首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of 3-(1-piperidinyl)alanyl-containing peptides via phosphoryl β-elimination was identified from the application of Fmoc-Ser(PO3Bzl,H)-OH in peptide synthesis as shown by RP-HPLC, ES-MS and 31P-NMR analysis. An N α -deprotection study using the model substrates, Fmoc-Xxx(PO3Bzl,H)-Val-Glu(OtBu)-Resin (Xxx = Ser, Thr or Tyr) demonstrated that piperidine-mediated phosphoryl β-elimination occurred in the N-terminal Ser(PO3Bzl,H) residue at a ratio of 7% to the target phosphopeptide, and that this side reaction did not occur in the corresponding Thr(PO3Bzl,H)- or Tyr(PO3Bzl,H)- residues. The generation of 3-(1-piperidinyl)alanyl-peptides was also shown to be enhanced by the use of microwave radiation during Fmoc deprotection. An examination of alternative bases for the minimization of byproduct formation showed that cyclohexylamine, morpholine, piperazine and DBU gave complete suppression of β-elimination, with a 50% cyclohexylamine/DCM (v/v) deprotection protocol providing the crude peptide of highest purity. Piperidine-induced β-elimination was found only to occur in Ser(PO3Bzl,H) residues that were in the N-terminal position, since the addition of the next residue in the sequence rendered the phosphoseryl residue stable to multiple piperidine treatments. The application of the alternative N α -deprotection protocol using 50% cyclohexylamine/DCM (v/v) is therefore recommended for deprotection of the Fmoc group from the Fmoc-Ser(PO3Bzl,H) residue, with particular benefit anticipated for the synthesis of multiphosphoseryl peptides.  相似文献   

2.
Dimethylformamide (DMF), which is still the most commonly used solvent for Fmoc‐SPPS, has the potential for degradation over time on exposure to air (and water vapour) and storage, to give dimethylamine and formic acid impurities. In particular, dimethylamine can lead to unwanted deprotection of the fluorenylmethyloxycarbonyl (Fmoc) group during, for example, the initial loading of Fmoc amino acids in SPPS, which leads reduced calculated loading values. We have found that treatment of such aged DMF by simple sparging with an inert gas (N2), or vacuum sonication, can regenerate the DMF in order to restore loading levels back to those found for newer, fresh, DMF samples.  相似文献   

3.
We have been engaged in the microwave‐solid phase peptide synthesis (SPPS) synthesis of the phenylglycine (Phg)‐containing pentapeptide H‐Ala‐Val‐Pro‐Phg‐Tyr‐NH2 (1) previously demonstrated to bind to the so‐called BIR3 domain of the anti‐apoptotic protein XIAP. Analysis of the target peptide by a combination of RP‐HPLC, ESI‐MS, and NMR revealed the presence of two diastereoisomers arising out of the racemisation of the Phg residue, with the percentage of the LLLDL component assessed as 49%. We performed the synthesis of peptide (1) using different microwave and conventional stepwise SPPS conditions in attempts to reduce the level of racemisation of the Phg residue and to determine at which part of the synthetic cycle the epimerization had occurred. We determined that racemisation occurred mainly during the Fmoc‐group removal and, to a much lesser extent, during activation/coupling of the Fmoc‐Phg‐OH residue. We were able to obtain the desired peptide with a 71% diastereomeric purity (29% LLLDL as impurity) by utilizing microwave‐assisted SPPS at 50 °C and power 22 Watts, when the triazine‐derived coupling reagent DMTMM‐BF4 was used, together with NMM as an activator base, for the incorporation of this residue and 20% piperidine as an Fmoc‐deprotection base. In contrast, the phenylalanine analogue of the above peptide, H‐Ala‐Val‐Pro‐Phe‐Tyr‐NH2 (2), was always obtained as a single diastereoisomer by using a range of standard coupling and deprotection conditions. Our findings suggest that the racemisation of Fmoc‐Phg‐OH, under both microwave‐SPPS and stepwise conventional SPPS syntheses conditions, is very facile but can be limited through the use of the above stated conditions. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
A series of peptides and phosphopeptides corresponding to the auto-phosphorylation site of pp60src, -Asn-Glu-Tyr416-Thr-Ala-, were prepared by either Boc/solution or Fmoc/solid phase peptide synthesis and used as substrates to study their enzymatic phosphorylation by various casein kinases. The Tyr(P)-containing peptide, Asn-Glu-Tyr(P)-Thr-Ala, was prepared by the use of Fmoc-Tyr(PO3Bzl2)-OH in Fmoc/solid phase peptide synthesis followed by acidolytic treatment of the peptide-resin with 5% anisole/CF3CO2H. Both Asn-Glu-Tyr-Thr-Ala and Asn-Glu-Ser(P)-Thr-Ala were prepared by the Boc/solution phase peptide synthesis and employed hydrogenolytic deprotection of the protected peptides. Enzymatic phosphorylation studies established that (A) the Tyr residue acted as an unusual positive determinant for directing phosphorylation to the Thr-residue, (B) the rate of Thr-phosphorylation was markedly facilitated by a change from the Tyr-residue to the Tyr(P)-residue, and (C) a Ser(P)-residue was as effective as the Tyr(P)-residue in facilitating Thr-phosphorylation. A subsequent structure-function study using Asn-Glu-Phe-Thr-Ala, Asn-Glu-Tyr(Me)-Thr-Ala (prepared by Fmoc/solid phase peptide synthesis) and Asn-Glu-Cha-Thr-Ala (prepared by hydrogenation of Asn-Glu-Tyr-Thr-Ala) established that the rate of Thr-phosphorylation was influenced by the extent of hydrophobic-hydrophobic interactions by the aralkyl side-chain group (either aromatic or aliphatic) of the 416-residue with casein kinase-2; the rate of Thr-phosphorylation being decreased by the introduction of methyl or hydroxyl groups at the 4-position of the aromatic group {i.e. Tyr(Me) and Tyr respectively} but enhanced by the introduction of the hydrophilic phosphate group {i.e. as Tyr(P)}.  相似文献   

5.
Abstract

For synthesis of N7-cyanoborane-containing oligonucleotides, the 5′-DMT protecting group is not a suitable precursor because the boronated nucleoside is incompatible with DMT cations released during deprotection of the oligonucleotide. As an alternative to DMT, we have investigated use of the 5′-Fmoc protecting group. We found that the cyanoborane group is stable during synthesis and deprotection conditions used with Fmoc derivatives.  相似文献   

6.
The synthesis of multilayered magnetic nanoparticles (MNPs) for use as a support in solid-phase peptide synthesis (SPPS) is described. Silanization of magnetite (Fe3O4) nanoparticles with 3-(trimethoxysilyl)propyl methacrylate introduced polymerizable groups on the surface. Polymerization with allylamine, trimethylolpropane trimethacrylate, and trimethylolpropane ethoxylate (14/3 EO/OH) triacrylate provided a polymeric coating and amino groups to serve as starting points for the synthesis. After coupling of an internal reference amino acid and a cleavable linker, the coated MNPs were applied as the solid phase during synthesis of Leu-enkephalinamide and acyl carrier protein (65-74) by Fmoc chemistry. A “high-load” version of the MNP support (0.32 mmol/g) was prepared by four consecutive cycles of Fmoc-Lys(Fmoc)-OH coupling and Fmoc deprotection. Successful synthesis of Leu-enkephalin was demonstrated on the “high-load” MNPs. Chemical stability studies proved the particles to be stable under SPPS conditions and magnetization measurements showed that the magnetic properties of the particles were maintained throughout derivatizations and SPPS. The MNPs were further characterized by high-resolution transmission electron microscopy, inductively coupled plasma atomic emission spectrometry, elemental analysis, and nitrogen gas adsorption measurements.  相似文献   

7.
Summary The use ofN-carboxymethyl amino acids in the assembly of peptides with backbone cyclization can lead to diketopiperazine formation by intramolecular aminolysis which occurs despite thetert-butyl protection of the carboxy group. This undesired side reaction can be prevented by a very short deprotection time for the Fmoc group, by elongation of theN-carboxyalkyl chain or by forming the backbone (lactam) bridge before Fmoc removal, but not by the use of DBU or additives.  相似文献   

8.
2‐(4‐Nitrophenyl)sulfonylethoxycarbonyl (Nsc) is an alternative base‐labile Nα‐protecting group to 9‐fluorenylmethoxycarbonyl (Fmoc) for amino acids. The UV spectrum of the Nsc group exhibits moderate absorption at 380 nm which is excellent for real‐time monitoring of the deprotection process. It also decreases the rearrangement of X‐Asp, which can be a serious problem in SPPS. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
The efficient synthesis of an Fmoc-Gly-Ile phosphinic pseudodipeptide was desired as an eventual building block for construction of matrix metalloproteinase inhibitors. A Michael-type addition reaction of bis(trimethylsilyl) phosphonite with the appropriate acrylate generated the pseudodipeptide bond. Additional of adamantyl (Ad) protection by our prior route (reaction of in situ generated phosphinic acid chloride with the sodium salt of adamantanol) was surprisingly inefficient. Adamantyl protection was achieved in high yield by refluxing the phosphinic acid, Ag2O, and 1-AdBr in chloroform. Subsequently a concise one-pot three-step reaction comprising a double deprotection of the N- and C-termini under catalytic hydrogenation conditions followed by selective protection of the N-terminus with an Fmoc group yielded Fmoc-NHCH2PO(OAd)CH2CH(2-butyl)CO2H in 41?% overall yield. These results indicate that, as the diversity of phosphinic pseudodipeptides is increased to create selective matrix metalloproteinase inhibitors, different synthetic pathways may be required for efficient building block preparation.  相似文献   

10.
This work reports an efficient Lewis acid catalysed N‐methylation procedure of lipophilic α‐amino acid methyl esters in solution phase. The developed methodology involves the use of the reagent system AlCl3/diazomethane as methylating agent and α‐amino acid methyl esters protected on the amino function with the (9H‐fluoren‐9‐yl)methanesulfonyl (Fms) group. The removal of Fms protecting group is achieved under the same conditions to those used for Fmoc removal. Thus the Fms group can be interchangeable with the Fmoc group in the synthesis of N‐methylated peptides using standard Fmoc‐based strategies. Finally, the absence of racemization during the methylation reaction and the removal of Fms group were demonstrated by synthesising a pair of diastereomeric dipeptides. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
A series of Fmoc‐Phe(4‐aza‐C60)‐OH of fullerene amino acid derived peptides have been prepared by solid phase peptide synthesis, in which the terminal amino acid, Phe(4‐aza‐C60)‐OH, is derived from the dipolar addition to C60 of the Fmoc‐Nα‐protected azido amino acids derived from phenylalanine: Fmoc‐Phe(4‐aza‐C60)‐Lys3‐OH ( 1 ), Fmoc‐Phe(4‐aza‐C60)‐Pro‐Hyp‐Lys‐OH ( 2 ), and Fmoc‐Phe(4‐aza‐C60)‐Hyp‐Hyp‐Lys‐OH ( 3 ). The inhibition constant of our fullerene aspartic protease PRIs utilized FRET‐based assay to evaluate the enzyme kinetics of HIV‐1 PR at various concentrations of inhibitors. Simulation of the docking of the peptide Fmoc‐Phe‐Pro‐Hyp‐Lys‐OH overestimated the inhibition, while the amino acid PRIs were well estimated. The experimental results show that C60‐based amino acids are a good base structure in the design of protease inhibitors and that their inhibition can be improved upon by the addition of designer peptide sequences. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
To prevent aspartimide formation and related side products in Asp‐Xaa, particularly Asp‐Gly‐containing peptides, usually the 2‐hydroxy‐4‐methoxybenzyl (Hmb) backbone amide protection is applied for peptide synthesis according to the Fmoc‐protocols. In the present study, the usefulness of the recently proposed acid‐labile dicyclopropylmethyl (Dcpm) protectant was analyzed. Despite the significant steric hindrance of this bulky group, N‐terminal H‐(Dcpm)Gly‐peptides are quantitatively acylated by potent acylating agents, and alternatively the dipeptide Fmoc‐Asp(OtBu)‐(Dcpm)Gly‐OH derivative can be used as a building block. In contrast to the Hmb group, Dcpm is inert toward acylations, but is readily removed in the acid deprotection and resin‐cleavage step. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
The synthesis of glycosylated Fmoc amino acids by reaction of mono- and disaccharide peracetates with Fmoc amino acids having free carboxyl groups was rapidly promoted by Lewis acids (SnCl4, BF3·Et2O) under microwave irradiation. The products are useful building blocks for the synthesis of glycopeptides.  相似文献   

14.
In contrast to the large number of sidechain protecting groups available for cysteine derivatives in solid phase peptide synthesis, there is a striking paucity of analogous selenocysteine Se‐protecting groups in the literature. However, the growing interest in selenocysteine‐containing peptides and proteins requires a corresponding increase in availability of synthetic routes into these target molecules. It therefore becomes important to design new sidechain protection strategies for selenocysteine as well as multiple and novel deprotection chemistry for their removal. In this paper, we outline the synthesis of two new Fmoc selenocysteine derivatives [Fmoc‐Sec(Meb) and Fmoc‐Sec(Bzl)] to accompany the commercially available Fmoc‐Sec(Mob) derivative and incorporate them into two model peptides. Sec‐deprotection assays were carried out on these peptides using 2,2′‐dithiobis(5‐nitropyridine) (DTNP) conditions previously described by our group. The deprotective methodology was further evaluated as to its suitability towards mediating concurrent diselenide formation in oxytocin‐templated target peptides. Sec(Mob) and Sec(Meb) were found to be extremely labile to the DTNP conditions whether in the presence or absence of thioanisole, whereas Sec(Bzl) was robust to DTNP in the absence of thioanisole but quite labile in its presence. In multiple Sec‐containing model peptides, it was shown that bis‐Sec(Mob)‐containing systems spontaneously cyclize to the diselenide using 1 eq DTNP, whereas bis‐Sec(Meb) and Sec(Bzl) models required additional manipulation to induce cyclization. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

15.
In our efforts to develop a universal solution to the problem of aspartimide formation in Fmoc SPPS, we investigated the application of our new β‐trialkylmethyl protected aspartic acid building blocks to the synthesis of peptides containing the Asp‐Gly motif. The Nα‐Fmoc aspartic acid β‐tri‐(ethyl/propyl/butyl)methyl esters were used in the synthesis of the classic model peptide scorpion toxin II (VKDGYI), and their effectiveness in minimising aspartimide formation during extended piperidine treatments was evaluated. Furthermore, we compared their efficacy against that of the commonly used approach of adding acids to the Fmoc deprotection solution. Finally, we applied our aspartic acid building blocks to the stepwise Fmoc SPPS of teduglutide, a human GLP‐2 analogue, whose synthesis is made challenging by extensive aspartimide formation. In all experiments, our approach led to almost complete reduction of aspartimide formation with accompanied suppression of aspartic acid epimerisation. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

16.
We report here the synthesis of the first selenocysteine SPPS derivatives which bear TFA‐labile sidechain protecting groups. New compounds Fmoc‐Sec(Xan)‐OH and Fmoc‐Sec(Trt)‐OH are presented as useful and practical alternatives to the traditional Fmoc‐Sec‐OH derivatives currently available to the peptide chemist. From a bis Fmoc‐protected selenocystine precursor, multiple avenues of diselenide reduction were attempted to determine the most effective method for subsequent attachment of the protecting group electrophiles. Our previously reported one‐pot reduction methodology was ultimately chosen as the optimal approach toward the synthesis of these novel building blocks, and both were easily obtained in high yield and purity. Fmoc‐Sec(Xan)‐OH was discovered to be bench‐stable for extended timeframes while the corresponding Fmoc‐Sec(Trt)‐OH derivative appeared to detritylate slowly when not stored at ?20 °C. Both Sec derivatives were incorporated into single‐ and multiple‐Sec‐containing test peptides in order to ascertain the peptides' deprotection behavior and final form upon TFA cleavage. Single‐Sec‐containing test peptides were always isolated as their corresponding diselenide dimers, while dual‐Sec‐containing peptide sequences were afforded exclusively as their intramolecular diselenides. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

17.
The use of N-carboxymethyl amino acids in the assembly of peptides with backbone cyclization can lead to diketopiperazine formation by intramolecular aminolysis which occurs despite the tert-butyl protection of the carboxy group. This undesired side reaction can be prevented by a very short deprotection time for the Fmoc group, by elongation of the N-carboxyalkyl chain or by forming the backbone (lactam) bridge before Fmoc removal, but not by the use of DBU or additives.  相似文献   

18.
In this study, a novel N‐acetyl‐glucosaminylated asparagine derivative was developed. This derivative carried TFA‐sensitive protecting groups and was derived from commercially available compounds only in three steps. It was applicable to the ordinary 9‐fluorenylmethoxycarbonyl (Fmoc)‐based solid‐phase peptide synthesis (SPPS) method, and the protecting groups on the carbohydrate moiety could be removed by a single step of TFA cocktail treatment generally used for the final deprotection step in Fmoc‐SPPS. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

19.
Summary Rat ghrelin, a 28-amino acid residue peptide with an octanoyl group at the side chain of Ser3, was synthesized chemically by applying Fmoc/ t Bu strategy. An ester linkage between octanoic acid and the hydroxyl function of Ser3 was found to be maintained without serious damage during the final deprotection with trifluoroacetic acid (TFA). The most notable finding was the counter-ion-dependent stability change of the octanoyl moiety in the molecule. After consolidation of the counter-ion to TFA (TFA form), the octanoyl group persisted stably upon dissolution in water, whereas in the case of the acetate-form peptide, both de-octanoylation and dehydration (formation of the dehydro-Ala residue) occurred in aqueous solution at the same Ser3 residue. The amounts of these degraded products varied with factors such as solvent, temperature and times of lyophilization. These experimental findings lay the basis for performing the bioassay of ghrelin, which has an octanoyl moiety involved in its numerous biological activities thus far revealed.  相似文献   

20.
The Acm protecting group for the thiol functionality of cysteine is removed under conditions (Hg2+) that are orthogonal to the acidic milieu used for global deprotection in Fmoc‐based solid‐phase peptide synthesis. This use of a toxic heavy metal for deprotection has limited the usefulness of Acm in peptide synthesis. The Acm group may be converted to the Scm derivative that can then be used as a reactive intermediate for unsymmetrical disulfide formation. It may also be removed by mild reductive conditions to generate unprotected cysteine. Conversion of Cys(Acm)‐containing peptides to their corresponding Cys(Scm) derivatives in solution is often problematic because the sulfenyl chloride reagent used for this conversion may react with the sensitive amino acids tyrosine and tryptophan. In this protocol, we report a method for on‐resin Acm to Scm conversion that allows the preparation of Cys(Scm)‐containing peptides under conditions that do not modify other amino acids. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号