首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metabolomic investigation of the freezing-tolerant Arabidopsis mutant esk1 revealed large alterations in polar metabolite content in roots and shoots. Stress metabolic markers were found to be among the most significant metabolic markers associated with the mutation, but also compounds related to growth regulation or nutrition. The metabolic phenotype of esk1 was also compared to that of wild type (WT) under various environmental constraints, namely cold, salinity and dehydration. The mutant was shown to express constitutively a subset of metabolic responses which fits with the core of stress metabolic responses in the WT. But remarkably, the most specific metabolic responses to cold acclimation were not phenocopied by esk1 mutation and remained fully inducible in the mutant at low temperature. Under salt stress, esk1 accumulated lower amounts of Na+ in leaves than the WT, and under dehydration stress its metabolic profile and osmotic potential were only slightly impacted. These phenotypes are consistent with the hypothesis of an altered water status in esk1 , which actually exhibited basic lower water content (WC) and transpiration rate (TR) than the WT. Taken together, the results suggest that ESK1 does not function as a specific cold acclimation gene, but could rather be involved in water homeostasis.  相似文献   

2.
A comprehensive knowledge of mechanisms regulating nitrogen (N) use efficiency is required to reduce excessive input of N fertilizers while maintaining acceptable crop yields under limited N supply. Studying plant species that are naturally adapted to low N conditions could facilitate the identification of novel regulatory genes conferring better N use efficiency. Here, we show that Thellungiella halophila, a halophytic relative of Arabidopsis (Arabidopsis thaliana), grows better than Arabidopsis under moderate (1 mm nitrate) and severe (0.4 mm nitrate) N-limiting conditions. Thellungiella exhibited a lower carbon to N ratio than Arabidopsis under N limitation, which was due to Thellungiella plants possessing higher N content, total amino acids, total soluble protein, and lower starch content compared with Arabidopsis. Furthermore, Thellungiella had higher amounts of several metabolites, such as soluble sugars and organic acids, under N-sufficient conditions (4 mm nitrate). Nitrate reductase activity and NR2 gene expression in Thellungiella displayed less of a reduction in response to N limitation than in Arabidopsis. Thellungiella shoot GS1 expression was more induced by low N than in Arabidopsis, while in roots, Thellungiella GS2 expression was maintained under N limitation but was decreased in Arabidopsis. Up-regulation of NRT2.1 and NRT3.1 expression was higher and repression of NRT1.1 was lower in Thellungiella roots under N-limiting conditions compared with Arabidopsis. Differential transporter gene expression was correlated with higher nitrate influx in Thellungiella at low (15)NO(3)(-) supply. Taken together, our results suggest that Thellungiella is tolerant to N-limited conditions and could act as a model system to unravel the mechanisms for low N tolerance.  相似文献   

3.
4.
5.
6.
7.
8.
The response of Thellungiella (Thellungiella holophila) and Arabidopsis (Arabidopsis thaliana) callus to salt stress was investigated. The relative growth rate of Arabidopsis calli decreased with increased levels of NaCl. However, the relative growth rate of Thellungiella calli increased with higher levels of NaCl, reaching maximal growth at 100 mM NaCl, but then subsequently declined. A similar pattern of accumulation of proline, glycine betaine, and total flavonoid was observed; whereas, accumulation of treholase continued to increase with increasing NaCl levels in both Thellungiella and Arabidopsis calli. Overall, with increasing NaCl levels, accumulation of glycine betaine, total flavonoid, and treholase was higher in Thellungiella than in Arabidopsis calli; while, proline and sucrose contents were higher in Arabidopsis than in Thellungiella calli. These results indicated that compatible solutes were involved in the response of plant calli to salt stress, and that the halophyte Thellungiella and glycophyte Arabidopsis selected different compatible solutes to adapt to salt stress environments. X. Zhao and H. J. Tan have contributed equally to the paper.  相似文献   

9.
10.
11.
Understanding how plants tolerate dehydration is a prerequisite for developing novel strategies for improving drought tolerance. The desiccation-tolerant (DT) Sporobolus stapfianus and the desiccation-sensitive (DS) Sporobolus pyramidalis formed a sister group contrast to reveal adaptive metabolic responses to dehydration using untargeted global metabolomic analysis. Young leaves from both grasses at full hydration or at 60% relative water content (RWC) and from S. stapfianus at lower RWCs were analyzed using liquid and gas chromatography linked to mass spectrometry or tandem mass spectrometry. Comparison of the two species in the fully hydrated state revealed intrinsic differences between the two metabolomes. S. stapfianus had higher concentrations of osmolytes, lower concentrations of metabolites associated with energy metabolism, and higher concentrations of nitrogen metabolites, suggesting that it is primed metabolically for dehydration stress. Further reduction of the leaf RWC to 60% instigated a metabolic shift in S. stapfianus toward the production of protective compounds, whereas S. pyramidalis responded differently. The metabolomes of S. stapfianus leaves below 40% RWC were strongly directed toward antioxidant production, nitrogen remobilization, ammonia detoxification, and soluble sugar production. Collectively, the metabolic profiles obtained uncovered a cascade of biochemical regulation strategies critical to the survival of S. stapfianus under desiccation.  相似文献   

12.
Cell suspension cultures are now recognized as important model materials for plant bioscience and biotechnology. Very few studies of metabolic comparisons between cell cultures and original plants have been reported, even though the biological identity of cultured cells with the normally grown plant is of great importance. In this study, a comparison of the metabolome for primary metabolites extracted from the leaves of Arabidopsis thaliana and cultured cells from an Arabidopsis suspension culture (cell line T87) was performed. The results suggest that although cell suspension cultures and Arabidopsis leaves showed similarities in the common primary metabolite profile, nonetheless, moderate differences in quantitative profile were revealed.  相似文献   

13.
Large-scale metabolic profiling is expected to develop into an integral part of functional genomics and systems biology. The metabolome of a cell or an organism is chemically highly complex. Therefore, comprehensive biochemical phenotyping requires a multitude of analytical techniques. Here, we describe a profiling approach that combines separation by capillary liquid chromatography with the high resolution, high sensitivity, and high mass accuracy of quadrupole time-of-flight mass spectrometry. About 2000 different mass signals can be detected in extracts of Arabidopsis roots and leaves. Many of these originate from Arabidopsis secondary metabolites. Detection based on retention times and exact masses is robust and reproducible. The dynamic range is sufficient for the quantification of metabolites. Assessment of the reproducibility of the analysis showed that biological variability exceeds technical variability. Tools were optimized or established for the automatic data deconvolution and data processing. Subtle differences between samples can be detected as tested with the chalcone synthase deficient tt4 mutant. The accuracy of time-of-flight mass analysis allows to calculate elemental compositions and to tentatively identify metabolites. In-source fragmentation and tandem mass spectrometry can be used to gain structural information. This approach has the potential to significantly contribute to establishing the metabolome of Arabidopsis and other model systems. The principles of separation and mass analysis of this technique, together with its sensitivity and resolving power, greatly expand the range of metabolic profiling.  相似文献   

14.
Shoots of Thellungiella derived by micropropagation were used to estimate the plants'' salt tolerance and ability to regulate Na+ uptake. Two species with differing salt tolerances were studied: Thellungiella salsuginea (halophilla), which is less tolerant, and Thellungiella botschantzevii, which is more tolerant. Although the shoots of neither ecotype survived at 700 mM NaCl or 200 mM Na2SO4, micropropagated shoots of T. botschantzevii were more tolerant to Na2SO4 (10–100 mM) and NaCl (100–300 mM). In the absence of roots, Na2SO4 salinity reduced shoot growth more dramatically than NaCl salinity. Plantlets of both species were able to adapt to salt stress even when they did not form roots. First, there was no significant correlation between Na+ accumulation in shoots and Na+ concentration in the growth media. Second, K+ concentrations in the shoots exposed to different salt concentrations were maintained at equivalent levels to control plants grown in medium without NaCl or Na2SO4. These results suggest that isolated shoots of Thellungiella possess their own mechanisms for enabling salt tolerance, which contribute to salt tolerance in intact plants.Key words: Thellungiella salsuginea, Thellungiella botschantzevii, salt tolerance, isolated shoots, growth, rhizogenesis, ion accumulation  相似文献   

15.
Grebenstein C  Choi YH  Rong J  de Jong TJ  Tamis WL 《Phytochemistry》2011,72(11-12):1341-1347
Differences between the metabolic content of cultivars and their related wild species not only have implications for breeding and food quality, but also for the increasingly studied area of crop to wild introgression. Wild and cultivated western carrots belong to the same outcrossing species and hybridize under natural conditions. The metabolic fingerprinting of Dutch wild carrot and of western orange carrot cultivar shoots using (1)H NMR showed only quantitative differences in chemical content, indicating relatively low divergence after domestication. Main differences reside in the primary metabolite content and in the concentrations of chlorogenic acid and feruloyl quinic acid in the shoots of the different carrot types. Wild×cultivar hybrids cannot be distinguished from wild plants based on the metabolome, suggesting maternal, maternal environment, or dominance effects, and indicating high hybrid fitness in wild conditions. Considering these similarities, introgression is a real possibility in carrots, but understanding its consequences would require further studies using backcrosses in a multiple environments.  相似文献   

16.
The optimal extraction of information from untargeted metabolomics analyses is a continuing challenge. Here, we describe an approach that combines stable isotope labeling, liquid chromatography– mass spectrometry (LC–MS), and a computational pipeline to automatically identify metabolites produced from a selected metabolic precursor. We identified the subset of the soluble metabolome generated from phenylalanine (Phe) in Arabidopsis thaliana, which we refer to as the Phe-derived metabolome (FDM) In addition to identifying Phe-derived metabolites present in a single wild-type reference accession, the FDM was established in nine enzymatic and regulatory mutants in the phenylpropanoid pathway. To identify genes associated with variation in Phe-derived metabolites in Arabidopsis, MS features collected by untargeted metabolite profiling of an Arabidopsis diversity panel were retrospectively annotated to the FDM and natural genetic variants responsible for differences in accumulation of FDM features were identified by genome-wide association. Large differences in Phe-derived metabolite accumulation and presence/absence variation of abundant metabolites were observed in the nine mutants as well as between accessions from the diversity panel. Many Phe-derived metabolites that accumulated in mutants also accumulated in non-Col-0 accessions and was associated to genes with known or suspected functions in the phenylpropanoid pathway as well as genes with no known functions. Overall, we show that cataloguing a biochemical pathway’s products through isotopic labeling across genetic variants can substantially contribute to the identification of metabolites and genes associated with their biosynthesis.

An isotopic labeling and LC–MS pipeline to identify metabolites produced from Phe and its integration with genome-wide association identifies genes associated with the phenylpropanoid pathway.  相似文献   

17.
Novel tools are needed for efficient analysis and visualization of the massive data sets associated with metabolomics. Here, we describe a batch-learning self-organizing map (BL-SOM) for metabolome informatics that makes the learning process and resulting map independent of the order of data input. This approach was successfully used in analyzing and organizing the metabolome data forArabidopsis thaliana cells cultured under salt stress. Our 6 × 4 matrix presented patterns of metabolite levels at different time periods. A negative correlation was found between the levels of amino acids and metabolites related to glycolysis metabolism in response to this stress. Therefore, BL-SOM could be an excellent tool for clustering and visualizing high dimensional, complex metabolome data in a single map.  相似文献   

18.
Tolerance to boron (B) is still not completely understood. We tested here the hypothesis that Thellungiella halophila, an Arabidopsis thaliana-related 'extremophile' plant, with abundance of B in its natural environment, is tolerant to B, and examined the potential mechanisms of this tolerance. With 1-10 mm B applied ([B](ext)) to Thellungiella and Arabidopsis grown in hydroponics, the steady-state accumulated B concentration ([B](int)) in the root was below [B](ext), and was similar in both, suggesting both extrude B actively. Whether grown in soil or hydroponically, the shoot [B](int) was higher in Arabidopsis than in Thellungiella, suggesting more effective net B exclusion by Thellungiella root. Arabidopsis exhibited toxicity symptoms including reduced shoot fresh weight (FW), but Thellungiella was not affected, even at similar levels of shoot-accumulated [B](int) (about 10 to 40 mm B in 'shoot water'), suggesting additional B tolerance mechanism in Thellungiella shoot. At [B](ext) = 5 mm, the summed shoot concentration of the potentially B-binding polyhydroxyl metabolites (malic acid, fructose, glucose, sucrose and citric acid) in Arabidopsis was below [B](int) , but in Thellungiella it was over twofold higher than [B](int) , and therefore likely to allow appreciable 1:2 boron-metabolite complexation in the shoot. This, we suggest, is an important component of Thellungiella B tolerance mechanism.  相似文献   

19.
XVSAP1, a gene isolated from a dehydrated Xerophyta viscosa cDNA library, was transformed into Arabidopsis thaliana by Ti plasmid-mediated transformation under the control of a cauliflower mosaic virus 35S promoter, a nos terminator and bar gene selection. Expression of XVSAP1 in Arabidopsis led to constitutive accumulation of the corresponding protein in the leaves. Transgenic Arabidopsis grown in tissue culture maintained higher growth rates during osmotic, high-salinity and high temperature stress, respectively. Non-transgenic plants had shorter roots, leaf expansion was inhibited and leaves were more chlorotic than those of the transgenic plants. This study demonstrates that XVSAP1 has a significant impact on dehydration, salinity and high-temperature stress tolerance in Arabidopsis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号