首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a critical guanine nucleotide exchange factor (GEF) regulating neurite outgrowth, Trio coordinates multiple processes of cytoskeletal dynamics through activating Rac1, Cdc42 and RhoA small GTPases by two GEF domains, but the in vivo roles of these GEF domains and corresponding downstream effectors have not been determined yet. We established multiple lines of knockout mice and assessed the respective roles of Trio GEF domains and Rac1 in axon outgrowth. Knockout of total Trio in cerebellar granule neurons (CGNs) led to an impaired F-actin rearrangement of growth cone and hence a retarded neurite outgrowth. Such a retardation was reproduced by inhibition of GEF1 domain or knockdown of Cdc42 and restored apparently by introduction of active Cdc42. As Rac1 deficiency did not affect the neurite outgrowth of CGNs, we suggested that Trio GEF1-mediated Cdc42 activation was required for neurite outgrowth. We established a GEF2-knockout line with deletion of all Trio isoforms except a cerebella-specific Trio8, a short isoform of Trio without GEF2 domain, and used this line as a GEF2-deficient animal model. The GEF2-deficient CGNs had a normal neurite outgrowth but abolished Netrin-1-promoted growth, without affecting Netrin-1 induced Rac1 activation. We thus suggested that Trio GEF1-mediated Cdc42 activation rather than Rac1 activation drives the F-actin dynamics necessary for neurite outgrowth, while GEF2 functions in Netrin-1-promoted neurite elongation. Our results delineated the distinct roles of Trio GEF domains in neurite outgrowth, which is instructive to understand the pathogenesis of clinical Trio-related neurodevelopmental disorders.  相似文献   

2.
3.
The chemotropic guidance cue netrin-1 promotes neurite outgrowth through its receptor Deleted in Colorectal Cancer (DCC) via activation of Rac1. The guanine nucleotide exchange factor (GEF) linking netrin-1/DCC to Rac1 activation has not yet been identified. Here, we show that the RhoGEF Trio mediates Rac1 activation in netrin-1 signaling. We found that Trio interacts with the netrin-1 receptor DCC in mouse embryonic brains and that netrin-1-induced Rac1 activation in brain is impaired in the absence of Trio. Trio(-/-) cortical neurons fail to extend neurites in response to netrin-1, while they are able to respond to glutamate. Accordingly, netrin-1-induced commissural axon outgrowth is reduced in Trio(-/-) spinal cord explants, and the guidance of commissural axons toward the floor plate is affected by the absence of Trio. The anterior commissure is absent in Trio-null embryos, and netrin-1/DCC-dependent axonal projections that form the internal capsule and the corpus callosum are defective in the mutants. Taken together, these findings establish Trio as a GEF that mediates netrin-1 signaling in axon outgrowth and guidance through its ability to activate Rac1.  相似文献   

4.
The chemotropic guidance cue netrin-1 mediates attraction of migrating axons during central nervous system development through the receptor Deleted in Colorectal Cancer (DCC). Downstream of netrin-1, activated Rho GTPases Rac1 and Cdc42 induce cytoskeletal rearrangements within the growth cone. The Rho guanine nucleotide exchange factor (GEF) Trio is essential for Rac1 activation downstream of netrin-1/DCC, but the molecular mechanisms governing Trio activity remain elusive. Here, we demonstrate that Trio is phosphorylated by Src family kinases in the embryonic rat cortex in response to netrin-1. In vitro, Trio was predominantly phosphorylated at Tyr2622 by the Src kinase Fyn. Though the phospho-null mutant TrioY2622F retained GEF activity toward Rac1, its expression impaired netrin-1-induced Rac1 activation and DCC-mediated neurite outgrowth in N1E-115 neuroblastoma cells. TrioY2622F impaired netrin-1-induced axonal extension in cultured cortical neurons and was unable to colocalize with DCC in growth cones, in contrast to wild-type Trio. Furthermore, depletion of Trio in cortical neurons reduced the level of cell surface DCC in growth cones, which could be restored by expression of wild-type Trio but not TrioY2622F. Together, these findings demonstrate that TrioY2622 phosphorylation is essential for the regulation of the DCC/Trio signaling complex in cortical neurons during netrin-1-mediated axon outgrowth.  相似文献   

5.
Guanine nucleotide exchange factors (GEFs) activate Rho GTPases by accelerating their GDP/GTP exchange. Trio and its paralog Kalirin (Kalrn) are unique members of the Rho-GEFs that harbor three catalytic domains: two functional GEF domains and a serine/threonine kinase domain. The N-terminal GEF domain activates Rac1 and RhoG GTPases, while the C-terminal GEF domain acts specifically on RhoA. Trio and Kalrn have an evolutionary conserved function in morphogenetic processes including neuronal development. De novo mutations in TRIO have lately been identified in patients with intellectual disability, suggesting that this protein family plays an important role in development and disease.Phylogenetic and domain analysis revealed that a Kalrn/Trio ancestor originated in Prebilateria and duplicated in Urbilateria to yield Kalrn and Trio. Only few taxa outside the vertebrates retained both of these highly conserved proteins. To obtain first insights into their redundant or distinct functions in a vertebrate model system, we show for the first time a detailed comparative analysis of trio and kalrn expression in Xenopus laevis development. The mRNAs are maternally transcribed and expression increases starting with neurula stages. Trio and kalrn are detected in mesoderm/somites and different neuronal populations in the neural plate/tube and later also in the brain. However, only trio is expressed in migrating neural crest cells, while kalrn expression is detected in the cranial nerves, suggesting distinct functions. Thus, our expression analysis provides a good basis for further functional studies.  相似文献   

6.
Rho GTPases control actin reorganization and many other cellular functions. Guanine nucleotide-exchange factors (GEFs) activate Rho GTPases by promoting their exchange of GDP for GTP. Trio is a unique Rho GEF, because it has separate GEF domains, GEFD1 and GEFD2, that control the GTPases RhoG/Rac1 and RhoA, respectively. Dbl-homology (DH) domains that are common to GEFs catalyse nucleotide exchange, and pleckstrin-homology (PH) domains localize Rho GEFs near their downstream targets. Here we show that Trio GEFD1 interacts through its PH domain with the actin-filament-crosslinking protein filamin, and localizes with endogenous filamin in HeLa cells. Trio GEFD1 induces actin-based ruffling in filamin-expressing, but not filamin-deficient, cells and in cells transfected with a filamin construct that lacks the Trio-binding domain. In addition, Trio GEFD1 exchange activity is not affected by filamin binding. Our results indicate that filamin, as a molecular target of Trio, may be a scaffold for the spatial organization of Rho-GTPase-mediated signalling pathways.  相似文献   

7.
Trio is a large and highly conserved metazoan signaling scaffold that contains two Dbl family guanine nucleotide exchange factor (GEF) modules, TrioN and TrioC, selective for Rac and RhoA GTPases, respectively. The GEF activities of TrioN and TrioC are implicated in several cancers, especially uveal melanoma. However, little is known about how these modules operate in the context of larger fragments of Trio. Here we show via negative stain electron microscopy that the N-terminal region of Trio is extended and could thus serve as a rigid spacer between the N-terminal putative lipid-binding domain and TrioN, whereas the C-terminal half of Trio seems globular. We found that regions C-terminal to TrioN enhance its Rac1 GEF activity and thus could play a regulatory role. We went on to characterize a minimal, well-behaved Trio fragment with enhanced activity, Trio12841959, in complex with Rac1 using cryo-electron microscopy and hydrogen-deuterium exchange mass spectrometry and found that the region conferring enhanced activity is disordered. Deletion of two different strongly conserved motifs in this region eliminated this enhancement, suggesting that they form transient intramolecular interactions that promote GEF activity. Because Dbl family RhoGEF modules have been challenging to directly target with small molecules, characterization of accessory Trio domains such as these may provide alternate routes for the development of therapeutics that inhibit Trio activity in human cancer.  相似文献   

8.
Guanine nucleotide exchange factors for Rho-GTPases (Rho-GEFs) invariably share a catalytic Dbl-Homology (DH) domain associated with a Pleckstrin Homology (PH) domain, whose function in Rho-GEF activation is not well understood. Trio is the first member of an emerging family of Dbl proteins containing two Rho-GEF domains (GEFD1 and GEFD2). TrioGEFD1 activates the GTPases RhoG and Rac1, while TrioGEFD2 acts on RhoA. In this study, we have investigated the roles of the two PH domains of Trio in Rho-GEF activity. We show that TrioPH1 is required for GEFD1-mediated induction of actin cytoskeleton remodeling and JNK activation. TrioPH1 is involved both in the catalytic activity and in the subcellular localization of its associated DH domain, by acting as a cytoskeletal targeting signal. Moreover, TrioPH1 in association with DH2 activates the JNK pathway, by an unknown mechanism independent of DH2 catalytic activity. TrioPH2 does not behave as a targeting module in intact cells. TrioPH2 inhibits DH2-dependent stress fiber formation, which correlates with the TrioPH2-mediated inhibition of DH2 GEF activity. In addition, expression in the neuron-like PC12 cell line of the intact Trio protein deleted of each PH domain shows that only TrioPH1 is required for Trio-induced neurite outgrowth. Taken together, these data demonstrate that the two PH domains play a different role in the control of Trio Rho-GEF function.  相似文献   

9.
The guanine-nucleotide exchange factor Trio encodes two DH-PH domains that catalyze nucleotide exchange on Rac1, RhoG and RhoA. The N-terminal DH-PH domain is known to activate Rac1 and RhoG, whereas the C-terminal DH-PH domain can activate RhoA. The current study shows that the N-terminal DH-PH domain, upon expression in HeLa cells, activates Rac1 and RhoG independently from each other. In addition, we show that the flanking SH3 domain binds to the proline-rich region of the C-terminus of Rac1, but not of RhoG. However, this SH3 domain is not required for Rac1 or RhoG GDP-GTP exchange. Rescue experiments in Trio-shRNA-expressing cells showed that the N-terminal DH-PH domain of Trio, but not the C-terminal DH-PH domain, restored fibronectin-mediated cell spreading and migration defects that are observed in Trio-silenced cells. Kymograph analysis revealed that the N-terminal DH-PH domain, independent of its SH3 domain, controls the dynamics of lamellipodia. Using siRNA against Rac1 or RhoG, we found that Trio-D1-induced lamellipodia formation required Rac1 but not RhoG expression. Together, we conclude that the GEF Trio is responsible for lamellipodia formation through its N-terminal DH-PH domain in a Rac1-dependent manner during fibronectin-mediated spreading and migration.  相似文献   

10.
Correct pathfinding by Drosophila photoreceptor axons requires recruitment of p21-activated kinase (Pak) to the membrane by the SH2-SH3 adaptor Dock. Here, we identify the guanine nucleotide exchange factor (GEF) Trio as another essential component in photoreceptor axon guidance. Regulated exchange activity of one of the two Trio GEF domains is critical for accurate pathfinding. This GEF domain activates Rac, which in turn activates Pak. Mutations in trio result in projection defects similar to those observed in both Pak and dock mutants, and trio interacts genetically with Rac, Pak, and dock. These data define a signaling pathway from Trio to Rac to Pak that links guidance receptors to the growth cone cytoskeleton. We propose that distinct signals transduced via Trio and Dock act combinatorially to activate Pak in spatially restricted domains within the growth cone, thereby controlling the direction of axon extension.  相似文献   

11.
Shivalkar M  Giniger E 《PloS one》2012,7(3):e33737
Abl tyrosine kinase and its effectors among the Rho family of GTPases each act to control dendritic morphogenesis in Drosophila. It has not been established, however, which of the many GTPase regulators in the cell link these signaling molecules in the dendrite. In axons, the bifunctional guanine exchange factor, Trio, is an essential link between the Abl tyrosine kinase signaling pathway and Rho GTPases, particularly Rac, allowing these systems to act coordinately to control actin organization. In dendritic morphogenesis, however, Abl and Rac have contrary rather than reinforcing effects, raising the question of whether Trio is involved, and if so, whether it acts through Rac, Rho or both. We now find that Trio is expressed in sensory neurons of the Drosophila embryo and regulates their dendritic arborization. trio mutants display a reduction in dendritic branching and increase in average branch length, whereas over-expression of trio has the opposite effect. We further show that it is the Rac GEF domain of Trio, and not its Rho GEF domain that is primarily responsible for the dendritic function of Trio. Thus, Trio shapes the complexity of dendritic arbors and does so in a way that mimics the effects of its target, Rac.  相似文献   

12.
BACKGROUND INFORMATION: The large family of GEFs (guanine nucleotide-exchange factors) for Rho GTPases activate the GTPases by accelerating their GDP/GTP exchange. The multidomain protein Trio is the founding member of an intriguing subfamily of Rho-GEFs exhibiting two Rho-GEF and numerous additional domains. The members of the Trio family play an important role in neuronal physiology, and their structural organization is very well conserved through evolution. It has previously been shown that all the members, except mammalian Trio, display several isoforms, the functions of which have been well established. RESULTS: In this study, we have identified, by a combination of different approaches, novel Trio isoforms that have been generated by alternative splicing, giving rise to proteins that exhibit one or two Rho-GEF domains (GEFDs). These isoforms are specifically expressed in the nervous system, at a higher level than the full-length Trio, which is ubiquitously expressed. In addition, we show that all the GEFD1-containing isoforms induce neurite outgrowth in neuroblastoma cells. CONCLUSIONS: We have identified neuronal specific isoforms of Trio which could be essential for Trio function in neuronal morphology.  相似文献   

13.
Rho-family GTPases are activated by the exchange of bound GDP for GTP, a process that is catalyzed by Dbl-family guanine nucleotide exchange factors (GEFs). The catalytic unit of Dbl-family GEFs consists of a Dbl homology (DH) domain followed almost invariantly by a pleckstrin-homology (PH) domain. The majority of the catalytic interface forms between the switch regions of the GTPase and the DH domain, but full catalytic activity often requires the associated PH domain. Although PH domains are usually characterized as lipid-binding regions, they also participate in protein-protein interactions. For example, the DH-associated PH domain of Dbs must contact its cognate GTPases for efficient exchange. Similarly, the N-terminal DH/PH fragment of Trio, which catalyzes exchange on both Rac1 and RhoG, is fourfold more active in vitro than the isolated DH domain. Given continued uncertainty regarding functional roles of DH-associated PH domains, we have undertaken structural and functional analyses of the N-terminal DH/PH cassette of Trio. The crystal structure of this fragment of Trio bound to nucleotide-depleted Rac1 highlights the engagement of the PH domain with Rac1 and substitution of residues involved in this interface substantially diminishes activation of Rac1 and RhoG. Also, these mutations significantly reduce the ability of full-length Trio to induce neurite outgrowth dependent on RhoG activation in PC-12 cells. Overall, these studies substantiate a general role for DH-associated PH domains in engaging Rho GTPases directly for efficient guanine nucleotide exchange and support a parsimonious explanation for the essentially invariant linkage between DH and PH domains.  相似文献   

14.
The Rho GTPases RhoA and Rac1 function as master regulators of cytokinesis by controlling the actomyosin cytoskeleton. RhoA and Rac1 have to be respectively activated and inactivated at the division plane for cytokinesis to occur properly. The inactivation of Rac1 at the cleavage furrow is controlled by MgcRacGAP. However, the guanine-nucleotide exchange factor (GEF) that activates Rac1 during cell division remains unknown. Here, using a siRNA screening approach in HeLa cells, we identify Trio as a mitotic GEF of Rac1. We demonstrate that Trio controls Rac1 activation and subsequent F-actin remodeling in dividing cells. Moreover, Trio depletion specifically rescues the cytokinesis failure induced by MgcRacGAP depletion. Of importance, we demonstrate that this rescue is mediated by the Trio-Rac1 pathway, using GEF-dead mutants of Trio and a specific inhibitor of Rac1 activation by Trio. Overall this work identifies for the first time a GEF controlling Rac1 activation in dividing cells that counteracts MgcRacGAP function in cytokinesis.  相似文献   

15.
The molecular mechanisms involved in the maturation of secretory granules, organelles that store hormones and neuropeptides, are poorly understood. As granule content proteins are processed, the composition of granule membranes changes, yielding constitutive-like secretion of immature content proteins and producing secretagogue-responsive mature granules. Constitutive-like secretion was not previously recognized as a process subject to regulation. We show that Kalirin and Trio, homologous Rho guanine nucleotide exchange factors (GEFs), which interact with a secretory granule resident protein, modulate cargo secretion from immature granules. Some of the Kalirin and Trio isoforms expressed in neuroendocrine cells colocalize with immature granules. Overexpression of their N-terminal GEF domain (GEF1) enhances secretion from immature granules, depleting cells of secretory cargo in the absence of secretagogue. This response requires GEF1 activity and is mimicked by Kalirin/Trio substrates Rac1 and RhoG. Accordingly, selective pharmacological inhibition of endogenous GEF1 activity decreases secretagogue-independent release of hormone precursors, accumulating product peptide in mature secretory granules. Kalirin/Trio modulation of cargo secretion from immature granules provides secretory cells with an extra layer of control over the sets of peptides released. Control of this step enhances the range of physiological responses that can be elicited, whereas lack of control could have pathological consequences.  相似文献   

16.
During development, netrin-1 is both an attractive and repulsive axon guidance cue and mediates its attractive function through the receptor Deleted in Colorectal Cancer (DCC). The activation of Rho guanosine triphosphatases within the extending growth cone facilitates the dynamic reorganization of the cytoskeleton required to drive axon extension. The Rac1 guanine nucleotide exchange factor (GEF) Trio is essential for netrin-1–induced axon outgrowth and guidance. Here, we identify the molecular chaperone heat shock cognate protein 70 (Hsc70) as a novel Trio regulator. Hsc70 dynamically associated with the N-terminal region and Rac1 GEF domain of Trio. Whereas Hsc70 expression supported Trio-dependent Rac1 activation, adenosine triphosphatase–deficient Hsc70 (D10N) abrogated Trio Rac1 GEF activity and netrin-1–induced Rac1 activation. Hsc70 was required for netrin-1–mediated axon growth and attraction in vitro, whereas Hsc70 activity supported callosal projections and radial neuronal migration in the embryonic neocortex. These findings demonstrate that Hsc70 chaperone activity is required for Rac1 activation by Trio and this function underlies netrin-1/DCC-dependent axon outgrowth and guidance.  相似文献   

17.
Rho-GTPases control a wide range of physiological processes by regulating actin cytoskeleton dynamics. Numerous studies on neuronal cell lines have established that Rac, Cdc42, and RhoG activate neurite extension, while RhoA mediates neurite retraction. Guanine nucleotide exchange factors (GEFs) activate Rho-GTPases by accelerating GDP/GTP exchange. Trio displays two Rho-GEF domains, GEFD1, activating the Rac pathway via RhoG, and GEFD2, acting on RhoA, and contains numerous signaling motifs whose contribution to Trio function has not yet been investigated. Genetic analyses in Drosophila and in Caenorhabditis elegans indicate that Trio is involved in axon guidance and cell motility via a GEFD1-dependent process, suggesting that the activity of its Rho-GEFs is strictly regulated. Here, we show that human Trio induces neurite outgrowth in PC12 cells in a GEFD1-dependent manner. Interestingly, the spectrin repeats and the SH3-1 domain of Trio are essential for GEFD1-mediated neurite outgrowth, revealing an unexpected role for these motifs in Trio function. Moreover, we demonstrate that Trio-induced neurite outgrowth is mediated by the GEFD1-dependent activation of RhoG, previously shown to be part of the NGF (nerve growth factor) pathway. The expression of different Trio mutants interferes with NGF-induced neurite outgrowth, suggesting that Trio may be an upstream regulator of RhoG in this pathway. In addition, we show that Trio protein accumulates under NGF stimulation. Thus, Trio is the first identified Rho-GEF involved in the NGF-differentiation signaling.  相似文献   

18.
Actin reorganization is important for regulation of neuronal morphology. Neural Wiskott-Aldrich syndrome protein (N-WASP) is an important regulator of actin polymerization and also known to be strongly expressed in brain. Recently, Toca-1 (transducer of Cdc42-dependent actin assembly) has been shown to be required for Cdc42 to activate N-WASP from biochemical experiments. Toca-1 has three functional domains: an F-BAR/EFC domain at the N terminus, an HR1 at the center, and an SH3 domain at the C terminus. The F-BAR/EFC domain induces tubular invagination of plasma membrane, while Toca-1 binds both N-WASP and Cdc42 through the SH3 domain and the HR1, respectively. However, the physiological role of Toca-1 is completely unknown. Here we have investigated the neural function of Toca-1. Toca-1 is strongly expressed in neurons including hippocampal neurons in developing brain at early times. Knockdown of Toca-1 in PC12 cells significantly enhances neurite elongation. Consistently, overexpression of Toca-1 suppresses neurite elongation through the F-BAR/EFC domain with a membrane invaginating property, suggesting an implication of membrane trafficking in the neural function of Toca-1. In addition, knockdown of N-WASP, to our surprise, also enhances neurite elongation in PC12 cells, which is in clear contrast to the previous report that dominant negative mutants of N-WASP suppress neurite extension in PC12 cells. On the other hand, knockdown of Toca-1 in cultured rat hippocampal neurons enhances axon branching a little but not axon elongation, while knockdown of N-WASP enhances both axon elongation and branching. These results suggest that a vesicle trafficking regulator Toca-1 regulates different aspects of neuronal morphology from N-WASP.  相似文献   

19.
The coordinated cross-talk from heterotrimeric G proteins to Rho GTPases is essential during a variety of physiological processes. Emerging data suggest that members of the Galpha(12/13) and Galpha(q/11) families of heterotrimeric G proteins signal downstream to RhoA via distinct pathways. Although studies have elucidated mechanisms governing Galpha(12/13)-mediated RhoA activation, proteins that functionally couple Galpha(q/11) to RhoA activation have remained elusive. Recently, the Dbl-family guanine nucleotide exchange factor (GEF) p63RhoGEF/GEFT has been described as a novel mediator of Galpha(q/11) signaling to RhoA based on its ability to synergize with Galpha(q/11) resulting in enhanced RhoA signaling in cells. We have used biochemical/biophysical approaches with purified protein components to better understand the mechanism by which activated Galpha(q) directly engages and stimulates p63RhoGEF. Basally, p63RhoGEF is autoinhibited by the Dbl homology (DH)-associated pleckstrin homology (PH) domain; activated Galpha(q) relieves this autoinhibition by interacting with a highly conserved C-terminal extension of the PH domain. This unique extension is conserved in the related Dbl-family members Trio and Kalirin and we show that the C-terminal Rho-specific DH-PH cassette of Trio is similarly activated by Galpha(q).  相似文献   

20.
Osteosarcoma (OS) is the most common primary bone tumor. Its high mortality rate and metastasis rate seriously threaten human health. Currently, the treatment has reached a plateau, hence we urgently need to explore new therapeutic directions. In this paper, we found that Trio was highly expressed in osteosarcoma than normal tissues and promoted the proliferation, migration, and invasion of osteosarcoma cells. Furthermore, Trio inhibited osteosarcoma cells’ osteogenic differentiation in vitro and accelerated the growth of osteosarcoma in vivo. Given Trio contains two GEF domains, which have been reported as the regulators of RhoGTPases, we further discovered that Trio could regulate osteosarcoma progression and osteogenic differentiation through activating RhoGTPases. In summary, all our preliminary results showed that Trio could be a potential target and prognostic marker of osteosarcoma.Subject terms: Bone cancer, Bone cancer  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号