首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Process Biochemistry》2014,49(4):569-575
The aim of this study was to isolate fungi able to produce pigments. Fifty strains were isolated from the Amazon soil by the conventional technique of serial dilution. Submerged fermentation was performed in Czapeck broth in order to select strains able to synthesise pigments. Five strains were able to produce pigments and were identified by sequencing the rDNA (ITS regions). These fungi were identified as Penicillium sclerotiorum 2AV2, Penicillium sclerotiorum 2AV6, Aspergillus calidoustus 4BV13, Penicillium citrinum 2AV18 and Penicillium purpurogenum 2BV41. P. sclerotiorum 2AV2 produced intensely coloured pigments and were therefore selected for chemical characterisation. NMR identified the pigment as sclerotiorin. In this work, the influence of nutrients on sclerotiorin yield was also studied and it was verified that rhamnose and peptone increased production when used separately. These results indicate that Amazonian fungi bioprospecting is a viable means to search for new sources of natural dyes.  相似文献   

2.

Background

Few studies describing eukaryotic communities in the human gut microbiota have been published. The objective of this study was to investigate comprehensively the repertoire of plant and fungal species in the gut microbiota of an obese patient.

Methodology/Principal Findings

A stool specimen was collected from a 27-year-old Caucasian woman with a body mass index of 48.9 who was living in Marseille, France. Plant and fungal species were identified using a PCR-based method incorporating 25 primer pairs specific for each eukaryotic phylum and universal eukaryotic primers targeting 18S rRNA, internal transcribed spacer (ITS) and a chloroplast gene. The PCR products amplified using these primers were cloned and sequenced. Three different culture media were used to isolate fungi, and these cultured fungi were further identified by ITS sequencing. A total of 37 eukaryotic species were identified, including a Diatoms (Blastocystis sp.) species, 18 plant species from the Streptophyta phylum and 18 fungal species from the Ascomycota, Basidiomycota and Chytridiocomycota phyla. Cultures yielded 16 fungal species, while PCR-sequencing identified 7 fungal species. Of these 7 species of fungi, 5 were also identified by culture. Twenty-one eukaryotic species were discovered for the first time in human gut microbiota, including 8 fungi (Aspergillus flavipes, Beauveria bassiana, Isaria farinosa, Penicillium brevicompactum, Penicillium dipodomyicola, Penicillium camemberti, Climacocystis sp. and Malassezia restricta). Many fungal species apparently originated from food, as did 11 plant species. However, four plant species (Atractylodes japonica, Fibraurea tinctoria, Angelica anomala, Mitella nuda) are used as medicinal plants.

Conclusions/Significance

Investigating the eukaryotic components of gut microbiota may help us to understand their role in human health.  相似文献   

3.
The Penicillium roqueforti group has recently been split into three species, P. roqueforti, Penicillium carneum, and Penicillium paneum, on the basis of differences in ribosomal DNA sequences and secondary metabolite profiles. We reevaluated the taxonomic identity of 52 livestock feed isolates from Sweden, previously identified by morphology as P. roqueforti, by comparing the sequences of the ribosomal internal transcribed spacer region. Identities were confirmed with random amplified polymorphic DNA analysis and secondary metabolite profiles. Of these isolates, 48 were P. roqueforti, 2 were P. paneum, and 2 were Penicillium expansum. No P. carneum isolates were found. The three species produce different mycotoxins, but no obvious relationship between mold and animal disease was detected, based on medical records. P. roqueforti appears to dominate in silage, but the ecological and toxicological importance of P. carneum and P. paneum as feed spoilage fungi is not clear. This is the first report of P. expansum in silage.  相似文献   

4.
Sclerotiorin, an azaphilone produced by some filamentous fungi including Penicillium sclerotiorum, is a pigment with variety of biological activities including lipoxygenase inhibition, reduction of cholesterol levels, and anti-cancer properties. Sclerotiorin has potential use in pharmaceutical as well as food industries. In this context, the purpose of this study was to provide a simple and robust procedure for optimised production of sclerotiorin by P. sclerotiorum using a central composite design developed through response surface methodology (RSM) and to identify the molecule(s) involved in the signalling mechanism in P. sclerotiorum. The optimisation of sclerotiorin production was carried out using RSM in shaken flasks and the obtained results were then replicated using a 2-L stirred tank bioreactor. Penicillium sclerotiorum ethyl acetate culture extract was analysed using thin layer chromatography (TLC) and potential signalling molecules were identified using Gas chromatography-mass spectrometry (GC-MS). The experimental studies suggested an increase in the sclerotiorin production by 2.1-fold and 2.2-fold in shaken flasks and stirred tank bioreactors respectively. Further analysis of P. sclerotiorum ethyl acetate culture extract reported the presence of ricinoleic acid, an oxylipin, belonging to a family of signalling molecules tentatively involved in the enhancement of sclerotiorin production. This paper has highlighted the positive effect of the optimal supplementation of P. sclerotiorum culture extracts for enhanced production of sclerotiorin. It has also examined potential molecules involved in the signalling mechanism in P. sclerotiorum culture extract for the overproduction of sclerotiorin.  相似文献   

5.
The ability of deuteromycetes of the genera Penicillium, Aspergillus, and Botrytis to retain collagenolytic activity was studied after both 2 and 10 years of storage on a Czapek medium under a layer of mineral oil at 4°C, as well as in silica gel granules at 20 and ?60°C. The enzymatic activity of several species, including Botrytis terrestris, Penicillium janthinellum, Penicillium chrysogenum, and Penicillium citrinum, was retained under both conditions of storage. Aspergillus repens retained enzymatic activity only if stored under a layer of mineral oil. The viability of conidia and the collagenolytic activity of Botrytis terrestris, P. janthinellum, P. chrysogenum, and Penicillium citrinum, maintained on silica gel for 10 years, depended on the storage temperature. The viability of the test strains improved after storage on a silica gel at ?60°C. A strain of Aspergillus repens lost its ability to dissolve collagen at various storage tempeatures on the silica gel. The index of lysis for three strains of Penicillium deuteromycetes (Penicillium janthinellum, Penicillium chrysogenum, and Penicillium citrinum) increased after a 10-year storage on silica gel at ?60°C.  相似文献   

6.
Fungi causes most plant disease. When fruits are stored at suboptimal conditions, fungi grows, and some produce mycotoxin which can be dangerous for human consumption. Studies have shown that the Penicillium and Monilinia species commonly cause spoilage of fruits, especially apples. Several other genera and species were reported to grow to spoil fruits. This study was conducted to isolate and identify fruit spoilage by fungi on apples collected in Riyadh, Saudi Arabia and conduct a molecular identification of the fungal isolates. Thus, we collected 30 samples of red delicious and Granny Smith apples with obvious spoilage from different supermarkets between February and March of 2012 in Riyadh, Saudi Arabia. Each apple was placed in a sterile plastic bag in room temperature (25–30 °C) for six days or until fungal growth was evident all over the sample. Growth of fungal colonies on PDA was counted and sent for molecular confirmation by PCR. Six fruit spoilage fungi were isolated, including Penicillium chrysogenum, Penicillium adametzii, Penicillium chrysogenum, Penicillium steckii, Penicillium chrysogenum, and Aspergillus oryzae. P. chrysogenum was the most frequent isolate which was seen in 14 of a total of 34 isolates (41.2%), followed by P. adametzii and A. oryzae with seven isolates each (20.6%) and the least was P. steckii with six isolates (17.6%). Penicillium species comprised 27 of the total 34 (79.4%) isolates. Sequence analysis of the ITS regions of the nuclear encoded rDNA showed significant alignments for P. chrysogenum, P. adametzii and A. oryzae. Most of these fungal isolates are useful and are rarely pathogenic; however they can still produce severe illness in immune-compromised individuals, and sometimes otherwise healthy people may also become infected. It is therefore necessary to evaluate the possible production of mycotoxins by these fungi to determine a potential danger and to establish its epidemiology in order to develop adequate methods of control.  相似文献   

7.
Siderophore producing potential of 20 fungal isolates (same 10 species from each marine and terrestrial habitat) were examined and compared. Except marine Aspergillus flavus, all isolates produced siderophores as evidenced by positive reaction in FeCl3 test, CAS assay and CAS agar plate test. The results indicated widespread occurrence of siderophores in both the habitats. Examination of the chemical nature of siderophores revealed that mucoraceous fungi produced carboxylate, while others produced hydroxamate siderophores. Thus, the nature of siderophore was found to be independent of habitat. Among all the isolates, Cunninghamella elegans (marine form) was maximum siderophore producer (1987.5 μg/ml) followed by terrestrial form of C. elegans (1248.75 μg/ml). There was no marked variation in siderophore concentration of Penicillium funiculosum strains. Comparison of quantification of siderophore production between marine and terrestrial revealed that four terrestrial isolates (Aspergillus niger, Aspergillus ochraceous, Penicillium chrysogenum, Penicillium citrinum) were ahead in siderophore production, while, the other four marine isolates (Aspergillus versicolor, C. elegans, Rhizopus sp., Syncephalastrum racemosum) were found to be more potent siderophore producers, indicating that they were equally competent.  相似文献   

8.
The presence of fungi on liquorice could contaminate the crop and result in elevated levels of mycotoxin. In this study, the mycobiota associated with fresh and dry liquorice was investigated in 3 producing regions of China. Potential toxigenic fungi were tested for ochratoxin A (OTA) and aflatoxin B1 (AFB1) production using liquid chromatography/mass spectrometry/mass spectrometry. Based on a polyphasic approach using morphological characters, β-tubulin and RNA polymerase II second largest subunit gene phylogeny, a total of 9 genera consisting of 22 fungal species were identified, including two new Penicillium species (Penicillium glycyrrhizacola sp. nov. and Penicillium xingjiangense sp. nov.). The similarity of fungal communities associated with fresh and dry liquorice was low. Nineteen species belonging to 8 genera were detected from fresh liquorice with populations affiliated with P. glycyrrhizacola, P. chrysogenum and Aspergillus insuetus comprising the majority (78.74%, 33.33% and 47.06% of total) of the community from Gansu, Ningxia and Xinjiang samples, respectively. In contrast, ten species belonging to 4 genera were detected from dry liquorice with populations affiliated with P. chrysogenum, P. crustosum and Aspergillus terreus comprising the majority (64.00%, 52.38% and 90.91% of total) of the community from Gansu, Ningxia and Xinjiang samples, respectively. Subsequent LC/MS/MS analysis indicated that 5 fungal species were able to synthesize OTA in vitro including P. chrysogenum, P. glycyrrhizacola, P. polonicum, Aspergillus ochraceus and A. westerdijkiae, the OTA concentration varied from 12.99 to 39.03 µg/kg. AFB1 was absent in all tested strains. These results demonstrate the presence of OTA producing fungi on fresh liquorice and suggest that these fungi could survive on dry liquorice after traditional sun drying. Penicillium chrysogenum derived from surrounding environments is likely to be a stable contributor to high OTA level in liquorice. The harvesting and processing procedure needs to be monitored in order to keep liquorice free of toxigenic fungi.  相似文献   

9.
《Fungal Ecology》2008,1(1):24-32
Nutrient assimilation by two mycotoxigenic spoilage fungi (Penicillium verrucosum, Aspergillus ochraceus) and four other food spoilage fungi (Penicillium coryolophilum, P. roqueforti, Cladosporium herbarum, Eurotium repens), of 32 key C-sources in wheat bread were examined in relation to abiotic factors of water availability, pH, temperature and the presence/absence of a preservative, potassium sorbate. These studies were to understand the relative potential co-existence, nutritional partitioning and niche exclusion in bread-based matrices. The niche size decreased significantly with decrease in water availability, temperature and pH. There were also significant interactive effects between pH and the preservative. The data were used to determine the niche overlap indices (NOI) of competing fungi relative to the two ochratoxigenic species. These showed that P. verrucosum and A. ochraceus were nutritionally dominant over the other species. The NOIs showed that potential co-existence and/or niche exclusion was influenced by environmental factors. Overall, the addition of the preservative increased the interspecific competition for nutrients. The level of co-existence and nutritional partitioning was significantly modified by abiotic factors, and this can help explain the dominance of specific fungal species in food matrices. This approach could also be useful for understanding competitiveness and dominance of fungal species in other ecosystems, especially in relation to impacts of abiotic and biotic factors.  相似文献   

10.
During the course of mold surveys, a set of Talaromyces isolates were obtained that did not fit any described species. Phenotypic examination of these isolates showed that they were similar to T. piceus but differed in some growth characteristics. Multilocus DNA sequence data were obtained for the new isolates and some related species in the broader, more inclusive clade, and the data were analyzed using genealogical concordance. The new isolates are described as Talaromyces columbinus. From analysis of the related species, Penicillium rugulosum var. atricolum is given species status in Talaromyces as T. atricola. Penicillium tardum and P. chrysitis were showed to be synonyms of T. rugulosus. Penicillium scorteum and T. phialosporus were showed to be conspecific and under the rule of priority T. scorteus is the proper name for isolates previously known as T. phialosporus. Talaromyces wortmanii was showed to be distinct from Penicillium concavorugulosum and T. variabilis but the relationship of the latter two species remains unresolved. Examination of ITS sequences from GenBank showed that T. columbinus has previously been reported from human lung infections under the name Penicillium piceum.  相似文献   

11.
A total of 28 strains of 19 Penicillium species were isolated in a survey of extracellular enzyme-producing fungi from macroalgae along the coast of Jeju Island of Korea. Penicillium species were identified based on morphological and β-tubulin sequence analyses. In addition, the halo-tolerance and enzyme activity of all strains were evaluated. The diversity of Penicillium strains isolated from brown algae was higher than the diversity of strains isolated from green and red algae. The commonly isolated species were Penicillium antarcticum, P. bialowiezense, P. brevicompactum, P. crustosum, P. oxalicum, P. rubens, P. sumatrense, and P. terrigenum. While many strains showed endoglucanase, β-glucosidase, and protease activity, no alginase activity was detected. There was a positive correlation between halo-tolerance and endoglucanase activity within Penicillium species. Among 19 Penicillium species, three species–P. kongii, P. olsonii, and P. viticola–have not been previously recorded in Korea.  相似文献   

12.
Fungi isolated from honey bees, Apis mellifera, fed 2,4-D and Antibiotics   总被引:1,自引:0,他引:1  
Eighteen species of fungi were isolated and identified from the intestines of 388 honey bees, Apis mellifera. Bees fed a combination of oxytetracycline and fumagillin contained fewer fungi than control bees or bees fed 2,4-D. New records of fungi associated with honey bees include Alternaria tenuissima, Cladosporium cladosporoides, Bipolaris sp., Curvularia brachyospora, Penicillium ochro-chloron, Penicillium urticae, and Rhizopus arrhizus.  相似文献   

13.
Mycobiota growing on food is often beneficial for the ripening and development of the specific flavor characteristics of the product, but it can also be harmful due to the production of undesirable compounds such as mycotoxins or antibiotics. Some of the fungi most frequently isolated from fermented and cured meat products such as Penicillium chrysogenum and Penicillium nalgiovense are known penicillin producers; the latter has been shown to be able to produce penicillin when growing on the surface of meat products and secrete it to the medium. The presence of penicillin in food must be avoided, since it can lead to allergic reactions and the arising of penicillin resistance in human-pathogenic bacteria. In this article we describe a study of the penicillin production ability among fungi of the genus Penicillium that are used as starters for cheese and meat products or that are frequently isolated from food products. Penicillium griseofulvum was found to be a new penicillin producer and to have a penicillin gene cluster similar to that of Penicillium chrysogenum. No other species among the studied fungi were found to produce penicillin or to possess the penicillin biosynthetic genes, except P. verrucosum, which contains the pcbAB gene (as shown by hybridization and PCR cloning of fragments of the gene) but lacks pcbC and penDE. Antibacterial activities due to the production of secondary metabolites other than penicillin were observed in some fungi.  相似文献   

14.
A total of 54 lactic acid bacteria (LAB) were isolated from stored wheat samples sourced from grain silos in North Tunisia. Fifteen representative isolates were identified by 16S rDNA sequencing as Pediococcus pentosaceus, Lactobacillus plantarum, Lactobacillus graminis, Lactobacillus coryniformis and Weissella cibaria. These isolates were screened for antifungal activity in dual culture agar plate assay against eight post-harvest moulds (Penicillium expansum, Penicillium chrysogenum, Penicillium glabrum, Aspergillus flavus, Aspergillus niger, Aspergillus carbonarius, Fusarium graminearum and Alternaria alternata). All LAB showed inhibitory activity against moulds, especially strains of L. plantarum which exhibited a large antifungal spectrum. Moreover, LAB species such as L. plantarum LabN10, L. graminis LabN11 and P. pentosaceus LabN12 showed high inhibitory effects against the ochratoxigenic strain A. carbonarius ANC89. These LAB were also investigated for their ability to reduce A. carbonarius ANC89 biomass and its ochratoxin A (OTA) production on liquid medium at 28 and 37 °C and varied pH conditions. The results indicated that factors such as temperature, pH and bacterial biomass on mixed cultures, has a significant effect on fungal inhibition and OTA production. High percentage of OTA reduction was obtained by L. plantarum and L. graminis (>97%) followed by P. pentosaceus (>81.5%). These findings suggest that in addition to L. plantarum, L. graminis and P. pentosaceus strains may be exploited as a potential OTA detoxifying agent to protect humans and animals health against this toxic metabolite.  相似文献   

15.
Original data on the survival of fungal spores exposed to space conditions are presented. The experiment was carried out on the Earth-orbiting Russian satellite Foton-M4. The flight duration of the satellite was 45 days. Thirteen fungal species (hyaline as well as pigmented) from 10 genera recovered from destructed stone materials were studied. Sterile quartz sand was inoculated by the fungal spores and was placed into Eppendorf tubes. During the space flight, the Eppendorf tubes with fungal spores were kept inside the Foton descent capsule in the “Biokont” containers and on the external surface of the capsule in the “Exobiofrost” containers exposed to the open space as well. Spores of ten species (77% of all tested species), i.e. Acremonium charticola, Aspergillus niger, Aspergillus versicolor, Chaetomium globosum, Cladosporium sphaerospermum, Penicillium chrysogenum, Penicillium verrucosum, Purpureocillium lilacinum, Sarocladium kiliense, and Trichoderma harzianum, survived after the flight both inside and outside the descent capsule. Only three species (23% of all tested species), i.e. Acremonium furcatum, Engyodontium album and Verticillium zaregamsianum, failed to survive outside as well as inside the capsule. Spore viability differed depending on the fungal species. Thus, spores of some fungal species are able to survive under the complex of stress factors such as low temperature values, radiation, etc. We have shown that micromycetes can be used as a model group for study of eukaryotic organisms’ resistance to stress factors, due to their high tolerance not only to extreme terrestrial environments, but to the extraterrestrial ones as well.  相似文献   

16.
Interest in species of the genus Penicillium is related to their ability to produce the mycotoxin patulin and to cause spoilage of fruit products worldwide. The sequence of the isoepoxydon dehydrogenase (idh) gene, a gene in the patulin biosynthetic pathway, was determined for 28 strains representing 12 different Penicillium species known to produce the mycotoxin patulin. Isolates of Penicillium carneum, Penicillium clavigerum, Penicillium concentricum, Penicillium coprobium, Penicillium dipodomyicola, Penicillium expansum, Penicillium gladioli, Penicillium glandicola, Penicillium griseofulvum, Penicillium paneum, Penicillium sclerotigenum and Penicillium vulpinum were compared. Primer pairs for DNA amplification and sequencing were designed from the P. griseofulvum idh gene (GenBank AF006680). The two introns present were removed from the nucleotide sequences, which were translated to produce the IDH sequences of the 12 species for comparison. Phylogenetic relationships among the species were determined from rDNA (ITS1, 5.8 S, ITS2 and partial sequence of 28S rDNA) and from the idh nucleotide sequences minus the two introns. Maximum parsimony analysis showed trees based on rDNA and idh sequences to be congruent. It is anticipated that the genetic information obtained in the present study will aid in the design of probes, specific for patulin biosynthetic pathway genes, to identify the presence of these mycotoxigenic fungi. The U.S. Government's right to retain a non-exclusive, royalty-free license in and to any copyright is acknowledged.  相似文献   

17.
18.
Conidia of Penicillium chrysogenum and Penicillium frequentans and sporangiospores of Rhizopus rhizopodiformis, Rhizomucor pusillus, and Mucor racemosus were subjected to partition in aqueous polymer two-phase systems. The partition behavior differed drastically between the conidia of the two Penicillium species and the sporangiospores of the three species of phycomycetes. This difference in partition behavior can be used for purification of fungi belonging to different taxonomical groups. P. frequentans was completely separated from M. racemosus by two extractions, whereas four extractions were needed to purify M. racemosus. This method was used on an air sample from a locality where wood fuel chips are handled. The conidia of the fungi Trichoderma viride and Rhizopus rhizopodiformis were removed completely by only two extractions.  相似文献   

19.
Entomopathogenic fungi were collected from insects, belonging to orders Lepidoptera, Coleoptera, Hemiptera, Hymenoptera, and Diptera, with signs of infection. Single-spore colonies were identified based on morphological traits and ribosomal ITS sequences. The most commonly found fungi were Fusarium oxysporum Schlechtendal and Beauveria bassiana (Balsamo-Crivelli) Vuillemin. Isolation of Trichoderma atroviride Bisset, Aspergillus flavipes (Bainier and Sartory) Thom and Church, Aspergillus iizukae Sugiyama, Penicillium mallochii Rivera, Urb and Seifert, Penicillium adametzioides S. Abe ex G. Smith, and Mucor nidicola Madden, Stchigel, Guarro and Starks associated to insects is reported for the first time. Tests with B. bassiana isolates against Duponchelia fovealis Zeller (Lepidoptera: Crambidae), showed high larval mortality in vitro and in greenhouse, demonstrating its potential as biological control agent. Understanding the fungal microbiota from insects can provide promising isolates for use in integrated pest management programs. This is the first report characterizing the mycobiota in insects collected in strawberry crops, and evaluating the pathogenicity of B. bassiana against D. fovealis, a pest that causes severe losses to farmers.  相似文献   

20.
Al-Madinah Al-Munawwarah is the second holiest site in Islam. The possibility of new emerging microbes is valid due to the increased number of pilgrims. The objectives of the current study were to estimate the numbers of fungi and bacteria inside and outside Al-Haram Al-Nabawi and to find whether new bacterial and fungal species have emerged compared to previous studies. Air samples were collected twice a day from 12 spots and four directions during the pilgrim year of 2013 for four consecutive weeks by using the sedimentation method. Thirty five genera and fifty eight species were identified. The most recovered bacterial genera were Staphylococcus, Micrococcus, Bacillus, and Dermacoccus with 32.47%, 18.18%, 12.85%, and 11.23%, respectively. Fifty nine isolates of fungi were molecularly identified. Aspergillus species had the highest percentage (78%). The other fungal genera identified (Alternaria triticina, Emericella nidulans, Emericella striata, Mucor circinelloides, Penicillium chrysogenum, Penicillium minioluteum, Rhizopus arrhizus, Rhizopus oryzae, and Syncephalastrum racemosum) had less than 5% frequency. In places such as Al-Haram Al-Nabawi, a large and crowded public (millions) exist especially during pilgrimages and Ramadan, thus, exposure to microorganisms is high. On the other hand, microorganism infectivity depends on many factors including their virulence, landing site, and person’s immunity. For those reasons, many aspects should be considered to avoid aerosol contaminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号