首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Urocotins (Ucns) are newly discovered members of the corticotropin-releasing factor (CRF) neuropeptide family. Ucn 2 is expressed in the adrenal medulla, and its receptor, CRF2 receptor, is also expressed in the adrenal gland. To predict the physiological significance of Ucn 2 expression in the adrenal medulla, we examined the effects of Ucn 2 on catecholamine secretion and intracellular signaling using PC12 cells, a rat pheochromocytoma cell line. PC12 cells were found to express CRF2 receptor, but not CRF1 receptor. Treatment with Ucn 2 increased noradrenaline secretion and induced phosphorylation of PKA and Erk1/2. Tyrosine hydroxylase (TH), a rate-limiting enzyme for catecholamine synthesis, was also phosphorylated by Ucn 2. Pretreatment with a PKA inhibitor blocked Ucn 2-induced NA secretion, and Erk1/2 and TH phosphorylation. Pretreatment with a MEK inhibitor did not block Ucn 2-induced noradrenaline secretion or PKA phosphorylation, although TH phosphorylation was blocked. Thus, Ucn 2 induces noradrenaline secretion and TH phosphorylation through the PKA pathway and the PKA-Erk1/2 pathway, respectively. These results suggest Ucn 2 in the adrenal gland may be involved in the regulation of catecholamine release and synthesis.  相似文献   

2.
Urocortins (UCNs) and their receptors are potent immunoregulators in the gastrointestinal (GI) tract, where they can exert both pro- and anti-inflammatory effects. We examined the contribution of Ucn1 and its receptors to the pathogenesis, progression, and resolution of colitis. Trinitrobenzene sulfonic acid was used to induce colitis in rats. Ucn1 mRNA and immunoreactivity (IR) were ubiquitously expressed throughout the GI tract under basal conditions. During colitis, Ucn1 mRNA levels fell below basal levels on day 1 then increased again by day 6, in association with an increase in the number of Ucn1-IR inflammatory cells. Ucn1-IR cells were also numerous in proliferating granulation tissue. In contrast to Ucn1 expression, average phosphorylated ERK1/2 (pERK1/2) expression rose above controls levels on day 1 and was very low on day 6 of colitis. Knockdown of corticotropin-releasing factor 2 (CRF(2)) but not CRF(1) by RNA interference during colitis significantly decreased the macroscopic lateral spread of ulceration compared with uninjected controls or animals with CRF(1) knockdown. After knockdown of CRF(2), but not of CRF(1) during colitis, edema resolution assessed microscopically was slowed, and myeloperoxidase activity remained elevated even at day 6. Ucn1 and TNF-α mRNA peaked earlier, whereas pERK1/2 activation was attenuated after CRF(2) knockdown. Thus we conclude that local CRF(2) and pERK1/2 activation is pivotal for macroscopic spread of colitis and resolution of edema. Elimination of CRF(2), but not CRF(1), results in uncoordinated immune and pERK1/2 signaling responses.  相似文献   

3.
Peripheral corticotropin-releasing factor (CRF) receptor ligands inhibit gastric acid secretion and emptying while stimulating gastric mucosal blood flow in rats. Endogenous CRF ligands are expressed in the upper gastrointestinal (GI) tissues pointing to local expression of CRF receptors. We mapped the distribution of CRF receptor type 1 (CRF1) and 2 (CRF2) in the rat upper GI. Polyclonal antisera directed against the C-terminus of the CRF receptor protein were generated in rabbits and characterized by western blotting and immunofluorescence using CRF1- and CRF2-transfected cell lines and in primary cultured neurons from rat brain cortex. A selective anti-CRF1 antiserum (4467a-CRF1) was identified and used in parallel with another antiserum recognizing both CRF1 and CRF2 (4392a-CRF1&2) to immunostain gastric tissue sections. Antiserum 4467a-CRF1 demonstrated specific immunostaining in a narrow zone in the upper oxyntic gland within the stomach corpus. Conversely, 4392a-CRF1&2 labeled cells throughout the oxyntic gland and submucosal blood vessels. Pre-absorption with the specific antigen peptide blocked immunostaining in all experiments. Doublestaining showed co-localization of 4392a-CRF1&2 but not 4467a-CRF1 immunoreactivity with H/K-ATPase and somatostatin immunostaining in parietal and endocrine cells of the oxyntic gland. No specific staining was observed in the antrum with either antisera, whereas only antiserum 4392a-CRF1&2 showed modest immunoreactivity in the duodenal mucosa. Finally, co-localization of CRF2 and urocortin immunoreactivity was found in the gastric glands. These results indicate that both CRF receptor subtypes are expressed in the rat upper GI tissues with a distinct pattern and regional differences suggesting differential function.  相似文献   

4.
It is becoming increasingly evident that the urocortins (Ucns) and their receptors are involved in the initiation and development of inflammation in the gastrointestinal (GI) tract. There has not been a systematic study of the basal expression of Ucns or their receptors in the GI tract. Here, we examined basal expression of Ucn 2 and its high-affinity receptor, CRF-R2 in the rat GI tract. Ucn 2 mRNA was expressed throughout the small and large intestine. Surprisingly, CRF-R2 mRNA expression was detected in only a subset of GI regions that expressed Ucn 2. Immunohistochemical study showed that both Ucn 2 immuno-reactivity (Ucn 2-IR) and CRF-R2-IR were consistently seen in the neurons of the myenteric plexus and the nerve fibers innervating the circular muscle. By and large, Ucn 2-IR was detected in all layers, including the mucosal and the submucosal layers throughout the GI regions. In contrast, CRF-R2-IR was very low or undetectable in the mucosal layers of all regions examined. The role of Ucn 2 and CRF-R2 was then examined in a rat model of chemically-induced colitis. In the early phase of colitis, Ucn 2 mRNA levels peaked, whereas, in striking contrast, CRF-R2 mRNA expression decreased approximately 2.5-fold below control levels. At the peptide level, Ucn 2-IR was specifically induced in a large population of immune cells that infiltrated the lamina propria and submucosa of the distal colon, whereas CRFR2-IR was detected in only a small fraction of infiltrated immune cells. CRF-R2-IR was dramatically reduced in the neurons of the myenteric plexus. Thus, we show, for the first time, that in the acute phase of inflammation, Ucn 2 levels are increased whereas expression levels of its only identified receptor, CRF-R2, are decreased. This suggests that Ucn 2 exerts its effects only in part via CRF-R2.  相似文献   

5.

The corticotropin-releasing hormone family of peptides is involved in regulating the neuroendocrine stress response. Also, the vagus nerve plays an important role in the transmission of immune system-related signals to brain structures, thereby orchestrating the neuroendocrine stress response. Therefore, we investigated gene expression of urocortin 2 (Ucn2) and c-fos, a markers of neuronal activity, within the hypothalamic paraventricular nucleus (PVN), a brain structure involved in neuroendocrine and neuroimmune responses, as well as in the adrenal medulla and spleen in vagotomized rats exposed to immune challenge. In addition, markers of neuroendocrine stress response activity were investigated in the adrenal medulla, spleen, and plasma. Intraperitoneal administration of lipopolysaccharide (LPS) induced a significant increase of c-fos and Ucn2 gene expression in the PVN, and adrenal medulla as well as increases of plasma corticosterone levels. In addition, LPS administration induced a significant increase in the gene expression of tyrosine hydroxylase (TH) and phenylethanolamine N-methyltransferase (PNMT) in the adrenal medulla. In the spleen, LPS administration increased gene expression of c-fos, while gene expression of TH and PNMT was significantly reduced, and gene expression of Ucn2 was not affected. Subdiaphragmatic vagotomy significantly attenuated the LPS-induced increases of gene expression of c-fos and Ucn2 in the PVN and Ucn2 in the adrenal medulla. Our data has shown that Ucn2 may be involved in regulation of the HPA axis in response to immune challenge. In addition, our findings indicate that the effect of immune challenge on gene expression of Ucn2 is mediated by vagal pathways.

  相似文献   

6.
Urocortins (Ucn1-3), members of the corticotropin-releasing factor (CRF) family of neuropeptides, are emerging as potent immunomodulators. Localized, cellular expression of Ucn1 and Ucn2, but not Ucn3, has been demonstrated during inflammation. Here, we investigated the role of Ucn3 in a rat model of Crohn's colitis and the relative contribution of CRF receptors (CRF1 and CRF2) in regulating Ucn3 expression at baseline and during inflammation. Ucn3 mRNA and peptide were ubiquitously expressed throughout the GI tract in naïve rats. Ucn3 immunoreactivity was seen in epithelial cells and myenteric neurons. On day 1 of colitis, Ucn3 mRNA levels decreased by 80% and did not recover to baseline even by day 9. Next, we ascertained pro- or anti-inflammatory actions of Ucn3 during colitis. Surprisingly, unlike observed anti-inflammatory actions of Ucn1, exogenous Ucn3 did not alter histopathological outcomes during colitis and neither did it alter levels of pro-inflammatory cytokines IL-6 and TNF-α. At baseline, colon-specific knockdown of CRF1, but not CRF2 decreased Ucn3 mRNA by 78%, whereas during colitis, Ucn3 mRNA levels increased after CRF1 knockdown. In cultured cells, co-expression of CRF1 + CRF2 attenuated Ucn3-stimulated intracellular Ca2+ peak by 48% as compared to cells expressing CRF2 alone. Phosphorylation of p38 kinase increased by 250% during colitis and was significantly attenuated after Ucn3 administration. Thus, our results suggest that a balanced and coordinated expression of CRF receptors is required for proper regulation of Ucn3 at baseline and during inflammation.  相似文献   

7.
Urocortins (Ucn) 1, 2 and 3, human homologues of fish urotensin I, form the corticotropin-releasing factor (CRF) family, together with CRF, urotensin I and sauvagine. Ucn 3 is a novel member of this family and is a specific ligand for CRF type 2 receptor. CRF type 2 receptor is thought to mediate the stress-coping responses, such as anxiolysis, anorexia, vasodilatation, a positive inotropic action on myocardium and dearousal. Endogenous ligands for the CRF type 2 receptor expressed in the cardiovascular tissues, such as the myocardium, have long been unknown. We have shown expression of Ucn 3 as well as Ucn 1 in the human heart. Ucn 3 is also expressed in the kidney, particularly distal tubules. Studies in various rat tissues showed that high concentrations of immunoreactive Ucn 3 were found in the pituitary gland, adrenal gland, gastrointestinal tract, ovary and spleen in addition to the brain, heart and kidney. These observations suggest that Ucn 3 is expressed in various tissues including heart and kidney, and may regulate the circulation in certain aspects of stress and diseases, such as inflammation. Ucn 1 and 3 appear to have important pathophysiological roles in some cardiovascular diseases.  相似文献   

8.
The peptide hormone Urocortin 3 (Ucn 3) is abundantly and exclusively expressed in mouse pancreatic beta cells where it regulates insulin secretion. Here we demonstrate that Ucn 3 first appears at embryonic day (E) 17.5 and, from approximately postnatal day (p) 7 and onwards throughout adult life, becomes a unifying and exclusive feature of mouse beta cells. These observations identify Ucn 3 as a potential beta cell maturation marker. To determine whether Ucn 3 is similarly restricted to beta cells in humans, we conducted comprehensive immunohistochemistry and gene expression experiments on macaque and human pancreas and sorted primary human islet cells. This revealed that Ucn 3 is not restricted to the beta cell lineage in primates, but is also expressed in alpha cells. To substantiate these findings, we analyzed human embryonic stem cell (hESC)-derived pancreatic endoderm that differentiates into mature endocrine cells upon engraftment in mice. Ucn 3 expression in hESC-derived grafts increased robustly upon differentiation into mature endocrine cells and localized to both alpha and beta cells. Collectively, these observations confirm that Ucn 3 is expressed in adult beta cells in both mouse and human and appears late in beta cell differentiation. Expression of Pdx1, Nkx6.1 and PC1/3 in hESC-derived Ucn 3+ beta cells supports this. However, the expression of Ucn 3 in primary and hESC-derived alpha cells demonstrates that human Ucn 3 is not exclusive to the beta cell lineage but is a general marker for both the alpha and beta cell lineages. Ucn 3+ hESC-derived alpha cells do not express Nkx6.1, Pdx1 or PC1/3 in agreement with the presence of a separate population of Ucn 3+ alpha cells. Our study highlights important species differences in Ucn 3 expression, which have implications for its utility as a marker to identify mature beta cells in (re)programming strategies.  相似文献   

9.
《Journal of Physiology》1997,91(3-5):247-256
Recently we have identified a dopamine-producing system in the gastric mucosa of rats. All the available morphological data suggest that parietal cells synthesize dopamine. In the present study we investigated the dopaminergic characteristics of isolated parietal cells by different methods. Mixed gastric mucosal cells were isolated and size-fractionated by elutriation. The proportion of neurons, parietal and endocrine cells in the fractions were determined by immunocytochemistry (ICC) using antibodies to neurofilament, proton pump and chromogranin A, respectively. No neurons were found in any of the cell preparations, while 56% parietal cell and 0.0% endocrine cell were achieved in the parietally enriched fraction. By Western blot, a tyrosine hydroxylase (TH, the rate-limiting enzyme of the catecholamine synthesis) immunoreactive protein species was demonstrated in isolated mucosal cells, comigrating with the TH immunoreactivity from PC12 cells. The TH immunoreactivity was colocalized to parietal cells by ICC. Dopamine transporter (DAT), a regulator of extracellular/intracellular dopamine balance in the nervous system, was also demonstrated in parietal cells. A significant amount of dopamine and DOPA were measured by HPLC (13.4 and 9.57 pg/106 cell, respectively) in parietally enriched cell fraction. Since this enriched cell fraction was virtually clear of both neurons and endocrine cells, demonstration of TH enzyme, DAT and dopamine in this fraction confirms that the parietal cell population might be a major source of dopamine in the rat stomach, supporting our previous results achieved using whole tissue samples.  相似文献   

10.
Tyrosine hydroxylase (TH) mRNA and activity and concentrations of 3,4-dihydroxyphenylalanine (DOPA) and catecholamines were examined as markers of sympathetic innervation and catecholamine synthesis in peripheral tissues of sympathectomized and intact rats. Chemical sympathectomy with 6-hydroxydopamine (6-OHDA) markedly decreased norepinephrine and to a generally lesser extent TH activities and dopamine in most peripheral tissues (stomach, lung, testis, duodenum, pancreas, salivary gland, spleen, heart, kidney, thymus). Superior cervical ganglia, adrenals and descending aorta were unaffected and vas deferens showed a large 92% decrease in norepinephrine, but only a small 38% decrease in TH activity after 6-OHDA. Presence of chromaffin cells or neuronal cell bodies in these latter tissues, indicated by consistent expression of TH mRNA, explained the relative resistance of these tissues to 6-OHDA. Stomach also showed consistent expression of TH mRNA before, but not after 6-OHDA, suggesting that catecholamine synthesizing cells in gastric tissue are sensitive to the toxic effects of 6-OHDA. Tissue concentrations of DOPA were mainly unaffected by 6-OHDA, indicating that much of the DOPA in peripheral tissues is synthesized independently of local TH or sympathetic innervation. The differential effects of chemical sympathectomy on tissue catecholamines, DOPA, TH mRNA and TH activity demonstrate that these variables are not simple markers of sympathetic innervation or catecholamine synthesis. Other factors, including presence of neuronal cell bodies, parenchymal chromaffin cells, non-neuronal sites of catecholamine synthesis and alternative sources of tissue DOPA, must also be considered when tissue catecholamines, DOPA and TH are examined as markers of sympathetic innervation and local catecholamine synthesis.  相似文献   

11.
Urocortin   总被引:2,自引:0,他引:2  
Urocortin (Ucn) is a 40 amino acid peptide which is closely related to corticotrophin-releasing factor (CRF). It is expressed in specific regions of the brain but is also detectable in other organs notably the heart. Although some of the effects of Ucn in the nervous system such as enhanced anxiety and activity mimic those of CRF, Ucn is a much more potent suppressor of appetite/feeding behaviour. Moreover, Ucn has much more potent effects on the cardiovascular system than CRF, including enhanced cardiac contractility/heart rate and enhanced resistance of cardiac cells to injury induced, for example, by ischaemia/reperfusion. This suggests Ucn may play a key role in the response of the cardiovascular system to stress. In addition, Ucn represents a novel cardioprotective agent which may be of therapeutic use in treating the damaging effects of cardiac ischaemia and subsequent reperfusion.  相似文献   

12.
M Ahonen 《Histochemistry》1991,96(6):467-478
In this study, the ontogenetic appearance of three neuronal markers, tyrosine hydroxylase (TH), neurofilament (NF) proteins and acetylcholinesterase (AChE), have been compared in the neural tube and derivatives of the neural crest with special consideration on developing rat sympathetic tissues. The tree markers appeared for the first time on embryonic day E 12.5. At this age, NF immunoreactivity was located in the cells on the ventro- and dorsolateral edges of the neural tube, i.e., in the regions where the cells had reached the postmitotic stage. In addition, on day E 12.5, NF-immunoreactive fibers were located in the dorsal and ventral roots and the spinal and sympathetic ganglia. This suggests rapid extension of neurites. In contrast to NF, AChE first appeared on day E 12.5 in cell somata of spinal and sympathetic ganglia and only after that in axons. Thus, it can be considered as a marker of differentiating neuronal cell bodies. In the developing sympathoadrenal cells, TH is expressed before NF and AChE. However, the migrating TH immunoreactive sympathetic cells are constantly followed by NF immunoreactive fibers, suggesting that sympathetic tissues may receive innervation from preganglionic axons at the very beginning of their ontogeny. During the later development, all sympathetic tissues contain two major cell groups: 1) one with a moderate TH immunoreactivity, NF immunoreactivity and AChE activity and 2) the other with an intense TH immunoreactivity but lacking NF immunoreactivity or AChE activity. The former includes principal neurons, neuron-like cells of the paraganglia and noradrenaline cells of the adrenal medullae, and the latter includes ganglionic small intensely fluorescent (SIF) cells, paraganglionic cells and medullary adrenaline cells.  相似文献   

13.
Summary In this study, the ontogenetic appearance of three neuronal markers, tyrosine hydroxylase (TH), neurofilament (NF) proteins and acetylcholinesterase (AChE), have been compared in the neural tube and derivatives of the neural crest with special consideration on developing rat sympathetic tissues. The tree markers appeared for the first time on embryonic day E 12.5. At this age, NF immunoreactivity was located in the cells on the ventro- and dorsolateral edges of the neural tube, i.e., in the regions where the cells had reached the postmitotic stage. In addition, on day E 12.5, NF-immunoreactive fibers were located in the dorsal and ventral roots and the spinal and sympathetic ganglia. This suggests rapid extension of neurites. In contrast to NF, AChE first appeared on day E 12.5 in cell somata of spinal and sympathetic ganglia ond only after that in axons. Thus, it can be considered as a marker of differentiating neuronal cell bodies. In the developing sympathoadrenal cells, TH is expressed before NF and AChE. However, the migrating TH immunoreactive sympathetic cells are constantly followed by NF immunoreactive fibers, suggesting that sympathetic tissues may receive innervation from preganglionic axons at the very beginning of their ontogeny. During the later development, all sympathetic tissues contain two major cell groups: 1) one with a moderate TH immunoreactivity, NF immunoreactivity and AChE activity and 2) the other with an intense TH immunoreactivity but lacking NF immunoreactivity or AChE activity. The former includes principal neurons, neuron-like cells of the paraganglia and noradrenaline cells of the adrenal medullae, and the latter includes ganglionic small intensely fluorescent (SIF) cells, paraganglionic cells and medullary adrenaline cells.  相似文献   

14.
There is evidence that the peptide urocortin 1 (Ucn1) may be involved in mediating some of the effects of ethanol. The purpose of the present study was to characterize Ucn1 immunoreactivity in mice selectively bred for either high or low sensitivity to ethanol-induced sedation, with additional differences in their response to ethanol-induced hypothermia. The brains of naïve male mice of the inbred long sleep/short sleep (ILS/ISS) selected lines were analyzed by immunohistochemistry. Significant differences were found between lines in the number of Ucn1-containing cells in the non-preganglionic Edinger–Westphal nucleus (npEW, the main source of Ucn1 in the brain); with the ISS mice having more cells. However, significant differences in the optical density of Ucn1 immunoreactivity in individual npEW cells and differences in cell area were also found between lines, with ILS mice having a greater density of Ucn1 per cell and having larger cells in the npEW. Importantly, the ILS mice also had a significantly greater number of Ucn1-positive terminal fibers than ISS mice in the lateral septum and the dorsal raphe nucleus, projection areas of Ucn1-containing neurons. These results suggest that the greater sensitivity of ILS than ISS mice to the hypothermic effects of ethanol could be mediated by stronger innervation of the dorsal raphe by Ucn1-containing fibers. In addition, these results lend further support to previous findings implicating Ucn1-containing projections from npEW to the dorsal raphe in ethanol-induced hypothermia.  相似文献   

15.
Tyrosine hydroxylase (TH) is co-expressed with islet hormones in the fetal mouse pancreas. In the adult animal, the enzyme has been considered as a marker of ageing beta-cells. By immunohistochemical staining, we analyzed the expression of TH-like immunoreactivity (TH-LI), insulin-LI (INS-LI) and somatostatin-LI (SOM-LI) in adult mouse islets, in situ and after isolation and transplantation to kidney. In pancreas in situ, most TH-LI cells expressed INS-LI while less than 5% expressed SOM-LI. The total number of TH-LI cells/mm2 was significantly increased directly after isolation and in 0-day, 12-week and 52-week old grafts, but not in 3-day grafts. The proportion of TH-LI cells expressing SOM-LI increased after transplantation, amounting to about one-third by 52 weeks. As expressed per unit islet area, the frequencies of both TH/INS and TH/SOM cells increased significantly in the transplants. The results demonstrate that TH occurs in both beta-cells and D-cells of adult islets. In both cell types the enzyme appears to be responsive to the microenvironmental changes inherent in transplantation. This cellular phenotype plasticity might contribute to the altered insulin secretory dynamics in islet grafts.  相似文献   

16.
The intermediate filament nestin is expressed in neural stem cells, neuroectodermal tumors and various adult tissues. In the gastrointestinal (GI) tract, nestin has been reported in glial cells. Recently, nestin has been reported in interstitial cells of Cajal (ICC) and in gastrointestinal stromal tumors, thought to derive from ICC. Here we investigated nestin immunoreactivity (-ir) in the normal human GI tract, with emphasis on Kit-ir ICC. Two different antibodies specific for human nestin and multicolor high-resolution confocal microscopy were used on material from our human GI tissue collection. The staining pattern of both nestin antibodies was similar. In labeled cells, nestin-ir appeared filamentous. Most intramuscular ICC in antrum and all myenteric ICC (ICC-MP) in small intestine were nestin-ir, while nestin-ir was not detected in deep muscular plexus ICC. In the colon, some - but not all - ICC-MP and most ICC in the circular musculature were nestin-ir while nestin-ir was not detected in ICC in the longitudinal musculature and in the submuscular plexus. In addition, many Kit-negative cells were nestin-ir in all regions. Neurons and smooth muscle cells were consistently nestin negative, while most S100-ir glial cells were nestin-ir. In addition, nestin-ir was also present in some CD34-ir fibroblast-like cells, in endothelium and in other cell types in the mucosa and serosa. In conclusion, nestin-ir is abundantly present in the normal human GI tract. Among a number of cell types, several, but not all, subpopulations of Kit-ir ICC were nestin-ir. The functional significance of nestin in the GI tract remains obscure.  相似文献   

17.
Expression and regulation of IL-22 in the IL-17-producing CD4+ T lymphocytes   总被引:17,自引:1,他引:17  
Chung Y  Yang X  Chang SH  Ma L  Tian Q  Dong C 《Cell research》2006,16(11):902-907
IL-22 is a novel cytokine in the IL-10 family that functions to promote innate immunity of tissues against infection. Although CD4+ helper T lymphocytes (TH) were found as a source of IL-22, the regulation of this cytokine has been poorly understood. Here, we show that IL-22 is expressed at both mRNA and protein levels by a novel subset of TH cells that also makes IL-17. IL-22 and IL-17 were found to be coordinately regulated by TGFI3 and IL-6 during TH differentiation by real-time PCR as well as ELISA analysis. However, IL-22 does not regulate TH differentiation; exogenous IL-22 or an IL-22 antagonist had no effect on TH differentiation. These data demonstrate a novel cytokine expressed by IL-17-producing T cells, and suggest interaction and synergy of IL-22 and IL-l 7 signaling pathways in tissue inflammation and autoimmune diseases.  相似文献   

18.
The localization of tyrosine hydroxylase (TH) immunoreactivity in rat adrenal chromaffin and pheochromocytoma (PC12) cells was investigated by immunoelectron microscopy using monoclonal and polyclonal antisera against TH purified from rat adrenal medulla. Strong TH immunoreactivity was found uniformly in the granules of the adrenaline cells; the immunoreactivity was visible mainly within the periphery, but not in the clear space of the granules of the noradrenaline cells. In the PC12 cells, strong TH immunoreactivity was also observed uniformly in the granules. In addition, TH immunoreactivity was seen in the cytoplasm, the ribosomes attached to the endoplasmic reticulum and the free ribosomes of both the rat adrenal chromaffin and PC12 cells. These results suggest that TH may be localized in the granules, cytoplasm and ribosomes of rat adrenal chromaffin and PC12 cells.  相似文献   

19.
Urocortin (Ucn 1), a 40 amino acid long peptide related to corticotropin releasing factor (CRF) was discovered 19 years ago, based on its sequence homology to the parent molecule. Its existence was inferred in the CNS because of anatomical and pharmacological discrepancies between CRF and its two receptor subtypes. Although originally found in the brain, where it has opposing actions to CRF and therefore confers stress-coping mechanisms, Ucn 1 has subsequently been found throughout the periphery including heart, lung, skin, and immune cells. It is now well established that this small peptide is involved in a multitude of physiological and pathophysiological processes, due to its receptor subtype distribution and promiscuity in second messenger signalling pathways. As a result of extensive studies in this field, there are now well over one thousand peer reviewed publications involving Ucn 1. In this review, we intend to highlight some of the less well known actions of Ucn 1 and in particular its role in neuronal cell protection and maintenance of the skeletal system, both by conventional methods of reviewing the literature and using bioinformatics, to highlight further associations between Ucn 1 and disease conditions. Understanding how Ucn 1 works in these tissues, will help to unravel its role in normal and pathophysiological processes. This would ultimately allow the generation of putative medical interventions for the alleviation of important diseases such as Parkinson's disease, arthritis, and osteoporosis.  相似文献   

20.
Corticotropin-releasing hormone (CRH) and urocortins (Ucn) bind with various affinities to two G-protein-coupled receptors, CRHR1 and CRHR2, which are expressed in brain and in peripheral tissues, including immune cells. CRHR2-deficient mice display anxiety-like behavior, hypersensitivity to stress, altered feeding behavior and metabolism, and cardiovascular abnormalities. However, the phenotype of these mice in inflammatory responses has not been determined. In the present study we found that compared with wild-type CRHR2-null mice developed substantially reduced intestinal inflammation and had lower intestinal mRNA expression of the potent chemoattractants keratinocyte chemokine and monocyte chemoattractant protein 1 following intraluminal exposure to Clostridium difficile toxin A, a potent enterotoxin that mediates antibiotic-associated diarrhea and colitis in humans. This effect was recapitulated by administration of astressin 2B, a selective CRHR2 antagonist, before toxin A exposure. Moreover, Ab array analysis revealed reduced expression of several inflammatory chemokines, including keratinocyte chemokine and monocyte chemoattractant protein 1 in toxin A-exposed mice pretreated with astressin 2B. Real-time RT-PCR of wild-type mouse intestine showed that only UcnII, but not other Ucn, was significantly up-regulated by ileal administration of toxin A at 4 h compared with buffer exposure. We also found that human colonic epithelial HT-29 cells express CRHR2alpha mRNA, whereas expression of beta and gamma spliced variants was minimal. Moreover, treatment of HT-29 cells with UcnII, which binds exclusively to CRHR2, stimulated expression of IL-8 and monocyte chemoattractant protein 1. Taken together, these results provide direct evidence that CRHR2 mediates intestinal inflammatory responses via release of proinflammatory mediators at the colonocyte level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号