. Our results suggest that, at the decennial timescale covered by FACE studies, N limitation of eCO2‐induced terrestrial productivity enhancement is associated with negative effects of eCO2 on plant N acquisition rather than with growth dilution of plant N or processes leading to progressive N limitation.  相似文献   

13.
14.
Thirty-six mesocosms, each containing a two-species community of Trifolium repens (C3 legume) and Stenotaphrum secundatum (C4 grass), were grown in sand with three nutrient regimes, zero N low P, zero N high P and supplied N high P, under ambient (aCO2) and twice ambient CO2 (eCO2) for 15 months in two greenhouses. Aboveground annual production in the P limited mesocosms did not respond to eCO2 and was reduced by 50% relative to mesocosms with an adequate P supply, where dry-matter production was increased by 12–24% under eCO2. The stimulation of production by eCO2 occurred throughout the year despite a clear seasonality in growth. There was no effect of eCO2 on leaf area index (LAI), which was larger under high P than low P. Live root mass at the end of the experiment was higher under eCO2 in all nutrient treatments, but the response of total belowground C (root+soil) to eCO2 depended on P treatment. Under limiting P, belowground C was not significantly changed by eCO2 (2–2.3 t belowground C ha−1). Under high P supply, both root and soil C pools increased under eCO2. Under aCO2, low P supply increased belowground C by 0.7–1 t C ha−1 above that added by the high P treatment. P is commonly limiting in Australian ecosystems and the majority of ecosystem N input is provided by biological N fixation. Consequently, the response of legumes to eCO2 is of particular importance. These results demonstrate that at low P availability, there is likely to be only a limited response of biomass production by T. repens to eCO2, which in turn may constrain any ecosystem response.  相似文献   

15.
The level of carbon dioxide (CO2) in the air can affect several traits in plants. Elevated atmospheric CO2 (eCO2) can enhance photosynthesis and increase plant productivity, including biomass, although there are inconsistencies regarding the effects of eCO2 on the plant growth response. The compounding effects of ambient environmental conditions such as light intensity, photoperiod, water availability, and soil nutrient composition can affect the extent to which eCO2 enhances plant productivity. This study aimed to investigate the growth response of Arabidopsis thaliana to eCO2 (800 ppm) under short photoperiod (8/16 h, light/dark cycle). Here, we report an attenuated fertilization effect of eCO2 on the shoot biomass of Arabidopsis plants grown under short photoperiod. The biomass of two-, three-, and four-week-old Arabidopsis plants was increased by 10%, 15%, and 28%, respectively, under eCO2 compared to the ambient CO2 (aCO2, 400 ppm) i.e. control. However, the number of rosette leaves, rosette area, and shoot biomass were similar in mature plants under both CO2 conditions, despite 40% higher photosynthesis in eCO2 exposed plants. The levels of chlorophylls and carotenoids were similar in the fully expanded rosette leaves regardless of the level of CO2. In conclusion, CO2 enrichment moderately increased Arabidopsis shoot biomass at the juvenile stage, whereas the eCO2-induced increment in shoot biomass was not apparent in mature plants. A shorter day-length can limit the source-to-sink resource allocation in a plant in age-dependent manner, hence diminishing the eCO2 fertilization effect on the shoot biomass in Arabidopsis plants grown under short photoperiod.  相似文献   

16.
Regenerating forests influence the global carbon (C) cycle, and understanding how climate change will affect patterns of regeneration and C storage is necessary to predict the rate of atmospheric carbon dioxide (CO2) increase in future decades. While experimental elevation of CO2 has revealed that young forests respond with increased productivity, there remains considerable uncertainty as to how the long‐term dynamics of forest regrowth are shaped by elevated CO2 (eCO2). Here, we use the mechanistic size‐ and age‐ structured Ecosystem Demography model to investigate the effects of CO2 enrichment on forest regeneration, using data from the Duke Forest Free‐Air Carbon dioxide Enrichment (FACE) experiment, a forest chronosequence, and an eddy‐covariance tower for model parameterization and evaluation. We find that the dynamics of forest regeneration are accelerated, and stands consistently hit a variety of developmental benchmarks earlier under eCO2. Because responses to eCO2 varied by plant functional type, successional pathways, and mature forest composition differed under eCO2, with mid‐ and late‐successional hardwood functional types experiencing greater increases in biomass compared to early‐successional functional types and the pine canopy. Over the simulation period, eCO2 led to an increase in total ecosystem C storage of 9.7 Mg C ha‐1. Model predictions of mature forest biomass and ecosystem–atmosphere exchange of CO2 and H2O were sensitive to assumptions about nitrogen limitation; both the magnitude and persistence of the ecosystem response to eCO2 were reduced under N limitation. In summary, our simulations demonstrate that eCO2 can result in a general acceleration of forest regeneration while altering the course of successional change and having a lasting impact on forest ecosystems.  相似文献   

17.
Uncertainty about long‐term leaf‐level responses to atmospheric CO2 rise is a major knowledge gap that exists because of limited empirical data. Thus, it remains unclear how responses of leaf gas exchange to elevated CO2 (eCO2) vary among plant species and functional groups, or across different levels of nutrient supply, and whether they persist over time for long‐lived perennials. Here, we report the effects of eCO2 on rates of net photosynthesis and stomatal conductance in 14 perennial grassland species from four functional groups over two decades in a Minnesota Free‐Air CO2 Enrichment experiment, BioCON. Monocultures of species belonging to C3 grasses, C4 grasses, forbs, and legumes were exposed to two levels of CO2 and nitrogen supply in factorial combinations over 21 years. eCO2 increased photosynthesis by 12.9% on average in C3 species, substantially less than model predictions of instantaneous responses based on physiological theory and results of other studies, even those spanning multiple years. Acclimation of photosynthesis to eCO2 was observed beginning in the first year and did not strengthen through time. Yet, contrary to expectations, the response of photosynthesis to eCO2 was not enhanced by increased nitrogen supply. Differences in responses among herbaceous plant functional groups were modest, with legumes responding the most and C4 grasses the least as expected, but did not further diverge over time. Leaf‐level water‐use efficiency increased by 50% under eCO2 primarily because of reduced stomatal conductance. Our results imply that enhanced nitrogen supply will not necessarily diminish photosynthetic acclimation to eCO2 in nitrogen‐limited systems, and that significant and consistent declines in stomatal conductance and increases in water‐use efficiency under eCO2 may allow plants to better withstand drought.  相似文献   

18.
The response of wheat crops to elevated CO2 (eCO2) was measured and modelled with the Australian Grains Free‐Air CO2 Enrichment experiment, located at Horsham, Australia. Treatments included CO2 by water, N and temperature. The location represents a semi‐arid environment with a seasonal VPD of around 0.5 kPa. Over 3 years, the observed mean biomass at anthesis and grain yield ranged from 4200 to 10 200 kg ha?1 and 1600 to 3900 kg ha?1, respectively, over various sowing times and irrigation regimes. The mean observed response to daytime eCO2 (from 365 to 550 μmol mol?1 CO2) was relatively consistent for biomass at stem elongation and at anthesis and LAI at anthesis and grain yield with 21%, 23%, 21% and 26%, respectively. Seasonal water use was decreased from 320 to 301 mm (P = 0.10) by eCO2, increasing water use efficiency for biomass and yield, 36% and 31%, respectively. The performance of six models (APSIM‐Wheat, APSIM‐Nwheat, CAT‐Wheat, CROPSYST, OLEARY‐CONNOR and SALUS) in simulating crop responses to eCO2 was similar and within or close to the experimental error for accumulated biomass, yield and water use response, despite some variations in early growth and LAI. The primary mechanism of biomass accumulation via radiation use efficiency (RUE) or transpiration efficiency (TE) was not critical to define the overall response to eCO2. However, under irrigation, the effect of late sowing on response to eCO2 to biomass accumulation at DC65 was substantial in the observed data (~40%), but the simulated response was smaller, ranging from 17% to 28%. Simulated response from all six models under no water or nitrogen stress showed similar response to eCO2 under irrigation, but the differences compared to the dryland treatment were small. Further experimental work on the interactive effects of eCO2, water and temperature is required to resolve these model discrepancies.  相似文献   

19.
Elevated atmospheric CO2 (eCO2) is expected to reduce the impacts of drought and increase photosynthetic rates via two key mechanisms: first, through decreased stomatal conductance (gs) and increased soil water content (VSWC) and second, through increased leaf internal CO2 (Ci) and decreased stomatal limitations (Slim). It is unclear if such findings from temperate grassland studies similarly pertain to warmer ecosystems with periodic water deficits. We tested these mechanisms in three important C3 herbaceous species in a periodically dry Eucalyptus woodland and investigated how eCO2‐induced photosynthetic enhancement varied with seasonal water availability, over a 3 year period. Leaf photosynthesis increased by 10%–50% with a 150 μmol mol?1 increase in atmospheric CO2 across seasons. This eCO2‐induced increase in photosynthesis was a function of seasonal water availability, given by recent precipitation and mean daily VSWC. The highest photosynthetic enhancement by eCO2 (>30%) was observed during the most water‐limited period, for example, with VSWC <0.07 in this sandy surface soil. Under eCO2 there was neither a significant decrease in gs in the three herbaceous species, nor increases in VSWC, indicating no “water‐savings effect” of eCO2. Periods of low VSWC showed lower gs (less than ≈ 0.12 mol m?2 s?1), higher relative Slim (>30%) and decreased Ci under the ambient CO2 concentration (aCO2), with leaf photosynthesis strongly carboxylation‐limited. The alleviation of Slim by eCO2 was facilitated by increasing Ci, thus yielding a larger photosynthetic enhancement during dry periods. We demonstrated that water availability, but not eCO2, controls gs and hence the magnitude of photosynthetic enhancement in the understory herbaceous plants. Thus, eCO2 has the potential to alter vegetation functioning in a periodically dry woodland understory through changes in stomatal limitation to photosynthesis, not by the “water‐savings effect” usually invoked in grasslands.  相似文献   

20.
Can elevated CO(2) improve salt tolerance in olive trees?   总被引:2,自引:0,他引:2  
We compared growth, leaf gas exchange characteristics, water relations, chlorophyll fluorescence, and Na+ and Cl concentration of two cultivars (‘Koroneiki’ and ‘Picual’) of olive (Olea europaea L.) trees in response to high salinity (NaCl 100 mM) and elevated CO2 (eCO2) concentration (700 μL L−1). The cultivar ‘Koroneiki’ is considered to be more salt sensitive than the relatively salt-tolerant ‘Picual’. After 3 months of treatment, the 9-month-old cuttings of ‘Koroneiki’ had significantly greater shoot growth, and net CO2 assimilation (ACO2) at eCO2 than at ambient CO2, but this difference disappeared under salt stress. Growth and ACO2 of ‘Picual’ did not respond to eCO2 regardless of salinity treatment. Stomatal conductance (gs) and leaf transpiration were decreased at eCO2 such that leaf water use efficiency (WUE) increased in both cultivars regardless of saline treatment. Salt stress increased leaf Na+ and Cl concentration, reduced growth and leaf osmotic potential, but increased leaf turgor compared with non-salinized control plants of both cultivars. Salinity decreased ACO2, gs, and WUE, but internal CO2 concentrations in the mesophyll were not affected. eCO2 increased the sensitivity of PSII and chlorophyll concentration to salinity. eCO2 did not affect leaf or root Na+ or Cl concentrations in salt-tolerant ‘Picual’, but eCO2 decreased leaf and root Na+ concentration and root Cl concentration in the more salt-sensitive ‘Koroneiki’. Na+ and Cl accumulation was associated with the lower water use in ‘Koroneiki’ but not in ‘Picual’. Although eCO2 increased WUE in salinized leaves and decreased salt ion uptake in the relatively salt-tolerant ‘Koroneiki’, growth of these young olive trees was not affected by eCO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号