首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macrophages in the interstitial tissue of the rat testis   总被引:2,自引:0,他引:2  
Summary Macrophages were identified in the intertubular tissue of the rat testis by loading animals with a particulate vital dye (trypan blue or India ink) and by localizing immunocytochemically a macrophage membrane antigen (MRC W3/25). Leydig cells were identified by the histochemical staining reaction for 3-hydroxysteroid dehydrogenase activity and by a monoclonal antibody. Macrophages were scattered in the interstitial tissue closely attached to and mixed with the Leydig cells. They were never found in the seminiferous tubules. The macrophages comprised about 25% of all the cells in the interstitium. Double staining with a vital dye and a marker antibody showed that all the phagocytosing cells were macrophages and that the Leydig cells did not take up vital dyes. Double staining for the demonstration of the 3-hydroxysteroid dehydrogenase activity and the macrophage antigen likewise revealed two distinctly different cell populations. Crude Leydig cell preparations obtained by collagenase treatment of the testis contained macrophages (12–14%). Macrophages were present throughout the postnatal prepuberal development of the testis. Their density was increased in the cryptorchid and irradiated testis.  相似文献   

2.
Summary A comparative study was undertaken on the innervation of mucous and granular glands in frog skin. Results obtained by the Falck-Hillarp fluorescence technique and cholinesterase staining indicated that both types of glands receive exclusively adrenergic innervation. Electron microscopy was used to investigate the innervation pattern at the ultrastructural level. The distribution of nerve terminals was found to differ in the two types of glands. In the mucous gland, terminals were found at a distance of about 0.5 m from the basement membrane but never within the gland parenchyma. In the granular gland, the terminals were located between smooth muscle cells and also in direct contact with the secretory epithelium but never outside the basement membrane.This work was carried out in part at King Gustaf V:s Forskningsinstitut, Stockholm, and was supported by a grant from Karolinska Institutet  相似文献   

3.
Summary A single intraperitoneal injection of ethane dimethanesulphonate (EDS) destroys all Leydig cells in the adult rat testis but 1–2 weeks later new foetal-type Leydig cells begin to regenerate within the interstitial tissue. A further EDS treatment at 4 weeks failed to kill the new population of foetal-type Leydig cells. Between 10–20 weeks, the new Leydig cells exhibited the characteristics of adult-type Leydig cells. These cells responded to another EDS treatment by exhibiting a second phase of complete degeneration followed by regeneration of a foetal-type and subsequently an adult-type cell population. The results indicate that the testis retains the ability to replenish its supply of Leydig cells despite successive phases of total degradation of Leydig cells.  相似文献   

4.
Summary Testicular macrophages and Leydig cells from adult animals are known to be functionally coupled. For example, secreted products from macrophages stimulate testosterone secretion by Leydig cells. In adult rat testes, structural coupling also exists between these cells. This coupling consists of cytoplasmic projections from Leydig cells located within cytoplasmic invaginations of macrophages. Although macrophages are known to exist in the testis in immature animals, it is not known when these digitations develop. The purpose of the present study was to determine whether the time of their development coincides with known maturational events that occur in Leydig cells, particularly during the peripubertal period. Testes from rats at 20, 30 and 40-days-of-age as well as testes from mature rats weighing more than 500 gm were prepared for ultrastructural analysis. It was found that digitations form between 20 and 30-days-of-age. These structures varied from simple tubular projections to complicated branched structures, suggesting that digitations are more than simple invaginations of microvilli into coated vesicles as previously described. Subplasmalemmal linear densities were also observed within macrophages juxtaposed to Leydig cells. Collagen was commonly observed between macrophages and Leydig cells in animals 20 days old. These studies demonstrate that although macrophages are present in the testis in maximal numbers at 20 days-of-age, they do not form junctions with Leydig cells until day 30. This is just prior to the major increase in secretory activity of rat Leydig cells that occurs during puberty.  相似文献   

5.
Summary Umbilical vessels of guinea-pig fetuses were studied shortly before birth. In all umbilical cords investigated an innervation of the umbilical vessels is lacking. The intrafetal parts of the umbilical vessels on the other hand are richly innervated. A marked difference in the amount of nerve fibres and the pattern of innervation is found between artery and vein. The artery is supplied by a dense nerve plexus which spins around the media and which originates from nerve bundles within the outer adventitial layers. The comparatively scanty innervation of the vein exhibits a more coarsely meshed net pattern. The nerve bundles in the vein exhibit a close affinity to the vasa vasorum.Number and type of the close contacts between the muscle cells are different in the various sections of the umbilical vessels. Similar to the distribution of nerves they are almost absent in the vessels of the umbilical cord, numerously, however, in the intrafetal parts. Contrary to the innervation, the close contacts in the vein are developed more numerously and more broadly than in the corresponding artery.  相似文献   

6.
Résumé Les cellules de Sertoli du testicule de Lacerta vivipara ont été étudiées en microscopie électronique chez des animaux récoltés entre le printemps et l'automne pendant deux années et chez des animaux hypophysectomisés en automne.Ces cellules contiennent de nombreuses mitochondries de petite taille à crêtes lamellaires, des ribosomes libres, un reticulum endoplasmique lisse moyennement développé, plusieurs petits dictyosomes formant l'appareil de Golgi, des liposomes et des microtubules. Elles renferment aussi de nombreux corps denses de grande taille qui paraissent être de nature lysosomiale. Le glycogène a été particulièrement étudié. Il est formé de particules dispersées au hasard dans le hyaloplasme. Des variations saisonnières dans la teneur en glycogène ont été notées. Chez les hypophysectomisés, les cellules de Sertoli contiennent de grandes quantités de ce métabolite dont les particules sont concentrées dans des petites plages, souvent autour des liposomes.Les rôles possibles des cellules de Sertoli sont discutés: soutien et apport de nourriture aux cellules germinales, production d'hormones et phagocytose des corps résiduels. Les variations de la teneur en glycogène sont également discutées.
The fine structure of the lizard testisII. The Sertoli cells. Study of the glycogen
Summary Sertoli cells of the testis of Lacerta vivipara have been studied electron microscopically in animals obtained between spring and autumn during two years and in animals hypophysectomized in autumn.These cells contain numerous small mitochondria with lamellar cristae, free ribosomes, smooth endoplasmic reticulum moderately developed, several small dictyosomes forming the Golgi complex, lipid droplets and microtubules. There are numerous dense bodies of large size with an heterogeneous content which seem to be of lysosomial nature. Glycogen consists of particles dispersed at random in the hyaloplasm. Seasonal variations in the content of glycogen are noted. In hypophysectomized animals Sertoli cells contain large amounts of that metabolite whose particles are concentrated in small areas often around the lipid droplets.Possible role of the Sertoli cells concerning mechanical support and nutrition of the germinal cells, production of hormones and phagocytosis of residual bodies are discussed. The variations in the glycogen content are also discussed.
  相似文献   

7.
Résumé L'ultrastructure des cellules interstitielles du testicule de Lacerta vivipara a été étudiée entre le printemps et l'automne pendant deux années.Le retioulum endoplasmique lisse, et les mitochondries à crêtes tabulaires sont les organites les plus remarquables comme dans les autres cellules productrices de stéroïdes, mais les liposomes et l'appareil de Golgi sont bien représentés aussi.Les variations ultrastructurales les plus significatives apparaissent entre le printemps et le début de l'été. Au printemps, alors que les caractères sexuels secondaires sont hypertrophiés, un système remarquable de vésicules et de vacuoles se développe à partir du reticulum et probablement aussi du Golgi. Au début de l'été, lorsque les caractères sexuels secondaires sont atrophiés, les vacuoles sont moins nombreuses et le reticulum forme un réseau dense de tubules typiques, souvent étroitement associés aux liposomes; les crêtes mitochondriales sont gonflées.Ces images sont discutées en fonction de l'activité saisonnière d'élaboration d'hormones. L'hypertrophie des systèmes membranaires au printemps correspond probablement à la production ou (et) à l'excrétion des hormones androgènes. Au début de l'été, la cellule n'élabore pas d'androgènes, mais n'est peut-être pas complètement inactive: elle pourrait stocker des précurseurs hormonaux.
The fine structure of the lizard testisI. The interstitial cells
Summary Interstitial cells of the testis of Lacerta vivipara have been studied electronmicroscopically in animals obtained between spring and autumn.Smooth endoplasmic reticulum and mitochondria with tubular cristae are the most prominent organels, lipid droplets and Golgi apparatus being also well developed.The most significant ultrastructural changes occur between spring and the beginning of summer. In spring, during the hypertrophy of secondary sexual characters, a conspicuous system of vesicles and vacuoles originates from the smooth endoplasmic reticulum and probably also from the Golgi apparatus. At the beginning of summer, when secondary sexual characters are atrophied, vacuoles are less prominent and the smooth endoplasmic reticulum consists of a dense network of typical tubules, often closely associated with the lipid droplets; the cristae of the mitochondria are swollen.These ultrastructural findings are discussed in relation to the production of hormones. The hypertrophy of membrane systems in spring corresponds presumably to production or (and) release of androgen hormones. In the beginning of summer the cell does not produce androgens, but probably is not completely inactive: it may store precursors of hormones.
  相似文献   

8.
Summary In the dog testicular interstitial cells the cytoplasmic filaments are occasionally arranged in large bundles piled closely in an extensive area adjacent to the Golgi region in the cytoplasm. Some of the large bundles show conspicuous circular or spiral configurations which are composed of elaborate arrangements of both circular and longitudinal filaments and accompany tubules of agranular endoplasmic reticulum running parallel to the longitudinal filaments.This paper is dedicated to Prof. Dr. Jun-ichiro Satoh on his 60 birthday. The authors wish to thank the members in the Department of Pathophysiology (Head: Prof. Dr. K. Yamashita), Atomic Disease Institut, Nagasaki University School of Medicine, for their technical assistance.  相似文献   

9.
Chromaffin, small granule-containing (SGC)-cells, neurons and the innervation of these cells was studied in the adrenal gland of three species of reptiles (Testudo graeca, Lacerta dugesi, Natrix natrix). 1. After fixation with glutaraldehyde and osmium-tetroxide adrenaline (A)- and noradrenaline (NA)-storing cells can be distinguished by means of the different electron density of their granules: A-granules are moderately electron-dense, while NA-granules show a core of high electron density. The unusually high electron density of a few A-granules in Testudo occasionally required viewing of unstained sections which facilitated the discrimination of the two cell types in this species. In all species studied NA-granules display a remarkable polymorphism which is most pronounced in the tortoise. In this species A-granules are polymorphic, too. Both types of granules show wide variations in size, which are particularly great in the tortoise. This species also exhibits the largest average sizes for A-granules (285 nm), and NA-granules (354 nm). The corresponding parameters for Lacerta and Natrix, are 255 and 179 nm for A- and 323 and 304 nm for NA-granules, respectively. The rough ER in A-cells of the tortoise regularly occurs in the form of circular dilations ('ergastosomes', Kanerva and Hervonen, 1973). Mitochondria sometimes contain longitudinal cristae with a crystalloid internal pattern. Large dense bodies which incorporate granules are abundant in NA-cells. Smaller dense bodies containing a few dense patches and membranes are present in both A- and NA-cells. Intermediate stages between dense bodies and what appear to be A- or NA-granules (if the latter have lost some of their amine-content) are frequently observed.  相似文献   

10.
Summary The cytotoxic effects of ethane dimethanesulphonate upon rat Leydig cells were examined ultrastructurally up to 3 days after treatment and related to changes in serum levels of gonadotrophins and testosterone. Six hours after administration of ethane dimethanesulphonate the usual tubulo-vesicular morphology of Leydig-cell smooth endoplasmic reticulum was converted to small vesicles and the Golgi apparatus showed focal hypertrophy into anastomosing tubules. These changes became more marked by 12 h with many Leydig cells exhibiting karyopyknosis and hyperchromatism. Necrotic Leydig cells were often engulfed by macrophages, the latter containing pyknotic fragments of Leydig cells within their cytoplasm. One day after administration, advanced necrosis of Leydig cells occurred, many of which were phagocytosed by macrophages, and on day 3, destruction of Leydig cells was complete resulting in their elimination from the interstitial tissue, which contained only loose connective tissue and macrophages. Structural alterations to the Leydig cells from 6–24 h was reflected by a significant reduction in serum testosterone levels which further declined to the limits of detection accompanying the abolition of Leydig cells on day 3. These changes were paralleled by a significant elevation of serum LH and FSH levels suggesting diminished feedback regulation of pituitary gonadotrophin secretion. The results indicate that ethane dimethanesulphonate is a rapidly acting Leydig cell toxin which may be a useful experimental tool in further studies of spermatogenic function mediated via Sertoli cell-Leydig cell interaction.  相似文献   

11.
Summary The organization of testicular interstitial tissue of the spinifex hopping mouse, Notomys alexis differs from that of other rodents. It comprises between 10.3% and 17.3% (average 15.0%) of the total testicular volume, and is variable in its organization both at different locations within the testis of the one animal and among different individuals. Abundant, closely packed Leydig cells are usually present; however, in some regions large, thick-walled blood vessels and extensive peritubular lymphatic spaces, often lacking an endothelium adjacent to the Leydig cells, are also prominent. The Leydig cells in contact with the large blood vessels and lymphatics, unlike those in regions where lymph is sparse, are not densely packed and sometimes contain numerous lipid droplets. Ultrastructure of Leydig cells is typical of steroid-producing cells; however, mitochondria are often extremely large, unusual in shape or bizarely arranged in relation to one another. Also electrondense bodies displaying a paracrystalline-like internal structure of parallel, electron-dense filaments arranged in a lattice pattern occur in the cytoplasm of many cells. The significance of these unusual ultrastructural features and the organization of the interstitial tissue remain to be determined conclusively, but may relate to steroid synthesis, secretion and uptake.  相似文献   

12.
The seasonal testicular morphology and the morphometry of the interstitial tissue were studied in 62 camels at Algerian extreme arid region. The maximal testicular size was recorded during the rutting season. In this period, the interstitial tissue occupied high area and volume with significant increase of the intertubular constituent’s volume, hypertrophy of the Leydig cell, and maximal number of Leydig cells per testes. Therefore, the highest ratios of seminiferous tubules to interstitial tissue area and volume and the highest fraction of intertubular empty space were recorded during the non-rutting. The greater Leydig cell nucleus size was observed during the post-rutting season. Finally, the numerical density of Leydig cells did not significantly change over the year. These results provide information on the relationship between seasonal changes of camel testicular morphology and the histomorphometry of the testicular endocrine compartment in camels at the arid livestock conditions of the southeastern Algerian desert.  相似文献   

13.
Cathepsin A (PPCA) is a lysosomal carboxypeptidase that functions as a protective protein for alpha-neuraminidase and beta-galactosidase in a multienzyme complex. In the present study, the testes of PPCA -/- mice from 2 to 10 months of age were compared with those of their wild type counterparts. While germ and Sertoli cells appeared comparable in appearance and distribution, the mean profile area of seminiferous tubules showed a significant decrease between wild type and PPCA -/- mice, suggesting changes to the seminiferous tubules and their contents. In addition, macrophages in the interstitial space (IS) of PPCA -/- mice were large, spherical, and filled with pale lysosomes, unlike those seen in wild type mice, and a quantitative analysis of their frequency per unit area of IS in PPCA -/- mice revealed a significant increase compared to that of wild type mice; this was also the case for their mean profile area. Absence of mitotic figures, cycling cells, or degenerating figures in the IS suggests that the major recruitment of macrophages appears to be from the circulation. In the IS, Leydig cells also showed an accumulation of large pale lysosomes in PPCA -/- mice, and their frequency also increased significantly as compared to wild type mice. In the electron microscope, a close association of Leydig cell microvilli with the surface of macrophages was pronounced in PPCA -/- mice. Since macrophages and Leydig cells interact by secreting various factors between each other, and considering the fact that Leydig cells show an accumulation of large pale lysosomes in PPCA -/- mice, it is suggested that macrophages accumulate as a result of abnormalities occurring in Leydig cells. Taken together, the data on increase in frequency of macrophages suggests important functions for these cells in both wild type and PPCA -/- mice.  相似文献   

14.
Summary Cephalopod chromatophores are made of a central pigment cell surrounded by 10 to 20 radially arranged muscle fibres under direct nervous control. Innervation of these muscle fibres was studied with anterograde cobalt fills of peripheral nerve bundles and light and electron microscopy. Individual axons branch repeatedly to innervate the muscles of chromatophores scattered over several millimeters. Axons contained in several dermal nerves converge to innervate the same chromatophores. Among the chromaophores, axons were found running either singly or in small bundles, often accompanied by sheath cells. Single chromatophore muscles were innervated by at least one axon running across or along its length. Since nerves terminating on chromatophore muscles are very rare, neuromuscular contact seems to be made en passant. Varicosities of the axons apposed to the muscles are thought to be presynaptic sites. However, morphological differentiations of the pre-or post-synaptic membranes were not visible. Two types of innervating processes were found containing either electron-clear or a mixture of electron-clear and dark-core synaptic vesicles.Supported by a postgraduate award from the University of Aberdeen (GB)  相似文献   

15.
Summary The innervation of the endometrium of rabbit, rat, mink, mongoose and pig has been investigated electron microscopically. Large bundles of nerve fibers can be observed in the connective tissue spaces within the basal layer of the endometrium. Unmyelinated nerve fibers enter the lamina functionalis, terminal nerve fibers penetrate the basal lamina and make contact with the glandular and the cavum epithelial cells. The terminal axons contain abundant synaptic vesicles, dense core vesicles and mitochondria. To date, no specialized presynaptic or postsynaptic membranes have been found.Supported by the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg (Grants Ku 210/5 and Be 524/4).Dedicated to Prof. Dr. Drs. h.c. Wolfgang Bargmann on his 70th birthday in friendship and admiration.  相似文献   

16.
The ultrastructure of testicular interstitium in young and aged adult rats was analysed using morphometric methods, and the plasma testosterone concentration was measured. With increasing age there was an augumentation in the volume of collagen fibrils in the intercellular matrix and in blood vessels. During the aging process (approximately two years) the average volume of the Leydig cell decreased from 1364 m3 to 637 m3, but the number of Leydig cells in paired testes increased from 53x106 to 113x106. The absolute volume of smooth surfaced endoplasmic reticulum (SER) per Leydig cell amounted in aged rats to 78% of that in young adult rats. The total amount of SER in paired testes increased by 62% with aging. The present analysis suggests that the ability of SER to maintain peripheral testosterone concentration decreases with age. In young adult rats the absolute volume of peroxisomes per Leydig cell correlated significantly with the concentration of testosterone in blood and also with the absolute volume of SER per Leydig cell. These results combined with ultrastructural observations of close apposition of peroxisomes and SER suggest that peroxisomes have a role in testosterone secretion by Leydig cells.Visiting scientist to Laboratory of Electron Microscopy (Director: Prof. L.J. Pelliniemi)  相似文献   

17.
Summary The postnatal development of intertubular cells and vessels and of the tubular lamina propria was studied in three locations of perfusion-fixed bovine testes from 31 animals ranging from 4 to 78 weeks. The postnatal morphological differentiation of the testis is not uniform, regional differences have to be considered. The intertubular cell population is composed of mesenchyme-like cells, fibrocytes, Leydig cells, peritubular cells and mononuclear cells. In 4 and 8-week-old testes mesenchyme-like cells are the dominating element. These pluripotent cells proliferate by frequent mitoses and are the precursors of Leydig cells, contractile peritubular cells and fibrocytes. Morphologically differentiated Leydig cells are encountered throughout the entire period of postnatal development. In 4-week-old testes degenerating fetal and newly formed postnatal Leydig cells are seen in juxtaposition to each other. From the 8th week on, only postnatal Leydig cells are present. Between 16 and 30 weeks large-scale degeneration of prepuberal Leydig cells is observed. The Leydig cells that survive this degenerative phase constitute the long-lasting adult population. 20–30% (numerically) of all intertubular cells at all ages are free mononuclear cells. These are found as lymphocytes, plasma cells, monocytes, macrophages and light intercalated cells (LIC). The latter are monocyte-derived, Leydig cell-associated typical cells of the bovine testis. The differentiation of the two main components of the tubular lamina propria, (i) basal lamina and (ii) peritubular cell sheath, seems to be effected rather independent from each other and also from hormonal signals important for the development of the germinal cells. The laminated basal lamina reaches nearly 3 m at 16 weeks and is later on continuously reduced. At 25 weeks the peritubular cells have transformed into contractile myofibroblasts. At this period the germinal epithelium is still in a prepuberal state.To Dr. E. Schilling, Mariensee, on the occasion of his 65th birthday  相似文献   

18.
Summary The fine structure of the pancreatic nerves of the domestic fowl has been studied. Naked axon beadings were found in membranous contact with endocrine as well as exocrine cells. From an anatomical point of view it seems reasonable to suggest that the endocrine glands might be subjected to some influence of the autonomic nervous system.  相似文献   

19.
Hyperprolactinemia-induced hypogonadism has been linked to a dysfunction of the hypothalamus-pituitary-testis axis. The direct inhibitory effects of prolactin on the testicular release of testosterone have also been demonstrated, though their mechanisms remain unclear. Incubation of rat testicular interstitial cells (TICs) with prolactin stimulated the release of testosterone. TICs from rats with anterior pituitary-grafting-induced hyperprolactinemia release lower amounts of testosterone than controls. However, Leydig cells isolated from anterior pituitary-grafted rats release a greater amount of testosterone. These paradoxical observations have remained unexplained. This study examined the roles of testicular interstitial macrophages and of their product, tumor necrosis factor-alpha (TNF-alpha), in regulating Leydig cells under condition of hyperprolactinemia. Hyperprolactinemia was induced by grafting two anterior pituitary glands of rats under the renal capsule. Control animals were grafted with rat cortex tissue. The rats were sacrificed 6 weeks later. TICs and macrophages, and Leydig cells were isolated for in vitro incubation and drugs challenge. Testosterone released by testicular interstitial or Leydig cells was measured by radioimmunoassay. TNF-alpha concentration in the medium of TICs or macrophages was measured by enzyme-linked immunosorbent assay (ELISA). A dose-dependent stimulation of TNF-alpha secretion in the medium of TICs or macrophages by the prolactin challenge was observed. Higher amounts of TNF-alpha were released by TICs in the anterior pituitary-grafted rats than in the control group. In contrast, the release of TNF-alpha by testicular interstitial macrophages isolated from the anterior pituitary- and cortex-grafted groups was quantitatively similar. Challenge with human chorionic gonadotropin did not modify the TNF-alpha release by testicular interstitial macrophages in either group. Challenge of Leydig cells with TNF-alpha inhibited their release of testosterone stimulated by human chorionic gonadotropin, but not their basal testosterone release. These different patterns of testosterone release in TICs versus Leydig cells cultures in anterior pituitary-grafted rats may be due to the influence of testicular interstitial macrophages. These observations correlate with in vivo conditions, where prolactin increases the release of TNF-alpha by testicular interstitial macrophages, which, in turn, decreases the human chorionic gonadotropin-stimulated release of testosterone by Leydig cells. In summary, hyperprolactinemia-induced hypogonadism involves a mechanism of prolactin-originated, macrophage-mediated inhibitory regulation of testosterone release by Leydig cells. TNF-alpha, one of the cytokines secreted by macrophages, may play a key role in this mechanism.  相似文献   

20.
Summary The post-natal evolution of thecal gland in the domestic fowl has been explored, and a hypothesis for this development is proposed. It is suggested that the surface epithelium of the ovary forms crypts and submicroscopic clefts (ingrowing cords) which contribute with epithelial elements required for the regeneration of some of the ovarian elements, including the thecal glands. Complexes of these ingrowing epithelial cells are forming small islets which, after hormonal stimulation, are transformed into well defined structures, the thecal glands, with a specific function, viz. steroid bio-synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号