首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
LH regulates luteal progesterone secretion during the estrous cycle in ewes and cows. However, PGE, not LH, stimulated ovine luteal progesterone secretion in vitro at day 90 of pregnancy and at day 200 in cows. The hypophysis is not obligatory after day 50 nor the ovaries after day 55 to maintain pregnancy in ewes. LH has been reported to regulate ovine placental PGE secretion up to day 50 of pregnancy and by pregnancy-specific protein B (PSPB) after day 50 of pregnancy. The objective of this experiment was to determine if and when a switch from LH to PGE occurred as the luteotropin regulating luteal progesterone secretion during pregnancy in ewes. Ovine luteal tissue slices of the estrous cycle (days 8, 11, 13, and 15) or pregnancy (days 8, 11, 13, 15, 20, 30, 40, 50, 60, and 90) were incubated in vitro with vehicle, LH, AA (precursor to PGE(2) and PGF(2alpha) synthesis), or PSPB in M199 for 4 h and 8 h. Concentrations of progesterone in jugular venous plasma of bred ewes increased (P< or =0.05) after day 50 and continued to increase through day 90. Secretion of progesterone by luteal tissue of non-bred ewes on days 8, 11, 13 and 15 and by bred ewes on days 8, 11, 13, 15, 20, 30, 40, and 50 was increased (P< or =0.05) by LH, but not by luteal tissue from pregnant ewes after day 50 (P> or =0.05). LH-stimulated progesterone secretion by luteal tissue from day 15 bred ewes was greater (P< or =0.05) than day 15 luteal tissue from non-bred ewes. Concentrations of progesterone in media were increased (P< or =0.05) when luteal tissue from pregnant ewes on day 50, 60, or 90 were incubated with AA or PSPB. Concentrations of PGE in media of non-bred ewes on days 8, 11, 13, or 15 and bred ewes on days 8 and 11 did not differ (P> or =0.05). Concentrations of PGE were increased (P< or =0.05) in media by luteal slices from bred ewes on days 13, 15, 20, 30, 40, 50, 60, and 90 of vehicle, LH, AA or PSPB-treated ewes. In addition, PSPB increased (P< or =0.05) PGE in media by luteal slices from pregnant ewes only on days 40, 50, 60, and 90. Concentrations of PGF(2alpha) were increased in media (P<0.05) of vehicle, AA, LH, or PSPB-treated luteal tissue from non-bred ewes and bred ewes on day 15 and by luteal tissue from bred ewes on days 20 and 30 after which concentrations of PGF(2alpha) in media declined (P< or =0.05) and did not differ (P> or =0.05) from non-bred or bred ewes on days 8, 11, or 13. It is concluded that LH regulates luteal progesterone secretion during the estrous cycle of non-bred ewes and up to day 50 of pregnancy, while only PGE regulates luteal progresterone secretion by ovine corpora lutea from days 50 to 90 of pregnancy. In addition, PSPB appears to regulate luteal secretion of progesterone from days 50 to 90 of pregnancy through stimulation of PGE secretion by ovine luteal tissue.  相似文献   

2.
Thirty to forty percent of ruminant pregnancies are lost during the first third of gestation due to inadequate progesterone secretion. During the estrous cycle, luteinizing hormone (LH) regulates progesterone secretion by small luteal cells (SLC). Loss of luteal progesterone secretion during the estrous cycle is increased via uterine secretion of prostaglandin F(2α) (PGF(2α)) starting on days 12-13 post-estrus in ewes with up to 4-6 pulses per day. Prostaglandin F(2α) is synthesized from arachidonic acid, which is released from phospholipids by phospholipase A2. Endocannabinoids are also derived from phospholipids and are associated with infertility. Endocannabinoid-induced infertility has been postulated to occur primarily via negative effects on implantation. Cannabinoid (CB) type 1 (CB1) or type 2 (CB2) receptor agonists and an inhibitor of the enzyme fatty acid amide hydrolase, which catabolizes endocannabinoids, decreased luteal progesterone, prostaglandin E (PGE), and prostaglandin F(2α) (PGF(2α)) secretion by the bovine corpus luteum in vitro by 30 percent. The objective of the experiment described herein was to determine whether CB1 or CB2 receptor agonists given in vivo affect circulating progesterone, luteal weights, luteal mRNA for LH receptors, and luteal occupied and unoccupied LH receptors during the estrous cycle of ewes. Treatments were: Vehicle, Methanandamide (CB1 agonist; METH), or 1-(4-chlorobenzoyl)-5-methoxy-1H-indole-3-acetic acid morpholineamide (CB2 agonist; IMMA). Ewes received randomized treatments on day 10 post-estrus. A single treatment (500 μg; N=5/treatment group) in a volume of 1 ml was given into the interstitial tissue of the ovarian vascular pedicle adjacent to the luteal-containing ovary. Jugular venous blood was collected at 0 h and every 6-48 h for the analysis of progesterone by radioimmunoassay (RIA). Corpora lutea were collected at 48 h, weighed, bisected, and frozen in liquid nitrogen until analysis of unoccupied and occupied LH receptors and mRNA for LH receptors. Profiles of jugular venous progesterone, luteal weights, luteal mRNA for LH receptors, and luteal occupied and unoccupied LH receptors were decreased (P≤0.05) by CB1 or CB2 receptor agonists when compared to Vehicle controls. Progesterone in 80 percent of CB1 or CB2 receptor agonist-treated ewes was decreased (P≤0.05) below 1 ng/ml by 48 h post-treatment. It is concluded that the stimulation of either CB1 or CB2 receptors in vivo affected negatively luteal progesterone secretion by decreasing luteal mRNA for LH receptors and also decreasing occupied and unoccupied receptors for LH on luteal membranes. The corpus luteum may be an important site for endocannabinoids to decrease fertility as well as negatively affect implantation, since progesterone is required for implantation.  相似文献   

3.
Application of the ram effect during the breeding season has been previously disregarded because the ewe reproductive axis is powerfully inhibited by luteal phase progesterone concentrations. However, anovulatory ewes treated with exogenous progestagens respond to ram introduction with an increase in LH concentrations. We therefore tested whether cyclic ewes would respond to ram introduction with an increase in pulsatile LH secretion at all stages of the estrous cycle. We did two experiments using genotypes native to temperate or Mediterranean regions. In Experiment 1 (UK), 12 randomly cycling, North of England Mule ewes were introduced to rams midway through a frequent blood-sampling regime. Ewes in the early (EL; n=3) [corrected] and late luteal (LL; n=6) phase responded to ram introduction with an increase in LH pulse frequency and mean and basal concentration [corrected] of LH (at least P<0.05). In Experiment 2 (Australia), the cycles of 32 Merino ewes were synchronised using intravaginal progestagen pessaries. Pessary insertion was staggered to produce eight ewes at each stage of the estrous cycle: follicular (F), early luteal (EL), mid-luteal (ML) and late luteal (LL). In all stages of the cycle, ewes responded to ram introduction with an increase in LH pulse frequency (P<0.01); EL, ML and LL ewes also had an increase in mean LH concentration (P<0.05). In conclusion, ram introduction to cyclic ewes stimulated an increase in pulsatile LH secretion, independent of ewe genotype or stage of the estrous cycle.  相似文献   

4.
Pulsatile secretion of progesterone has been observed during the late luteal phase of the menstrual cycle in the rhesus monkey and human. As the luteal phase progresses in each of these species, there is a pattern of decreased frequency and increased amplitude of progesterone pulses. The present study was designed to determine the pattern of progesterone secretion during the late luteal phase (Days 10-16) of the normal ovine estrous cycle. Five unanesthetized ewes, each bearing an indwelling cannula in the utero-ovarian vein, were bled every 15 min from 0800 h on Day 10 through 0800 h on Day 16 of the estrous cycle. With the computer program PULSAR, it was determined that progesterone secretion was episodic, with pulsations observed on all days. Analysis of variance was used to determine differences in frequency, amplitude, and interpeak interval (IPI) of progesterone pulses among ewes and days. The ewes averaged 8.0 +/- 0.63 pulses of progesterone per 24 h. Mean frequency of pulses was not different between days but showed differences between ewes. Mean amplitude of progesterone pulses was 7.0 +/- 0.27 ng/ml, with no differences observed either between days or between ewes. Mean IPI was 197 +/- 7.1 min, and, like frequency, the IPI was not different between days, but varied between ewes. No consistent temporal relationship was found between progesterone pulses and luteinizing hormone (LH), as determined by bioassay and radioimmunoassay, on Day 14 of the cycle in one ewe. The results indicate that progesterone secretion is episodic during the luteal phase of the ovine estrous cycle and is independent of LH pulses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Two experiments were conducted to examine the effect of treatment with human chorionic gonadotropin (hCG) or ovine luteinizing hormone (LH) on the number and size distribution of steroidogenic luteal cells. In Experiment I, 27 ewes were assigned to one of three groups: 1) hCG (300 IU, i.v.) administered on Days 5 and 7.5 of the estrous cycle (Day 0 = Estrus); 2) LH (120 micrograms, i.v.) administered at 6-h intervals from Days 5 to 10 of the cycle; 3) saline (i.v.) administered as in the LH treatment group. Blood samples were drawn daily from the jugular vein for quantification of progesterone. On Day 10, corpora lutea were collected, decapsulated, weighed, and dissociated into single cell suspensions. Cells were fixed, stained for 3 beta-hydroxysteroid dehydrogenase (3 beta HSD) activity, and the size distribution of 3 beta HSD-positive cells was determined. Treatment with hCG, but not LH, increased (p less than 0.05) concentrations of progesterone in serum and the weight of corpora lutea. Treatment with either hCG of LH increased the proportion of cells greater than 22 micron in diameter and decreased the proportion of cells less than or equal to 22 micron (p less than 0.01). The ratio of small to large luteal cells decreased after treatment with either hCG or LH (p less than 0.05). In Experiment II, 9 ewes were assigned to one of two groups: 1) LH (120 micrograms, i.v.) administered at 6-h intervals from Days 5 to 10 of the estrous cycle, and 2) saline (i.v.) administered as in the LH treatment group.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Two experiments were conducted to determine the luteotropin of pregnancy in sheep and to examine autocrine and paracrine roles of progesterone and estradiol-17 beta on progesterone secretion by the ovine corpus luteum (CL). Secretion of progesterone per unit mass by day-8 or day-11 CL of the estrous cycle was similar to day-90 CL of pregnancy (P > or = 0.05). In experiment 1, secretion of progesterone in vitro by slices of CL from ewes on day-8 of the estrous cycle was increased (P < or = 0.05) by LH or PGE2. Secretion of progesterone in vitro by CL slices from day-90 pregnant ewes was not affected by LH (P > or = 0.05) while PGE2 increased (P < or = 0.05) secretion of progesterone. Day 8 ovine CL of the estrous cycle did not secrete (P > or = 0.05) detectable quantities of PGF2alpha or PGE while day-90 ovine CL of pregnancy secreted PGE (P < or = 0.05) but not PGF2alpha. Secretion of progesterone and PGE in vitro by day-90 CL of pregnancy was decreased (P < or = 0.05) by indomethacin. The addition of PGE2, but not LH, in combination with indomethacin overcame the decreases in progesterone by indomethacin (P < or = 0.05). In experiment 2, secretion of progesterone in vitro by day-11 CL of the estrous cycle was increased at 4-h (P < or = 0.05) in the absence of treatments. Both day-11 CL of the estrous cycle and day-90 CL of pregnancy secreted detectable quantities of PGE and PGF2alpha (P < or = 0.05). In experiment 1, PGF2alpha secretion by day-8 CL of the estrous cycle and day-90 ovine CL of pregnancy was undetectable, but was detectable in experiment 2 by day-90 CL. Day 90 ovine CL of pregnancy also secreted more PGE than day-11 CL of the estrous cycle (P < or = 0.05), whereas day-8 CL of the estrous cycle did not secrete detectable quantities of PGE (P > or = 0.05). Trilostane, mifepristone, or MER-25 did not affect secretion of progesterone, PGE, or PGF2alpha by day- 11 CL of the estrous cycle or day-90 CL of pregnancy (P > or = 0.05). It is concluded that PGE2, not LH, is the luteotropin at day-90 of pregnancy in sheep and that progesterone does not modify the response to luteotropins. Thus, we found no evidence for an autocrine or paracrine role for progesterone or estradiol-17 36 on luteal secretion of progesterone, PGE or PGF2alpha.  相似文献   

7.
Nine mature cyclic ewes were actively immunized against progesterone which was rendered immunogenic by conjugation to bovine serum albumin (BSA). Seven control ewes were immunized with BSA. In ewes immunized against progesterone, the concentration of total plasma progesterone increased to 24.3 ng/ml vs 2.8 ng/ml in control animals (P<0.001). However, immunization did not affect the plasma levels of free, unbound progesterone. The correlation coefficient between total plasma progesterone concentrations on Days 4 to 11 of the estrous cycle and antibody titer was r=0.983. Estradiol-17beta concentrations in immunized ewes were higher than in controls on Days 6 to 15 of the estrous cycle (P approximately 0.05). Frequent sampling for LH over a 6-h period on Days 2, 5, 8, 11 and 14 of the cycle revealed no significant differences in the frequency and amplitude of LH pulses between immunized and control ewes. The immunized ewes had estrous cycles of normal length and maintained normal pregnancies. It is suggested that the immunized cyclic ewe is capable of maintaining adequate levels of free progesterone by greatly increasing progesterone synthesis, thus neutralizing the effect of the antibodies.  相似文献   

8.
Progesterone secretion has been observed to be episodic in the late luteal phase of the oestrous cycle of ewes and is apparently independent of luteinizing hormone (LH). This study investigated the effects of suppressing the pulsatile release of LH in the early or late luteal phase on the episodic secretion of progesterone. Six Scottish Blackface ewes were treated i.m. with 1 mg kg-1 body weight of a potent gonadotrophin-releasing hormone (GnRH) antagonist on either day 4 or day 11 of the luteal phase. Six ewes received saline at each time and acted as controls. Serial blood samples were collected at 10 or 15 min intervals between 0 and 8 h, 24 and 32 h, and 48 and 56 h after GnRH antagonist treatment and daily from oestrus (day 0) of the treatment cycle for 22 days. Oestrous behaviour was determined using a vasectomized ram present throughout the experiment. Progesterone secretion was episodic in both the early and late luteal phase with a frequency of between 1.6 and 3.2 pulses in 8 h. The GnRH antagonist abolished the pulsatile secretion and suppressed the basal concentrations of LH for at least 3 days after treatment. This suppression of LH, in either the early or late luteal phase, did not affect the episodic release of progesterone. Daily concentrations of progesterone in plasma showed a minimal reduction on days 11 to 14 after GnRH antagonist treatment on day 4, although this was significant (P < 0.05) only on days 11 and 13. There was no effect of treatment on day 11 on daily progesterone concentration, and the timing of luteolysis and the duration of corpus luteum function was unaffected by GnRH antagonist treatment on either day 4 or day 11. These results indicate that the episodic secretion of progesterone during the luteal phase of the oestrous cycle in ewes is independent of LH pulses and normal progesterone secretion by the corpus luteum can be maintained with minimal basal concentrations of LH.  相似文献   

9.
To examine the effect of purified LH on development and function of luteal cells, 27 ewes were assigned to: (1) hypophysectomy plus 2 micrograms ovine LH given i.v. at 4-h intervals from Days 5 to 12 of the oestrous cycle (oestrus = Day 0; Group H + LH; N = 7); (2) hypophysectomy with no LH replacement (Group N-LH; N = 6); (3) control (no hypophysectomy) plus LH replacement as in Group H + LH (Group S + LH; N = 7); (4) control with no LH treatment (Group S-LH; N = 7). Blood samples were collected at 4-h intervals throughout the experiment to monitor circulating concentrations of LH, cortisol and progesterone. On Day 12 of the oestrous cycle corpora lutea were collected and luteal progesterone concentrations, unoccupied receptors for LH and number and sizes of steroidogenic and non-steroidogenic luteal cell types were determined. Corpora lutea from ewes in Group H-LH were significantly smaller (P less than 0.05), had lower concentrations of progesterone, fewer LH receptors, fewer small luteal cells and fewer non-steroidogenic cells than did corpora lutea from ewes in Group S-LH. The number of large luteal cells was unaffected by hypophysectomy, but the sizes of large luteal cells, small luteal cells and fibroblasts were reduced. LH replacement in hypophysectomized ewes maintained luteal weight and the numbers of small steroidogenic and non-steroidogenic luteal cells at levels intermediate between those observed in ewes in Groups L-LH and S-LH. In Group H + LH ewes, luteal and serum concentrations of progesterone, numbers of luteal receptors for LH, and the sizes of all types of luteal cells were maintained. Numbers of small steroidogenic and non-steroidogenic cells were also increased by LH in hypophysectomized ewes. In Exp. II, 14 ewes were assigned to: (1) sham hypophysectomy with no LH replacement therapy (Group S-LH; N = 5); (2) sham hypophysectomy with 40 micrograms ovine LH given i.v. at 4-h intervals from Day 5 to Day 12 of the oestrous cycle (Group S + LH; N = 5); and (3) hypophysectomy plus LH replacement therapy (Group H + LH; N = 4). Experimental procedures were similar to those described for Exp. I. Treatment of hypophysectomized ewes with a larger dose of LH maintained luteal weight, serum and luteal progesterone concentrations and the numbers of steroidogenic and non-steroidogenic luteal cells at control levels.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
In ewes during the breeding season, estradiol (E) and progesterone (P) synergistically regulate pulsatile luteinizing hormone (LH) secretion. E primarily inhibits LH pulse amplitude and P inhibits LH pulse frequency. To determine if endogenous opioid peptides (EOP) mediate these negative feedback effects, we administered the long-acting opioid antagonist WIN 44,441-3 (WIN) to intact ewes during the luteal and follicular phases of the estrous cycle and to ovariectomized ewes treated with no steroids, E, P, or E plus P. Steroid levels were maintained at levels seen during the estrous cycle by Silastic implants placed shortly after surgery. WIN increased LH pulse frequency, but not amplitude, in luteal phase ewes. In contrast, during the follicular phase, LH pulse amplitude was increased by WIN and pulse frequency was unchanged. Neither LH pulse frequency nor pulse amplitude was affected by WIN in long-term ovariectomized ewes untreated with steroids. In contrast, WIN slightly increased LH pulse frequency in short-term ovariectomized ewes. WIN also increased LH pulse frequency in ovariectomized ewes treated with P or E plus P. WIN did not affect pulse frequency but did increase LH pulse amplitude in E-treated ewes. These results support the hypothesis that EOP participate in the negative feedback effects of E and P on pulsatile LH secretion during the breeding season and that the inhibitory effects of EOP may persist for some time after ovariectomy.  相似文献   

11.
The objective of this study was to determine whether prostaglandin E1 (PGE1) or prostaglandin E2 (PGE2) prevents premature luteolysis in ewes when progesterone is given during the first 6 days of the estrous cycle. Progesterone (3 mg in oil, im) given twice daily from Days 1 to 6 (estrus = Day 0) in ewes decreased (P < 0.05) luteal weights on Day 10 postestrus. Plasma progesterone concentrations differed (P < 0.05) among the treatment groups; toward the end of the experimental period, concentrations in jugular venous blood decreased (P < 0.05) compared with the other treatment groups. Plasma progesterone concentrations in ewes receiving PGE1 or PGE1 + progesterone were greater (P < 0.05) than in vehicle controls or in ewes receiving PGE2 or PGE2 or PGE2 + progesterone. Chronic intrauterine treatment with PGE1 or PGE2 prevented (P < 0.05) decreases in plasma progesterone concentrations, luteal weights, and the proportion of luteal unoccupied and occupied LH receptors on Day 10 postestrus in ewes given exogenous progesterone, but did not affect (P > 0.05) concentrations of PGF in inferior vena cava blood. Progesterone given on Days 1 to 6 in ewes advanced (P < 0.05) increases in PGF in inferior vena cava blood. We concluded that PGE1 or PGE2 prevented progesterone-induced premature luteolysis by suppressing loss of luteal LH receptors (both unoccupied and occupied).  相似文献   

12.
Luteal slices obtained from Day-10 cyclic, sexually mature, mixed-breed, superovulated goats were used to study the effects of prostaglandins E(2) and F(2)a (PGE(2) and PGF(2)a) on the release of progesterone. The goats were synchronized for estrus using a single intramuscular injection of 5 mg PGF(2)a given during the mid-luteal phase of the estrous cycle. Multiple follicular growth and superovulation were induced using a treatment regiment of follicle stimulating hormone (FSH) and luteinizing hormone releasing hormone (LHRH) previously standardized in our laboratory (1). The luteal slices were treated with PGE(2) or PGF(2)a at concentrations of 1 and 10 ng/ml each. Untreated luteal slices continued to release significant amounts of progesterone over the entire period of incubation (30 to 360 minutes). There was a progressive increase in progesterone accumulation following treatment with PGE(2) at both concentrations. The mean progesterone values were significantly higher in the PGE(2)-treated groups at all incubation periods than in the controls. Progesterone values at 10 ng/ml were higher (P<0.05) than at 1 ng/ml. Treatment with PGF(2)a decreased (P<0.05) progesterone release at 60 to 360 minutes of incubation compared with that of the corresponding controls for each incubation period. However, there appeared to be no differences (P>0.05) in mean progesterone values between the two concentrations of PGF(2)a. The results of this study showed that PGE(2) enhanced the release of progesterone by caprine luteal tissues, whereas PGF(2)a inhibited its release.  相似文献   

13.
Four mature, cyclic ewes were given injections (I.M.) of a conjugate of 1,3,5 (10)-estratrien-3-ol-6,17-dione, 6 carboxyoxime bovine serum albumin (immunized ewes) on day 3 after estrus, and at days 10, 20, 40, 58, 91 and 134 after this initial treatment. Six control ewes treated with carrier emulsion alone continued to cycle normally. Three of the immunized ewes failed to exhibit estrus, an associated preovulatory surge of LH and ovulation. One ewe showed 1 abnormally short estrous period and then became anestrus. Injection of an estrone-protein-conjugate at days 3 and 13 after estrus did not appear to interfere with the rate of structural luteolysis of the corpus luteum present, but plasma concentrations of progesterone reached abnormally high luteal phase levels and in 2 ewes failed, subsequently to decline to normal follicular phase levels. Estrone binding capacity rose as early as day 9 after first treatment, and concentrations of LH rose as early as day 14. Subsequently, plasma levels of LH, estrone and progesterone and antisera titer rose; the only significant cross reaction of the antisera was with estradiol 17beta (11.32 +/- 2.80%).  相似文献   

14.
Cellular interactions mediated by both contact-dependent and contact-independent mechanisms are probably important to maintain luteal function. The present studies were performed to evaluate the effects of luteotropic and luteolytic hormones, and also intracellular regulators, on contact-dependent gap junctional intercellular communication (GJIC) of bovine luteal cells from several stages of luteal development. Bovine corpora lutea (CL) from the early, mid and late luteal phases of the estrous cycle were dispersed with collagenase and incubated with no treatment, LH, PGF or LH + PGF (Experiment 1), or with no treatment, or agonists or antagonists of protein kinase C (TPA or H-7) or calcium (A23187 or EGTA; Experiment 2). After incubation, media were collected for determination of progesterone concentrations. Then the rate of GJIC was evaluated for small luteal cells in contact with small luteal cells, and large luteal cells in contact with small luteal cells by using the fluorescence recovery after photobleaching technique and laser cytometry. Luteal cells from each stage of the estrous cycle exhibited GJIC, but the rate of GJIC was least (P<0.05) for luteal cells from the late luteal phase. LH increased (P<0.05) GJIC between small luteal cells from the mid and late but not the early luteal phase. PGF increased (P<0.05) GjIC between small luteal cells from the mid luteal phase and diminished (P<0.05) LH-stimulatory effects on GjIC between small luteal cells from the late luteal phase. Throughout the estrous cycle, TPA decreased (P<0.05) the rate of GjIC between large and small, and between small luteal cells, and A23187 decreased (P<0.05) the rate of GJIC between large and small luteal cells. LH and LH + PGF, but not PGF alone increased (P<0.05) progesterone secretion by luteal cells from the mid and late luteal phases. Agonists or antagonists of PKC or calcium did not affect progesterone secretion by luteal cells. These data demonstrate that both luteal cell types communicate with small luteal cells, and the rate of communication depends on the stage of luteal development. LH and PGF affect GjIC between small luteal cells during the fully differentiated (mid-luteal) and regressing (late luteal) stages of the estrous cycle. In contrast, at all stages of luteal development, activation of PKC decreases GjIC between small and between large and small luteal cells, whereas calcium ionophore decreases GjIC only between large and small luteal cells. Luteotropic and luteolytic hormones, and intracellular regulators, may be involved in regulation of cellular interactions within bovine CL which likely is an important mechanism for coordination of luteal function.  相似文献   

15.
The effects of passive immunization of ewes against progesterone on plasma progesterone concentrations and on the metabolic clearance rate (MCR) and production rate (PR) of progesterone were investigated. Three treatment groups were studied: 1) nonimmunized controls, 2) ewes passively immunized with antiprogesterone serum, and 3) immunized progestagen-treated ewes, treated concomitantly with anti-serum and with a synthetic progestagen that is not bound by the antiserum. Progesterone levels in the immunized ewes reached a maximum of 27.7+/-4.8 nmol/l and were significantly higher (P<0.05) than in the nonimmunized controls (9.2+/-1.1 mol/l) or the immunized progestagen-treated ewes (15.6+/-1.6 nmol/l). Mean progesterone MCR in the immunized ewes was 1.6+/-0.5 and 2.1+/-0.3 liter/min on Days 7 and 13 of the estrous cycle, respectively, compared with 0.8+/-0.2 and 1.4+/-0.3 liter/min, respectively, in nonimmunized controls. The progesterone production rate in the immunized ewes was significantly higher than in nonimmunized controls, and reached 12.0+/-2.2 and 19.7+/-1.6 nmol/min on Days 7 and 13 of the estrous cycle, respectively, compared with 4.6+/-0.6 and 10.0+/-2.5 nmol/min in nonimmunized controls (P<0.03 for both comparisons). Treatment with progestagen had no significant effect on progesterone MCR or PR of immunized ewes. The LH pulse frequency on Days 10 to 11 of the cycle was 0.7+/-0.3, 1.8+/-0.3 and 0.0+/-0.0 pulses/6 h in the control, immunized and immunized progestagen-treated groups, respectively (P<0.05). It is concluded that the increased plasma progesterone levels in the immunized ewes are the result of an increased progesterone production rate, which may have been induced by an increase in gonadotrophin secretion or by a direct effect of the anti-progesterone serum on the ovary.  相似文献   

16.
Two experiments were conducted to determine the luteotropin of pregnancy in sheep and to examine autocrine and paracrine roles of progesterone and estradiol-17 beta on progesterone secretion by the ovine corpus luteum (CL). Secretion of progesterone per unit mass by day-8 or day-11 CL of the estrous cycle was similar to day-90 CL of pregnancy (P >/= 0.05). In experiment 1, secretion of progesterone in vitro by slices of CL from ewes on day-8 of the estrous cycle was increased (P /= 0.05) while PGE(2) increased (P /= 0.05) detectable quantities of PGF(2alpha) or PGE while day-90 ovine CL of pregnancy secreted PGE (P /= 0.05). Trilostane, mifepristone, or MER-25 did not affect secretion of progesterone, PGE, or PGF(2alpha) by day-11 CL of the estrous cycle or day-90 CL of pregnancy (P >/= 0.05). It is concluded that PGE(2), not LH, is the luteotropin at day-90 of pregnancy in sheep and that progesterone does not modify the response to luteotropins. Thus, we found no evidence for an autocrine or paracrine role for progesterone or estradiol-17 36 on luteal secretion of progesterone, PGE or PGF(2alpha).  相似文献   

17.
A diversified series of experiments was conducted to determine the potential role of endothelin-1 (ET-1) in ovine luteal function. Endothelin-1 inhibited basal and LH-stimulated progesterone production by dispersed ovine luteal cells during a 2-h incubation. This inhibition was removed when cells were preincubated with cyclo-D-Asp-Pro-D-Val-Leu-D-Trp (BQ123), a highly specific endothelin ET(A) receptor antagonist. Administration of a luteolytic dose of prostaglandin F(2alpha) (PGF(2alpha)) rapidly stimulated gene expression for ET-1 in ovine corpora lutea (CL) collected at midcycle. Intraluteal administration of a single dose of BQ123 to ewes on Day 8 or 9 of the estrous cycle mitigated the luteolytic effect of PGF(2alpha). Intramuscular administration of 100 microg ET-1 to ewes at midcycle reduced plasma progesterone concentrations for the remainder of the estrous cycle. Following pretreatment with a subluteolytic dose of PGF(2alpha), i.m. administration of 100 microg ET-1 caused a rapid decline in plasma progesterone and shortened the length of the estrous cycle. These data complement and extend previously published reports in the bovine CL and are the strongest evidence presented to date in support of a role for ET-1 in PGF(2alpha)-mediated luteal function in domestic ruminants.  相似文献   

18.
To test the hypothesis that the anestrous increase in estradiol negative feedback prevents estrous cycles by suppressing hypothalamic gonadotropin-releasing hormone (GnRH) pulse frequency, a variety of regimens of increasing GnRH pulse frequency were administered to anestrous ewes for 3 days. A luteinizing hormone (LH) surge was induced in 45 of 46 ewes regardless of amplitude or frequency of GnRH pulses, but only 19 had luteal phases. Estradiol administration induced LH surges in 6 of 6 ewes, only 3 having luteal phases. Anestrous luteal phase progesterone profiles were similar in incidence, time course, and amplitude to those of the first luteal phases of the breeding season, which in turn had lower progesterone maxima than late breeding season luteal phases. In the remaining ewes, progesterone increased briefly or not at all, the increases being similar to the transient rises in progesterone occurring in most ewes at the onset of the breeding season. These results demonstrate that increasing GnRH pulse frequency induces LH surges in anestrus and that the subsequent events are similar to those at the beginning of the breeding season. Finally, they support the hypothesis that the negative feedback action of estradiol prevents cycles in anestrus by suppressing the frequency of the hypothalamic pulse generator.  相似文献   

19.
In order to define the patterns of TSH, T4, T3, rT3, GH and cortisol during the estrous cycle of sheep, pluriparous and primiparous ewes were synchronized with progestagen-impregnated pessaries (Veramix) at the start of the normal breeding season. After the pessaries were removed (day 0), daily blood sampling was carried out in cannulated ewes during the ovulatory cycle. Hormonal analyses of TSH, T4, T3, rT3, GH, cortisol, LH and progesterone (P) were performed by RIA. P and LH levels during the cycle were conform to the literature and were not different between the primiparous and pluriparous ewes of different breeds used in this study. Neither age nor breed influenced the hormone patterns. A significant negative correlation was found between TSH and P during the cycle, although the correlation between P and T4 was not significant; during the estrous period, low P levels were paralleled by high T4 levels, whereas the reverse was observed during the luteal phase. Higher T3 levels and T3/T4 ratios were observed during the luteal phase. No obvious pattern of rT3 and cortisol during the cycle was found. The GH concentration increased during the 17 days of the cycle. A positive correlation with P was calculated. During the estrous cycle obvious changes in thyroid hormones, GH and TSH occurred. However, this study shows no causal relationship between the thyroid and the gonadal axes.  相似文献   

20.
Mature Merino ewes in which the left ovary and its vascular pedicle had been autotransplanted to the neck were divided into control (N = 5) and immunized groups (N = 6). The immunized ewes were treated (2 ml s.c.) with Fecundin 1 and 4 weeks before the start of blood sampling. Ovarian and jugular venous blood was collected every 10 min at two stages of the follicular phase (21-27 h and 38-42 h after i.m. injection of 125 micrograms of a prostaglandin (PG) analogue) and during the mid-luteal phase (8 h at 15-min intervals). The ewes were monitored regularly for luteal function and preovulatory LH surges. Hormone concentrations and anti-androstenedione titres were assayed by RIA and ovarian secretion rates of oestradiol-17 beta, progesterone and androstenedione were determined. After the booster immunization, progesterone increased simultaneously with titre in immunized ewes, reaching 30 ng/ml at the time of PG injection when median titre was 1:10,000. All ewes responded to PG with LH surges 42-72 h later: 2 of the immunized ewes then had a second LH surge within 3-4 days at a time when peripheral progesterone values were 2-3 ng/ml. The frequency of steroid and LH pulses was greater in immunized ewes (P less than 0.05) during the luteal phase but not the follicular phase. The secretion rate of androstenedione was 6-10 times greater (19-37 ng/min; P less than 0.001) in immunized ewes at all sampling stages. Progesterone secretion rates were 3 times greater (16 micrograms/min; P less than 0.001) during the luteal phase in immunized ewes. The amplitude of oestradiol pulses was significantly reduced in immunized ewes (4.8 vs 2.1 ng/min at +24 h and 6.5 vs 2.8 ng/min at +40 h in control and immunized ewes, respectively: P less than 0.05) during the follicular phase. However, the mean secretion rate of oestradiol at each phase of the cycle was not significantly different between treatment groups. Analysis of bound and free steroid using polyethylene glycol showed that greater than 98% of peripheral and ovarian venous androstenedione and 86% of peripheral progesterone was bound in immunized ewes but there was no appreciable binding (less than 0.1%) in control ewes. Similarly, 50% of ovarian venous oestradiol was bound in immunized ewes compared to 15% in control ewes. We conclude that immunization against androstenedione increases the secretion rate of androstenedione and progesterone but not of oestradiol.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号