首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the exception of 3beta-hydroxy-steroid dehydrogenase all the hydroxysteroid dehydrogenases of adult male and female rat kidney show significant sex differences in their activities. Interference with the organisms endocrine balance (gonadectomy on day 25 of life, hypophysectomy on day 50, a combination of both these operations, administration of testosterone or oestradiol) demonstrates that the sexually differentiated enzyme activities may be classified as androgen or oestrogen dependent, the respective sex hormone acting either in an inductive or repressive manner. The criteria for androgen dependency (microsomal 3alpha- and 20beta-, cytoplasmic 17beta- and 20alpha- hydroxysteroid dehydrogenase) are the feminization of the enzyme activity in male animals after castration and the masculinization of the activity in male and female castrates as well as in normal female animals after administration of testosterone. This latter effect on normal females cannot be a testosterone mediated inhibition of ovarian function since ovariectomy has no effect. For 3alpha-, 20alpha-, and 20beta-hydroxysteroid dehydrogenase the effects of hypophysectomy parallel those of gonadectomy. However, after hypophysectomy the activity of 17beta-hydroxysteroid dehydrogenase falls significantly below the gonadectomized level. The androgen effect on 3alpha and 20beta-hydroxysteroid dehydrogenase is independent of the hypophysis, whereas that of 17beta- and 20alpha-hydroxysteroid dehydrogenase is mediated by the hypophysis.  相似文献   

2.
Five sexually differentiated enzyme activities of hepatic steroid metabolism (cytoplasmic 17 beta-hydroxysteroid dehydrogenase, 5 beta-reductase; microsomal 3 alpha- and 3 beta-hydroxysteroid dehydrogenase and 5 alpha-reductase) were investigated in intact, gonadectomized and hypophysectomized rats after administration of a single dose of oestradiol valerate. Oestradiol administration caused a partial or complete feminization of these activities in intact male rats. The influence of oestradiol on these activities in gonadectomized rats was determined by the mode of sex hormone-dependent regulation of the individual activity: the most prominent effects were seen in the oestrogen-dependent activities (17 beta-hydroxysteroid dehydrogenase, 5 beta-reductase); no effect was seen in the completely androgen-dependent 3 alpha-hydroxysteroid dehydrogenase because gonadectomy alone was sufficient to cause complete feminization of the activity. Oestradiol administration had no effect on the activities of hypophysectomized rats. The fact that oestrogen administration to intact male rats caused greater changes than prepuberal gonadectomy demonstrates that oestrogen action is more than simple suppression of testicular function.  相似文献   

3.
This investigation was undertaken to elucidate the amount of oestradiol and duration of its administration necessary to cause complete feminization of the activities of cytoplasmic 3 alpha- and 17 beta-hydroxysteroid dehydrogenase, microsomal 3 alpha- and 3 beta-hydroxysteroid dehydrogenase and microsomal 5 alpha-reductase in male rat liver. With the exception of cytoplasmic 3 alpha-hydroxysteroid dehydrogenase, 5 microgram oestradiol/d for 8 days and less was sufficient to cause complete feminization. The order of oestrogen sensitivity was cytoplasmic 3 alpha-hydroxysteroid dehydrogenase greater than microsomal 3 beta-hydroxysteroid dehydrogenase greater than microsomal 3 alpha-hydroxysteroid dehydrogenase greater than microsomal 5 alpha-reductase greater than cytoplasmic 17 beta-hydroxysteroid dehydrogenase. Although the changes occurring after oestradiol administration are qualitatively the same as after testectomy, they occur more rapidly. This rules out the possibility that oestradiol exerts its effect via androgen deprivation. Diethylstilboestrol administration causes the same changes in cytoplasmic 17 beta- and microsomal 3 beta-hydroxysteroid dehydrogenase activity as oestradiol, although the dosage must be increased 100 fold. The effect of diethylstilboestrol on 5 alpha-reductase activity changes with the dose applied. Doses up to 100 microgram/d partially feminize the activity, but at higher doses the enzyme activity is repressed.  相似文献   

4.
The activities of cytoplasmic 3 alpha- and 17 beta-hydroxysteroid dehydrogenase, microsomal 3 alpha- and 3 beta-hydroxysteroid dehydrogenase and microsomal 5 alpha-reductase of rat liver were determined at different time points after gonadectomy on day 75 of life. Following testectomy the activities in male rats assume female values. However this change is relatively slow, 10--14 days being necessary for significant trends in individual activities to develop, and 40--60 days before the final level of activity is reached. The changes in enzyme activities after ovariectomy are only slight. The change in microsomal 5 alpha-reductase activity following gonadectomy of male rats is biphasic, the activity increasing initially to the normal female level before falling to the intermediate "neonatally androgen-imprinted" level. The reaction of 17 beta-hydroxysteroid dehydrogenase activity to testectomy and ovariectomy indicates that in the course of several years, during which we have investigated the behaviour of this enzyme in Chbb/THOM rats, the regulation of its activity has changed from one of oestrogen dependency to one of androgen dependency.  相似文献   

5.
Neonatal gonadectomy studies and hormonal replacement regimens were employed to characterize the regulation of delta 4-steroid 5 alpha-reductase, microsomal flavin-containing monooxygenase, and several forms of rat hepatic microsomal cytochrome P-450, including three that are sexually differentiated. Rats of both sexes that had been gonadectomized at birth were either untreated or were administered testosterone propionate or estradiol benzoate neonatally (subcutaneous injection on days 1 and 3 of life), postpubertally (an implant of a hormone-packed capsule at 5 weeks of age), or both neonatally and postpubertally. At the age of 10 weeks, all rats were killed, and several liver microsomal enzymes were assayed using immunochemical and catalytic techniques. Expression in the 10-week-old male and female rats of two male-specific cytochrome P-450 forms, termed P-4502c/UT-A and P-4502a/PCN-E, and their associated respective 16 alpha- and 6 beta-steroid hydroxylase activities could either be imprinted (programmed) by androgen exposure during the early neonatal period or, alternatively, could be stimulated by continuous hormone treatment after the age of 5 weeks. By contrast, hepatic expression of two female-specific enzymes, P-4502d/UT-1 and delta 4-steroid 5 alpha-reductase, was only partially dependent on estradiol; birth-gonadectomized rats expressed as much as 30-50% of the enzyme levels present in untreated adult females. Expression of both female-specific enzymes was fully suppressed upon postpubertal exposure to testosterone. In another study, birth sham-operated female rats were administered testosterone using the same regimens described above for the birth-gonadectomized rats. Although neonatal testosterone treatment alone did not affect the expression in these females of the four sex-specific enzymes examined in this study, it did enhance significantly the masculinization effected by postpubertal androgen exposure. This resulted in expression of the male-specific enzymes P-4502c/UT-A and P-4502a/PCN-E in these females at levels comparable to those found in adult males, while simultaneously suppressing the two female-specific enzymes, P-4502d/UT-I and delta 4-steroid 5 alpha-reductase, by approximately 70-75% to levels characteristic of prepubertal rats of either sex. The levels of another microsomal enzyme, flavin-containing monooxygenase, were also measured and found to be regulated by testosterone, but the ontogenic profiles and the effects of gonadectomy and hormone replacement indicated clear differences in its regulation when compared to the other male-specific enzymes.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
V Graef  S W Golf  C Tyrell  M Fehler 《Steroids》1987,49(6):553-560
Flutamide (0.5 mM) decreased in vitro the activity of NADH-5 alpha-reductase (substrate testosterone) in liver homogenate of male and female rats, whereas no change of activity of NADPH-5 alpha-reductase was observed. NADH- and NADPH-5 beta-reductase activity increased only in liver of female, but not of male rats. NAD+-3 beta-hydroxysteroid dehydrogenase and NAD+-3 alpha-hydroxysteroid dehydrogenase (substrate 5 alpha-dihydro-testosterone) in liver homogenate from female rats were inhibited by flutamide (0.5 mM), whereas the activity of NADP+-3 alpha-hydroxysteroid dehydrogenase (substrate 5 alpha-dihydrotestosterone) and of NAD+-3 alpha-hydroxysteroid dehydrogenase (substrate 5 beta-dihydrotestosterone) increased in presence of flutamide. The activity of NADH- and NADPH-5 alpha-reductase decreased after flutamide administration to female rats at a dose of 5 mg per day for 7 days.  相似文献   

7.
V Graef  S W Golf  H Jung 《Steroids》1984,44(3):267-273
Female rats, treated with allylisopropylacetamide (AIA) showed a marked decrease of hepatic NADH-5 alpha-reductase, NADPH-5 alpha-reductase, NAD+- and NADP+-3 alpha-hydroxysteroid dehydrogenase activities and an increase of the activity of NADH- and NADPH-5 beta-reductase and NAD+ and NADP+-3 beta-hydroxysteroid dehydrogenase. Administration of Sedormid decreased the activities of 5 alpha-reductases and 3 alpha-hydroxysteroid dehydrogenases (substrate, 5 alpha-dihydrotestosterone) and increased the activity of NADH-5 beta-reductase, whereas no effect was seen on NADPH-5 beta-reductase and 3 beta-hydroxysteroid dehydrogenase.  相似文献   

8.
The soluble NADP-dependent 17 beta-hydroxysteroid dehydrogenase activity of female rabbit liver increases with the age of the animal, the specific activity of the enzyme in the 56-day-old rabbit being 3 times that of the 28-day-old animal. The increase in activity is accompanied by a change in the molecular heterogeneity of the enzyme. Three forms (enzymes I, II and III) were identified in the liver cytosol of the 56-day-old female rabbit, whereas only one major form (enzyme IIIY) was present in the 28-day-old animal. Peptide maps of the four purified enzymes showed that there were minor differences in structure. The enzyme present in the liver of the 28-day-old rabbit was distinct from the three enzymes of the 56-day-old animal. All of the enzymes exhibited bifunctional activity, having 17 beta-hydroxysteroid dehydrogenase activity towards androgen and oestrogen substrates and 3 alpha-hydroxysteroid dehydrogenase activity towards androgens of the 5 beta-androstane series. The differences in substrate specificity of the enzymes paralleled their differences in structure. The data suggest that one enzyme (enzyme III) may have a special role in steroid metabolism during development in the female rabbit.  相似文献   

9.
In gonadectomized rats of either sex s.c. administration of 5 alpha-dihydrotestosterone (DHT) reversed, in a dose dependent manner, effects brought about by gonadectomy: it decreased pituitary wet weight and serum levels of LH and FSH and suppressed microsomal enzyme activities involved in testosterone and progesterone metabolism in the pituitary gland, NADPH-linked 5 alpha-reductase and NADH-linked 3 alpha-hydroxysteroid dehydrogenase (3 alpha-HSDH). Concomitantly administered nonsteroidal antiandrogen, flutamide (5 mg/day), antagonized some of the suppressive effects induced by a 14-day treatment of gonadectomized rats with high dose (1 mg/day) of DHT. It completely blocked DHT action on pituitary 5 alpha-reductase activity in the female rat and, in the male, inhibition was found to be 30-35%. In male, but not female rats, it completely blocked DHT suppression of serum FSH level whereas it slightly, but significantly inhibited DHT suppression of serum LH in rats of either sex. However, flutamide did not prevent DHT suppression of pituitary wet weight or NADH-linked 3 alpha-HSDH activity. Concomitantly administered progestational antiandrogen, cyproterone acetate (5 mg/day), inhibited DHT-induced weight increase of seminal vesicles by 50-55% and completely blocked the weight decrease of pituitary gland but did not antagonize DHT suppression of serum gonadotropins or pituitary enzyme activities. The results obtained with flutamide suggest that DHT-induced suppression of pituitary NADPH-linked 5 alpha-reductase, but not NADH-linked 3 alpha-HSDH activity, might involve an androgen receptor mechanism.  相似文献   

10.
Testicular synthesis of (14C)cholesterol and (14C)testosterone from (14C)acetate were investigated in mice treated with 5-thio-D-glucose at a dose of 33 mg/kg body weight/day for 21 days. The testicular synthesis of free cholesterol as well as steroids were significantly decreased. The steroid synthesizing enzymes, cholesterol esterase, cholesterol side-chain cleaving enzyme, total alpha-hydroxysteroid dehydrogenase and total beta-hydroxysteroid dehydrogenase, were also analysed. Cholesterol esterase and total beta-hydroxysteroid dehydrogenase were significantly reduced whereas total alpha-hydroxysteroid dehydrogenase was unaffected. Hence, a decrease in free cholesterol for steroid synthesis and a decreased activity of the steroidogenic enzyme, beta-hydroxysteroid dehydrogenase, were responsible for the diminished synthesis of testosterone.  相似文献   

11.
The effect of sex hormones on hydroxylation of cholecalciferol ('vitamin D3') and of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol has been investigated in female- and male-rat livers. The mitochondrial cholecalciferol 25-hydroxylase and C27-steroid 27-hydroxylase activities were respectively 4.6- and 2.7-fold higher in female- than in male-rat livers. The microsomal 1 alpha-hydroxycholecalciferol 25-hydroxylase was 2.8-fold higher in male- than in female-rat liver. No significant difference was found in the microsomal 25-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol. Liver microsomes (microsomal fractions) from male, but not from female, rats also catalysed 1-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha, 12 alpha-triol. Injection of testosterone into female rats decreased the mitochondrial cholecalciferol 25-hydroxylase and C27-steroid 27-hydroxylase activities, but not to a statistically significant extent. Testosterone treatment had no effect on the microsomal hydroxylases in female-rat liver. Injection of oestradiol valerate to male rats resulted in increased activities of both mitochondrial hydroxylases to the same levels as those of control females, while the microsomal enzyme activities decreased. The present results indicate that sex hormones exert a regulatory control on the mitochondrial cholecalciferol 25-hydroxylase and C27-steroid 27-hydroxylase activities.  相似文献   

12.
Alveolar macrophages obtained by bronchoalveolar lavage of lungs of male and female guinea pigs were incubated with tritium-labelled androstenedione to evaluate the steroid metabolizing enzymes in these cells. The radiolabeled metabolites were isolated and thereafter characterized as testosterone, 5 alpha-androstanedione, 5 alpha-dihydrotestosterone, androsterone, isoandrosterone, 5 alpha-androstane-3 alpha, 17 beta-diol and 5 alpha-androstane-3 beta, 17 beta-diol. Thus, the following androstenedione metabolizing enzymes are present in guinea-pig alveolar macrophages: 17 beta-hydroxysteroid dehydrogenase, 5 alpha-reductase, 3 beta-hydroxysteroid dehydrogenase and 3 alpha-hydroxysteroid dehydrogenase. The predominant androstenedione metabolizing enzyme activity present in alveolar macrophages was 17 beta-hydroxysteroid dehydrogenase. The rate of testosterone formation increased with incubation time up to 4 h, and with macrophage number up to 1.6 X 10(7) cells per ml. Androstenedione metabolism was similar in alveolar macrophages obtained both from male and female guinea pigs. These results suggest that alveolar macrophages may be a site of peripheral transformation of blood-borne androstenedione to biologically potent androgens in vivo and, therefore, these cells may contribute to the plasma levels of testosterone in the guinea pig.  相似文献   

13.
Cytochrome b5 was purified from porcine testicular microsomes, and its amino acid composition was determined. Rabbit antibody against the purified cytochrome b5 was prepared in order to study the contribution of cytochrome b5 to testicular microsomal oxygenases related to androgen production. In the presence of NADPH alone as the electron donor, the antibody against cytochrome b5 inhibited the activities of steroid 17 alpha-hydroxylase and C-17-C-20 lyase of rat testicular microsomal fraction. Addition of NADH to the NADPH-supported oxygenase assay system enhanced both steroid oxygenase activities, and addition of the antibody against cytochrome b5 decreased the NADH-caused stimulation of steroid 17 alpha-hydroxylase and C-17-C-20 lyase activities. When dehydroepiandrosterone and NAD+ were added as substrates for 3 beta-hydroxy-delta 5-steroid dehydrogenase in order to synthesize NADH by enzymatic reaction, the NADPH-supported activities of steroid 17 alpha-hydroxylase and C-17-C-20 lyase were further stimulated as compared with the addition of NADH, and this stimulation was suppressed by the antibody against cytochrome b5. These results suggest that cytochrome b5, together with 3 beta-hydroxy-delta 5-steroid dehydrogenase, contributes to the activities of steroid 17 alpha-hydroxylase and C-17-C-20 lyase in the testicular microsomal fraction.  相似文献   

14.
Qujeq D 《Steroids》2002,67(13-14):1071-1077
We investigated the first step of the sex steroid hormone biosynthesis pathway by assaying the activities of 3 beta-hydroxy-delta 5-steroid dehydrogenase, the rate-limiting enzyme in this pathway. We have developed a simple and rapid colorimetric assay for 3 beta-hydroxy-delta 5-steroid dehydrogenase in rat testis. The supernatant from rat testis tissue homogenates were used for the enzyme assay. The enzyme activity was determined by measuring the absorbance at 570nm which indicates the rate of conversion of pregnenolone into progesterone in the presence of NAD, using phenazine methosulfate and nitro blue tetrazolium as the color reagent. The activity of this enzyme ranged from 4.57+/-1.34 to 10.56+/-2.13 nmol/mg protein/min with a mean activity of 8.96+/-1.27 nmol/mg protein/min. The K(m) of the enzyme at an optimum pH of 7.25 was about 4.7+/-0.12 nM.  相似文献   

15.
The subcellular distribution of 5 alpha-reductase, 17 beta-hydroxy steroid dehydrogenase, 3 alpha- and 3 beta-hydroxysteroid dehydrogenase activities was studied in human hyperplastic prostate. 5 alpha-reductase and 17 beta-hydroxysteroid dehydrogenase activities are located in the nuclear envelope. 3 alpha-hydroxysteroid dehydrogenase activity was almost equally distributed between cytosol and membranes, 3 beta-hydroxysteroid dehydrogenase activity was linked to all membranes. Direct testosterone metabolism (transformation into its active metabolite 5 alpha-DHT and into androstenedione, an inactive androgen) takes place only in the nucleus whereas indirect metabolism takes place mainly in the cytoplasm. These findings add new evidence for the mechanism of action of testosterone in prostatic tissue. Testosterone diffuses into the cell, migrates toward the nucleus and is transformed at the nuclear envelope level into two metabolites, DHT and androstenedione. After transformation into its active form, the hormone enters the nucleus whereas the inactive form is released into the cytoplasm. This metabolism could be seen as a control of the amount of active hormone entering the nucleus and being able to bind the androgen receptor.  相似文献   

16.
Seven multiforms of indanol dehydrogenase were isolated in a highly purified state from male rabbit liver cytosol. The enzymes were monomeric proteins with similar molecular weights of 30,000-37,000 but with distinct electrophoretic mobilities. All the enzymes oxidized alicyclic alcohols including benzene dihydrodiol and hydroxysteroids at different optimal pH, but showed clear differences in cofactor specificity, steroid specificity, and reversibility of the reaction. Two NADP+-dependent enzymes exhibited both 17 beta-hydroxysteroid dehydrogenase activity for 5 alpha-androstanes and 3 alpha-hydroxysteroid dehydrogenase activity for 5 beta-androstan-3 alpha-ol-17-one. Three of the other enzymes with dual cofactor specificity catalyzed predominantly 5 beta-androstane-3 alpha,17 beta-diol dehydrogenation. The reverse reaction rates of these five enzymes were low, whereas the other two enzymes, which had 3 alpha-hydroxysteroid dehydrogenase activity for 5 alpha-androstanes or 3(17)beta-hydroxysteroid dehydrogenase activity for 5 alpha-androstanes, highly reduced 3-ketosteroids and nonsteroidal aromatic carbonyl compounds with NADPH as a cofactor. All the enzymes exhibited Km values lower for the hydroxysteroids than for the alicyclic alcohols. The results of kinetic analyses with a mixture of 1-indanol and hydroxysteroids, pH and heat stability, and inhibitor sensitivity suggested strongly that, in the seven enzymes, both alicyclic alcohol dehydrogenase and hydroxysteroid dehydrogenase activities reside on a single enzyme protein. On the basis of these data, we suggest that indanol dehydrogenase exists in multiple forms in rabbit liver cytosol and may function in in vivo androgen metabolism.  相似文献   

17.
Ruminococcus sp. PO1-3 obtained from human intestinal flora is able to reduce dehydrocholate as well as 3-ketoglycyrrhetinate. From this bacterium dehydrocholate- and 3-ketoglycyrrhetinate-reducing activities were purified one thousand-fold together with 3-ketocholanate-reducing and 3-beta-hydroxyglycyrrhetinate (glycyrrhetic acid) oxidizing activities by means of Matrex Red A, Sephadex G-200 and Octyl-Sepharose column chromatography. The purified enzyme catalyzed the reduction of dehydrocholic acid to 3 beta-hydroxy-7,12-diketocholanic acid and of 3-ketocholanic acid to 3 beta-hydroxycholanic acid. Studies on substrate specificity revealed that the enzyme had absolute specificity for the beta-configuration of a hydroxyl group at the 3 position of bile acid and steroids having no double bond in the A/B ring. This enzyme was neither beta-hydroxysteroid dehydrogenase [EC 1.1.1.51] nor 3 beta-hydroxy-delta 5-steroid dehydrogenase [EC 1.1.1.145], but a novel type of enzyme, defined as 3 beta-hydroxysteroid dehydrogenase.  相似文献   

18.
Three enzymatic activities (3 alpha/beta-hydroxysteroid dehydrogenase, 20 beta- and 20 alpha-hydroxysteroid dehydrogenases) were measured in testes of pigs as a function of age. Earlier studies reported a highly purified 20 beta-hydroxysteroid dehydrogenase from neonatal pig testes that also showed strong 3 alpha/beta-hydroxysteroid dehydrogenase activity [Ohno et al., J. Steroid Biochem. Molec. Biol. 38 (1991) 787-794]. We report here that neonatal pigs testis is rich in 3 alpha/beta- and 20 beta-hydroxysteroid dehydrogenase activities, both of which fall to low levels (measured as specific activity) at 60 days. Thereafter the activity of 3 alpha/beta-reduction rises to high levels whereas 20 beta-reduction remains low. Activity of 20 alpha-reduction is of intermediate level in the neonate, falls to a nadir at 60 days and rises to high levels in the mature animal. Western blots of cytosolic proteins show that the bifunctional enzyme (3 alpha/beta-plus 20 beta-hydroxysteroid dehydrogenase) is high in neonatal testes and falls to low levels at maturity. It is proposed that the neonatal testis possesses the bifunctional enzyme which is replaced by a second enzyme at maturity, that is a 3 alpha/beta-hydroxysteroid dehydrogenase without 20 beta-reductase activity. The possible functional significance of these changes is considered.  相似文献   

19.
delta 5-3 beta-Hydroxysteroid dehydrogenase is a key enzyme for testicular androgen biosynthesis and a marker for the Leydig cells. The hormonal regulation of this enzyme was studied in cultured rat testicular cells. Human chorionic gonadotropin (hCG) increased testosterone production in vitro while time course studies indicated a biphasic action of the gonadotropin on 3 beta-hydroxysteroid dehydrogenase activity. An initial stimulation (51%) of the enzyme was detected between 3 and 12 h of culture when medium testosterone was low. This is followed by an inhibition of 3 beta-hydroxysteroid dehydrogenase activity on days 2 and 3 of culture when medium testosterone was elevated. Concomitant treatment with a synthetic androgen (R1881) inhibited 3 beta-hydroxysteroid dehydrogenase activity and testosterone production in hCG-treated cultures while an anti-androgen (cyproterone acetate) increased 3 beta-hydroxysteroid dehydrogenase activity and testosterone biosynthesis. Addition of 10(-5) M spironolactone, an inhibitor of 17 alpha-hydroxylase, blocked the hCG stimulation of testosterone production but increased medium progesterone. In the absence of the secreted androgen, hCG stimulated 3 beta-hydroxysteroid dehydrogenase activity in a time- and dose-related manner. Furthermore, hCG stimulation of 3 beta-hydroxysteroid dehydrogenase activity and progesterone accumulation in spironolactone-supplemented cultures was decreased by concomitant treatment with R1881 but was not affected by cyproterone acetate. The inhibitory effect of R1881 was blocked by the anti-androgen. In the absence of hCG, treatment with testosterone, dihydrotestosterone, or R1881, but not promegestone, alone also inhibited 3 beta-hydroxysteroid dehydrogenase activity while the inhibitory effect of testosterone was blocked by cyproterone acetate. Thus, hCG stimulates 3 beta-hydroxysteroid dehydrogenase activity in cultured testicular cells. The androgenic steroidogenic end products, in turn, inhibit this enzyme. The hormonal regulation of 3 beta-hydroxysteroid dehydrogenase activity may be important in the ultrashort loop autoregulation of androgen biosynthesis.  相似文献   

20.
B Bilińska 《Cytobios》1985,44(175):29-39
Leydig cells from roe-deer collected according to Steinberger's (1975) technique were cultured as monolayers in Leighton tubes for 10 days. Cultures were grown in medium 199 supplemented with 10% calf serum. Androgen and oestrogen secretion by Leydig cells into the culture medium was measured using appropriate radio-immunoassays. Using histochemical tests the activity of the following oxydoreductive enzymes in cultured Leydig cells was shown: delta 5, 3 beta-hydroxysteroid dehydrogenase (delta 5, 3 beta-HSD), 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD), succinate and lactate dehydrogenases (SDH and LDH). Strong activity of the enzymes investigated during the first 4 days of culture was observed. The androgen level was high throughout the second and fourth day of culture. A decrease in hormone secretion after day 4 occurred, and this was closely correlated with enzyme activity. The oestrogen level was very low during culture. The direct effect of the luteinizing hormone (LH) added into the culture medium caused an increase in not only enzyme activity but also androgen and oestrogen levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号