首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intraspecific chemical variability of essential oils (50 samples) isolated from the aerial parts of Artemisia herba-alba Asso growing wild in the arid zone of Southeastern Tunisia was investigated. Analysis by GC (RI) and GC/MS allowed the identification of 54 essential oil components. The main compounds were β-thujone and α-thujone, followed by 1,8-cineole, camphor, chrysanthenone, trans-sabinyl acetate, trans-pinocarveol, and borneol. Chemometric analysis (k-means clustering and PCA) led to the partitioning into three groups. The composition of two thirds of the samples was dominated by α-thujone or β-thujone. Therefore, it could be expected that wild plants of A. herba-alba randomly harvested in the area of Kirchaou and transplanted by local farmers for the cultivation in arid zones of Southern Tunisia produce an essential oil belonging to the α-thujone/β-thujone chemotype and containing also 1,8-cineole, camphor, and trans-sabinyl acetate at appreciable amounts.  相似文献   

2.
In this work we analysed the essential oils (EO) obtained by hydrodistillation from the aerial parts of five Artemisia species (A. arborescens L., A. campestris L., A. lobelii All., A. annua L. and A. absinthium L.) originated from Serbia, Montenegro, and Libya, by gas chromatography coupled with mass spectrometry. In total, 126 compounds were detected, and 120 were identified. Even though a high number of compounds were detected, each individual sample had only 25 to 50, attesting to a great diversity of compounds between taxa. Depending on the species and the locality (geographical origin), EO was dominated by either monoterpenes or sesquiterpenes, with β-pinene, chamazulene, germacrene D, camphor, pinocarvone and thuja-2,4(10)-diene being the dominant compounds. The chemophenetic value of the EO compositions was discussed in relation to the results of the multivariate statistical test, including the detailed survey of the available literature data.  相似文献   

3.
Forty samples of inflorescences and leaves of wild Tanacetum vulgare L. var. vulgare were collected in 20 habitats from Lithuania. The essential oils were analyzed by GC and GC/MS. The 57 identified compounds in the oils made up 80.7–99.6%. According to the cluster analysis the volatile oils were divided into four groups with 1,8-cineole (23.6–46.3%, 11 oils), trans-thujone (35.7–78.4%, 6 samples), camphor (19.8–61.8%, 17 oils) and myrtenol (13.1–24.9%, 6 samples) as main constituents. The inflorescences and leaves of tansy plants formed the oils with the same dominating constituent in 15 of the 20 habitats investigated. The leaves in five localities produced oils of the 1,8-cineole chemotype, while the inflorescences biosynthesized oils of the camphor type in three habitats and of the myrtenol type in two habitats. Amounts of the 1,8-cineole in all leaf oils were greater than that in inflorescence oils of the plants from the same locality. An opposite correlation was determined for camphor, myrtenol, cis- and trans-thujone. The myrtenol chemotype was not noticed earlier in the essential oils of T. vulgare.  相似文献   

4.
The essential oils isolated from three organs, i.e., fruits, stems and leaves, and flowers, of the endemic North African plant Scabiosa arenaria Forssk. were screened for their chemical composition, as well as their possible antibacterial, anticandidal, and antifungal properties. According to the GC-FID and GC/MS analyses, 61 (99.26% of the total oil composition), 79 (98.43%), and 51 compounds (99.9%) were identified in the three oils, respectively. While α-thujone (34.39%), camphor (17.48%), and β-thujone (15.29%) constituted the major compounds of the fruit oil, chrysanthenone (23.43%), together with camphor (12.98%) and α-thujone (10.7%), were the main constituents of the stem and leaf oil. In the case of the flower oil, also chrysanthenone (38.52%), camphor (11.75%), and α-thujone (9.5%) were identified as the major compounds. Furthermore, the isolated oils were tested against 16 Gram-positive and Gram-negative bacteria, four Candida species, and nine phytopathogenic fungal strains. It was found that the oils exhibited interesting antibacterial and anticandidal activities, comparable to those of thymol, which was used as positive control, but no activity against the phytopathogenic fungal strains was observed.  相似文献   

5.
Aerial parts of Artemisia arborescens were collected from different sites of the Mediterranean area (southwestern Algeria and southern Italy) and the chemical composition of their essential oil (EO) extracted by hydrodistillation was studied by both gas chromatography (GC) equipped with an enantioselective capillary column and GC/mass spectrometry (GC/MS). The EOs obtained were tested against several Listeria monocytogenes strains. Using GC and GC/MS, 41 compounds were identified, accounting for 96.0 – 98.8% of the total EO. All EOs showed a similar terpene profile, which was rich in chamazulene, β‐thujone, and camphor. However, the concentration of such compounds varied among the EOs. Aarborescens EO inhibited up to 83.3% of the Lmonocytogenes strains, but the inhibitory spectrum varied among the EOs, with those from Algeria showing a higher inhibition degree than the Italian EOs. Such effect likely depended on the ketone (β‐thujone + camphor) content of the EO. The differences in the EO composition support the hypothesis that Aarborescens has at least two different chemotypes: a β‐thujone and a chamazulene type. The EO inhibitory spectrum indicates the Aarborescens EO as a valuable option in the control of the food‐borne pathogens.  相似文献   

6.
《Phytochemistry》1987,26(3):846-847
The chemical composition of the essential oils from five Salvia species from Turkey was determined by GC. The species were S. candidissima, S. cryptantha, S. fruticosa, S. officinalis and S. tomentosa. 24, 22, 20, 19, and 22 components were identified, respectively, the major ones being β-pinene (candidissima), borneol (cryptantha), 1,8-cineole (fruticosa), camphor (officinalis) and β-pinene (tomentosa). α-Pinene in candidissima, camphor in cryptantha, α-thujone in officinalis and 1,8-cineole in tomentosa were the other important components.  相似文献   

7.
Lavandula stoechas L. (Lamiaceae) is an attractive shrub native to the Mediterranean regions used for ornamental, melliferous, aromatic and medicinal purposes. Furthermore, this species presents an increasing interest in cosmetics, perfumery and pharmaceutical industries. The variability of qualitative and quantitative metabolic traits among nine wild germplasms representing the distribution area of this species in Tunisia was undertaken. A total of 45 essential oil components were identified in the aerial parts of the studied germplasms. The main essential oil components were camphor (15.32–50.63%), fenchone (6.57–34.70%), 1,8-cineole (0.05–13.45%) and γ-gurjunene (1.10–12.15%). In addition to the well known chemotypes camphor/fenchone and camphor/1.8-cineole, a new chemotype camphor/γ-gurjunene was detected in Tunisian L. stoechas L. Six phenolic acids (quinic acid, gallic acid, p-coumaric acid, 4,5-di-O-caffeoyquinic acid, salviolinic acid and trans cinnamic acid) and five flavonoids (luteolin-7-o-glucoside, naringin, apegenin-7-o-glucoside, quercetin and kampherol) were identified in the ethanolic extracts. Salviolinic acid (46.30–615.18 μg/g) and luteolin-7-o-glucoside (5.98–38.54 μg/g) were the most abundant phenolic compounds. A high significant phytochemical variability (p ˂ 0.01) in the accumulation of volatile and phenolic secondary metabolites among the studied germplasms was recorded. The conducted multivariate (PCA) and clustering (HCA) analyses revealed different classification pattern for essential oil and phenolic compounds. The detected phytochemical polymorphism among the investigated lavender ecotypes didn't show accordance with bioclimatic and geographical areas which suggests genetic background as the main explaining factor. The detected secondary metabolites polymorphism valorises Tunisian L. stoechas L. genetic resources as valuable plant material in further breeding programs. Moreover, an urgent in situ and ex situ conservation measures are required for these wild germplasms threatened by human over-harvesting practices and the occurring dramatic changes in climatic conditions.  相似文献   

8.
Composition of the essential oils of Rosmarinus officinalis of ten populations from the Balkan Peninsula were determined by GC/FID and GC/MS. The main constituents were 1,8‐cineole, camphor, α‐pinene, and borneol. Multivariate statistical analysis (UPGMA cluster analysis and principal‐component analysis (PCA)) revealed two major types of rosemary oil, i.e., 1,8‐cineole and camphor‐type, and two intermediate types, i.e., camphor/1,8‐cineole/borneol type and 1,8‐cineole/camphor type. The regression analyses (simple linear regression and stepwise multiple regression) have shown that, with respect to basic geographic, orographic, and 19 bioclimatic characteristics of each population, bioclimatic factor temperature of habitat represented the dominant abiogenetic factor, which, in chemical sense, led to differentiation of populations in the studied region. Also, the regression analysis have shown that some constituents of essential oils are independent of any single bioclimatic factors. However, some constituents display statistically significant correlations with some abiotic factors.  相似文献   

9.
The aerial parts of Tanacetum argyrophyllum (C. Koch) Tvzel. var. argyrophyllum and T. parthenium (L.) Schultz Bip. were hydro-distilled to produce the oils in the yields of 0.78% (v/w) and 0.43% (v/w), respectively. The oils were analysed by GC and GC/MS. Twenty-two and twenty-three components were identified representing 94.2% and 90.1% of the oils, respectively. The main compounds of T. argyrophyllum were cis-thujone (69.9%), trans-thujone (5.6%) and 1,8-cineole (3.2%), whereas camphor (56.9%), camphene (12.7%) and p-cymene (5.2%) were the major constituents of T. parthenium.  相似文献   

10.
The essential oil content and composition of Salvia fruticosa (Greek sage) plants growing wild in 20 localities scattered on the island of Crete are studied. The results of our analyses have shown a noticeable variation in the essential oil content (ranging from 1.1 up to 5.1 %) and the amount of the four main oil components: 1,8-cineole (22.7 ? 64.2% of total oil), α-thujone (1.0 ? 19.2%) β-thujone (0.9 ? 25.6%) and camphor (0.8 ? 30.3%). Discriminant analysis revealed that the variation pattern of the essential oil content and the amount of the four main oil components is geographically related, following a W → E direction. Plants grown in Western Crete show a lower essential oil content and their oils are characterised by the predominance of 1,8-cineole. On the other hand, those collected from Eastern Crete exhibit higher values in essential oil content and their oils, besides 1,8-cineole, are rich in α- and β-thujone or camphor. Our findings are further discussed in relation to literature data.  相似文献   

11.
The essential oils of Artemisia arborescens growing in Sardinia (Italy), collected during three plant growth stages, i.e., from the vegetative stage to post‐blooming time, were characterized. Moreover, the in vitro antiproliferative and antioxidant activities of the oil isolated from aerial parts collected in February were evaluated. The essential oils belonged to the β‐thujone/chamazulene chemotype, notably with the highest amount of chamazulene (ca. 52%) ever detected up to now in the genus Artemisia and, in general, in essential oils. Quantitative variations in the oil composition were observed as the plant passes from the vegetative to the blooming stage. The oil was tested for its potential tumor cell growth‐inhibitory effect on T98G, MDA‐MB 435S, A375, and HCT116 human cell lines, using the MTT (=3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐2H‐tetrazolium bromide) assay. The highest activity was observed on A375 and HCT116 cell lines, with IC50 values of 14 μg/ml. Moreover, the in vitro antioxidant and free radical‐scavenging assays revealed the oil to be an effective scavenger of the ABTS radical cation, with an activity comparable to that of Trolox®. These results support the use of A. arborescens oil for the treatment of inflamed skin conditions. Finally, the composition of the polar fraction of the A. arborescens aerial parts was also examined, and the main component detected was 5‐O‐caffeoylquinic acid, which was identified for the first time in this plant.  相似文献   

12.
The variation of the essential oils composition of 10 Tunisian Mentha x rotundifolia (L.) Huds. Populations and their antioxidant activity were assessed. Essential oils showed high percentages of oxygenated monoterpenes and sesquiterpene hydrocarbons. Rotundifolone, p-menthane-1,2,3-triol, β-caryophyllene and germacrene D were identified as main compounds at the species level. A variation in the essential oil composition was observed according to the populations and ecological factors. The populations 7, 8, 9 and 10 from the upper semi-arid bioclimatic zone and situated at high altitudes, exhibited the highest amount of rotundifolone. The populations 1, 2, 3, 4 and 5 from the lower humid showed a rotundifolone/β-caryophyllene/germacrene D chemotype. The population 6, situated at the lowest altitude, was characterized by the highest amount of p-menthane-1,2,3-triol. The level of antioxidant activity of the populations was linked to their chemical composition difference. The highest scavenging activity and the best ability to reduce ferric ions were recorded for the population 10. The most important capacity to inhibit β-carotene bleaching was revealed for the population 8. For all populations, the antioxidant activities were substantial but lower than antioxidant standards used (Trolox and BHT).The populations (7, 8, 9 and 10) from the upper semi-arid showed the best yields of essential oils and the highest contents of rotundifolone. Chemotypes within these populations could be selected for improvement programs.  相似文献   

13.
Composition of the essential oils of Rosmarinus officinalis of ten populations from the Balkan Peninsula were determined by GC/FID and GC/MS. The main constituents were 1,8-cineole, camphor, α-pinene, and borneol. Multivariate statistical analysis (UPGMA cluster analysis and principal-component analysis (PCA)) revealed two major types of rosemary oil, i.e., 1,8-cineole and camphor-type, and two intermediate types, i.e., camphor/1,8-cineole/borneol type and 1,8-cineole/camphor type. The regression analyses (simple linear regression and stepwise multiple regression) have shown that, with respect to basic geographic, orographic, and 19 bioclimatic characteristics of each population, bioclimatic factor temperature of habitat represented the dominant abiogenetic factor, which, in chemical sense, led to differentiation of populations in the studied region. Also, the regression analysis have shown that some constituents of essential oils are independent of any single bioclimatic factors. However, some constituents display statistically significant correlations with some abiotic factors.  相似文献   

14.
The phytochemical study on ten populations of Salvia multicaulis Vahl. revealed that their essential oil qualitative profiles contained a significant amount of monoterpene hydrocarbons, which were the most abundant compounds. Besides, α-Pinene was the major constituent in all studied populations' essential oils. Significant correlations were observed between edaphic parameters and some major essential oil compounds. According to clustering analyses of the chemical data, the S. multicaulis populations were divided into three chemotypes: β-caryophyllene, camphene and camphor, and limonene. The population genetics study showed significant molecular differences among the populations. The Mantel test indicated a significant positive correlation between the geographical distances and genetic diversity, exhibiting a low amount of gene flow and a considerable genetic differentiation value. We also detected four genotypes based on the Nei's genetic distance and structure analysis. The identified chemical and genetic similarities/differences among these populations were correlated with edaphic parameters and geographic distances, suggesting that environmental factors are the primary drivers of the chemical polymorphism of essential oils in S. multicaulis populations.  相似文献   

15.
The antimicrobial properties of essential oil from various Santolina species have not been investigated enough in the previous studies dealing with the biological activities of medicinal plants. In Tunisia, Santolina chamaecyparissus L. (Asteraceae) is the only Santolina species recorded and is used as vermifuge and emmenagogue. The chemical composition, antibacterial and antifungal properties of essential oils from the flowerheads and roots of spontaneous S. chamaecyparissus growing in Tunisia and the chemical composition which leads to the Tunisian chemotype are investigated here for the first time. Essential oils isolated by hydro distillation from flowerheads and roots of S. chamaecyparissus were analyzed by GC and GC/MS. Two methods served for antimicrobial assays of the essential oils: diffusion in a solid medium and micro-well dilution assay. Antifungal tests were carried out by the agar incorporation method. Sixty-seven constituents were identified from the essential oil of the flowerhead. The major constituents were: 1,8-cineole and β-eudesmol. Two non identified compounds were present at the highest concentration in root oil. Flowerhead oil was characterized by high contents in monoterpenes and sesquiterpenes oxygenated compounds. The flowerhead essential oil demonstrated potent of antibacterial properties against Pseudomonas aeruginosa ATCC and Enterococcus faecalis ATCC, with MIC of 0.625 μg/ml. These findings demonstrate that the flowerhead essential oils of S. chamaecyparissus have excellent antibacterial properties and for this reason they could contribute to decrease the problem of microbial resistance to antibiotics.  相似文献   

16.
Essential oil yield and composition in seven natural populations of Lavandula latifolia from the eastern Iberian Peninsula were determined by GC/MS. Twenty-eight constituents were identified, accounting for 92.0–95.4% of the total oils. These oils were dominated by the monoterpene fraction and three of them (linalool, cineole and camphor) constituted 79.5–86.9% of the oil from flowers. Essential oil yield in leaves and flowers varied among and within populations, but hierarchic analyses of variance showed that the proportion of variation attributable to individuals was significantly higher than that attributable to population differences. Principal component and cluster analyses allowed three groups of flower essential oils to be distinguished according to their high, intermediate and low proportion of linalool. These essential oil types are respectively correlated to the Supra-, Meso- and Thermo-Mediterranean bioclimatic belts where the populations are located. A genetic analysis based on those terpenes that showed a trimodal distribution roughly corroborated the relationships between the seven populations obtained from the ordination analyses and emphasizes the distinctiveness of some of the populations.  相似文献   

17.
Twenty-five terpenoids, 6-phenylacetylenes, 7 phenols, and 15 fatty acids were characterized in this oil. It differs considerably in composition from the oils of A. kurromensis, A. maritima and A. fukudo, which have α- and β-thujone as the major constituents.  相似文献   

18.
Essential oils of 25 indigenous populations of Dalmatian sage (Salvia officinalis L.) that represent nearly half of native distribution area of the species were analyzed. Plantlets collected from wild populations were grown in the same field under the same environmental conditions and then sampled for essential‐oil analysis. The yield of essential oil ranged from 1.93 to 3.70% with average of 2.83%. Among the 62 compounds detected, eight (cis‐thujone, camphor, trans‐thujone, 1,8‐cineole, β‐pinene, camphene, borneol, and bornyl acetate) formed 78.13–87.33% of essential oils of individual populations. Strong positive correlations were observed between camphor and β‐pinene, β‐pinene and borneol, as well as between borneol and bornyl acetate. The strongest negative correlation was detected between camphor and trans‐thujone. Principal component analysis (PCA) on the basis of eight main compounds showed that first main component separated populations with high thujone content, from those rich in camphor, while the second component separated populations rich in cis‐thujone from those rich in trans‐thujone. Cluster analysis (CA) led to the identification of three chemotypes of S. officinalis populations: cis‐thujone; trans‐tujone, and camphor/β‐pinene/borneol/bornyl acetate. We propose that differences in essential oils of 25 populations are mostly genetically controlled, since potential environmental factors were controlled in this study.  相似文献   

19.
Salvia officinalis L. and the closely related Salvia fruticosa Mill. (Lamiaceae) are amongst the economically most important medicinal and aromatic plants. Both species are rich in essential oil, which can vary significantly and is partly responsible for their bioactivity and sensorial properties. Therefore we studied its variability within Albania, one of the main exporters of both species. In S. officinalis a clear geographical gradient could be observed from North to South, based mainly on a trade-off between the thujones (α- and β-thujone) and camphor. The differences between the provinces were so pronounced that the essential oil profile could be used to identify the origin of unknown samples from within Albania to a high degree of certainty. The variability within S. fruticosa was not as pronounced due to its restricted distribution to coastal regions in the South–West only. No hybrids between the two species could be found in the overlapping distribution areas.  相似文献   

20.
The composition of essential oils hydrodistilled from 19 samples of inflorescences and leaves of Achillea millefolium L. plants, which were transferred from 14 natural habitats in Lithuania to the field collection, is reported. Total content of oil was 0.15–0.55% in inflorescences and 0.06–0.19% (v/w) in leaves. In total 117 compounds were identified positively or tentatively. Data obtained clearly indicate the presence of a remarkable chemical polymorphism within the population of A. millefolium in Lithuania. The content of the major constituents in the oils from inflorescences varied in the following ranges: β-pinene, 0.33–62.29%; β-myrcene, 0.05–69.76%; α-phelandrene, 0.13–29.96%; 1,8-cineole, 2.30–21.57%; and chamazulene, 0.08–30.70%. According to the major components the essential oils' six chemotypes of A. millefolium were defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号