首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Campomelic dysplasia (Cd) occurs combined with sex reversal resulting in XY females. The recent identification of candidate genes for sex determination/differentiation and of a sex determining region on the human Y chromosome prompted the authors to study these genes for mutations in patients with Cd and sex reversal. In a total of five cases, no evidence for a mutation in the genes SRY, ZFY, ZFX, MEA and some anonymous Y-linked sequences was found. In addition to Southern analysis, gene expression of ZFY, ZFX and MEA was found to be normal as well. It is concluded that sex reversal in this condition is due to mutation in a so far unidentified gene which may act secondary to the testis-determining factor (TDF).  相似文献   

2.
In mammals, the Y-linked SRY gene is normally responsible for testis induction, yet testis development can occur in the absence of Y-linked genes, including SRY. The canine model of SRY-negative XX sex reversal could lead to the discovery of novel genes in the mammalian sex determination pathway. The autosomal genes causing testis induction in this disorder in dogs, humans, pigs, and horses are presently unknown. In goats, a large deletion is responsible for sex reversal linked to the polled (hornless) phenotype. However, this region has been excluded as being causative of the canine disorder, as have WT1 and DMRT1 in more recent studies. The purpose of this study was to determine whether microsatellite marker alleles near or within five candidate genes (GATA4, FOG2, LHX1, SF1, SOX9) are associated with the affected phenotype in a pedigree of canine SRY-negative XX sex reversal. Primer sequences flanking nucleotide repeats were designed within genomic sequences of canine candidate gene homologues. Fluorescence-labeled polymorphic markers were used to screen a subset of the multigenerational pedigree, and marker alleles were determined by software. Our results indicate that the mutation causing canine SRY-negative XX sex reversal in this pedigree is unlikely to be located in regions containing these candidates.  相似文献   

3.
Wild populations of Akodon azarae comprise females with a karyotype indistinguishable from that of males. These individuals were formerly assumed to be Xx, the x being an X chromosome with a deletion of most of its long arm. By using a DNA probe derived from the testis-determining region of the human Y chromosome (comprising a candidate gene for the testis-determining factor, Y-linked zinc finger [ZFY]), we demonstrate that A. azarae gonosomally variant females are XY and not Xx. The ZFY sequences in A. azarae are amplified and located in two different families of EcoRI fragments derived from Y-chromosome DNA. No rearrangement or change in the state of methylation of ZFY or ZFX (X-linked zinc finger) sequences were found in XY females. We propose that sex reversal in A. azarae may be mediated by a gene or genes other than ZFX or ZFY.  相似文献   

4.
Silene latifolia is a dioecious plant with heteromorphic sex chromosomes that have originated only ~10 million years ago and is a promising model organism to study sex chromosome evolution in plants. Previous work suggests that S. latifolia XY chromosomes have gradually stopped recombining and the Y chromosome is undergoing degeneration as in animal sex chromosomes. However, this work has been limited by the paucity of sex-linked genes available. Here, we used 35 Gb of RNA-seq data from multiple males (XY) and females (XX) of an S. latifolia inbred line to detect sex-linked SNPs and identified more than 1,700 sex-linked contigs (with X-linked and Y-linked alleles). Analyses using known sex-linked and autosomal genes, together with simulations indicate that these newly identified sex-linked contigs are reliable. Using read numbers, we then estimated expression levels of X-linked and Y-linked alleles in males and found an overall trend of reduced expression of Y-linked alleles, consistent with a widespread ongoing degeneration of the S. latifolia Y chromosome. By comparing expression intensities of X-linked alleles in males and females, we found that X-linked allele expression increases as Y-linked allele expression decreases in males, which makes expression of sex-linked contigs similar in both sexes. This phenomenon is known as dosage compensation and has so far only been observed in evolutionary old animal sex chromosome systems. Our results suggest that dosage compensation has evolved in plants and that it can quickly evolve de novo after the origin of sex chromosomes.  相似文献   

5.
The medaka, Oryzias latipes, has an XX/XY sex-determination mechanism. A Y-linked DM domain gene, DMY, has been isolated by positional cloning as a sex-determining gene in this species. Previously, we found 23 XY sex-reversed females from 11 localities by examining the genotypic sex of wild-caught medaka. Genetic analyses revealed that all these females had Y-linked gene mutations. Here, we aimed to clarify the cause of this sex reversal. To achieve this, we screened for mutations in the amino acid coding sequence of DMY and examined DMY expression at 0 days after hatching (dah) using densitometric semiquantitative RT-PCR. We found that the mutants could be classified into two groups. One contained mutations in the amino acid coding sequence of DMY, while the other had reduced DMY expression at 0 dah although the DMY coding sequence was normal. For the latter, histological analyses indicated that YwOurYwOur (YwOur, Y chromosome derived from an Oura XY female) individuals with the lowest DMY expression among the tested mutants were expected to develop into females at 0 dah. These results suggest that early testis development requires DMY expression above a threshold level. Mutants with reduced DMY expression may prove valuable for identifying DMY regulatory elements.  相似文献   

6.
Both mouse and man have the common XX/XY sex chromosome mechanism. The X chromosome is of original size (5-6% of female haploid set) and the Y is one of the smallest chromosomes of the complement. But there are species, belonging to a variety of orders, with composite sex chromosomes and multiple sex chromosome systems: XX/XY1Y2 and X1X1X2X2/X1X2Y. The original X or the Y, respectively, have been translocated on to an autosome. The sex chromosomes of these species segregate regularly at meiosis; two kinds of sperm and one kind of egg are produced and the sex ratio is the normal 1:1. Individuals with deviating sex chromosome constitutions (XXY, XYY, XO or XXX) have been found in at least 16 mammalian species other than man. The phenotypic manifestations of these deviating constitutions are briefly discussed. In the dog, pig, goat and mouse exceptional XX males and in the horse XY females attract attention. Certain rodents have complicated mechanisms for sex determination: Ellobius lutescens and Tokudaia osimensis have XO males and females. Both sexes of Microtus oregoni are gonosomic mosaics (male OY/XY, female XX/XO). The wood lemming, Myopus schisticolor, the collared lemming, Dirostonyx torquatus, and perhaps also one or two species of the genus Akodon have XX and XY females and XY males. The XX, X*X and X*Y females of Myopus and Dicrostonyx are discussed in some detail. The wood lemming has proved to be a favourable natural model for studies in sex determination, because a large variety of sex chromosome aneuploids are born relatively frequently. The dosage model for sex determination is not supported by the wood lemming data. For male development, genes on both the X and the Y chromosomes are necessary.  相似文献   

7.
In a Brazilian population of the neotropical rodent Akodon montensis we found five sex-reversed XY females. These animals were cytogenetically analyzed by chromosome painting using species-specific DNA probes from the Y chromosome, generated by chromosomal microdissection and subsequent use of the degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR). The results showed a chromosome complement with an apparently normal Y chromosome and an X chromosome carrying a translocation that encompasses a large portion of the Y chromosome (seemingly the entire Y). Ovarian histology suggested that these females are fertile. Amplification of the SRY HMG box sequence by PCR shows that at least one copy of the Sry gene is present in the A. montensis XY females. Based on our findings, we suggest that the breakpoint of the X;Y translocation probably altered an X-linked sex-determining locus (or loci), blocking testicular organogenesis in the XY females. Further studies are necessary to determine the precise location and role of this putative sex-determining chromosomal region. Genetic mechanisms of XY sex reversal in A. montensis populations are discussed.  相似文献   

8.
We previously described a locus on chromosome (Chr) 17 of the mouse that is critical for normal testis development. This locus was designated "T-associated sex reversal" (Tas) because it segregated with the dominant brachyury allele hairpin tail (Thp) and caused gonads of C57BL/6J XY, Thp/+ individuals to develop as ovaries or ovotestes rather than as testes. To clarify the inheritance of Tas, we investigated the effects of T-Orleans (TOrl), another brachyury mutation, on gonad development. We found that gonads of C57BL/6J XY, Thp/+ and TOrl/+ mice develop ovarian tissue if the Y chromosome is derived from the AKR/J inbred strain, whereas normal testicular development occurs in the presence of a Y chromosome derived from the C57BL/6J inbred strain. From these observations we conclude that: (1) Tas is located in a region on Chr 17 common to the deletions associated with Thp, and TOrl, and (2) the Y-linked testis determining gene, Tdy, carried by the AKR/J inbred strain differs from that of the C57BL/6J inbred strain. We suggest that in mammals Tdy is not the sole testis determinant because autosomal loci must be genetically compatible with Tdy for normal testicular development.  相似文献   

9.
Chromosomal abnormalities in the sex chromosome pair (ECAX and ECAY) are widely associated with reproductive problems in horses. However, a large proportion of these abnormalities remains undiagnosed due to the lack of an affordable diagnostic tool that allows for avoiding karyotyping tests. Hereby, we developed an STR (single‐tandem‐repeat)‐based molecular method to determine the presence of the main sex chromosomal abnormalities in horses in a fast, cheap and reliable way. The frequency of five ECAX‐linked (LEX026, LEX003, TKY38, TKY270 and UCDEQ502) and two ECAY‐linked (EcaYH12 and SRY) markers was characterized in 261 Purebred Spanish Horses to determine the efficiency of the methodology developed to be used as a chromosomal diagnostic tool. All the microsatellites analyzed were highly polymorphic, with a sizeable number of alleles (polymorphic information content > 0.5). Based on this variability, the methodology showed 100% sensitivity and 99.82% specificity to detect the most important sex chromosomal abnormalities reported in horses (chimerism, Turner's syndrome and sex reversal syndromes). The method was also validated with 100% efficiency in 10 individuals previously diagnosed as chromosomally aberrant. This STR screening panel is an efficient and reliable molecular–cytogenetic tool for the early detection of sex chromosomal abnormalities in equines that could be included in breeding programs to save money, effort and time of veterinary practitioners and breeders.  相似文献   

10.
Dioecious white campion Silene latifolia has sex chromosomal sex determination, with homogametic (XX) females and heterogametic (XY) males. This species has become popular in studies of sex chromosome evolution. However, the lack of genes isolated from the X and Y chromosomes of this species is a major obstacle for such studies. Here, I report the isolation of a new sex-linked gene, Slss, with strong homology to spermidine synthase genes of other species. The new gene has homologous intact copies on the X and Y chromosomes (SlssX and SlssY, respectively). Synonymous divergence between the SlssX and SlssY genes is 4.7%, and nonsynonymous divergence is 1.4%. Isolation of a homologous gene from nondioecious S. vulgaris provided a root to the gene tree and allowed the estimation of the silent and replacement substitution rates along the SlssX and SlssY lineages. Interestingly, the Y-linked gene has higher synonymous and nonsynonymous substitution rates. The elevated synonymous rate in the SlssY gene, compared with SlssX, confirms our previous suggestion that the S. latifolia Y chromosome has a higher mutation rate, compared with the X chromosome. When differences in silent substitution rate are taken into account, the Y-linked gene still demonstrates significantly faster accumulation of nonsynonymous substitutions, which is consistent with the theoretical prediction of relaxed purifying selection in Y-linked genes, leading to the accumulation of nonsynonymous substitutions and genetic degeneration of the Y-linked genes.  相似文献   

11.
12.
Recombination arrest between X and Y chromosomes, driven by sexually antagonistic genes, is expected to induce their progressive differentiation. However, in contrast to birds and mammals (which display the predicted pattern), most cold‐blooded vertebrates have homomorphic sex chromosomes. Two main hypotheses have been proposed to account for this, namely high turnover rates of sex‐determining systems and occasional XY recombination. Using individual‐based simulations, we formalize the evolution of XY recombination (here mediated by sex reversal; the “fountain‐of‐youth” model) under the contrasting forces of sexually antagonistic selection and deleterious mutations. The shift between the domains of elimination and accumulation occurs at much lower selection coefficients for the Y than for the X. In the absence of dosage compensation, mildly deleterious mutations accumulating on the Y depress male fitness, thereby providing incentives for XY recombination. Under our settings, this occurs via “demasculinization” of the Y, allowing recombination in XY (sex‐reversed) females. As we also show, this generates a conflict with the X, which coevolves to oppose sex reversal. The resulting rare events of XY sex reversal are enough to purge the Y from its load of deleterious mutations. Our results support the “fountain of youth” as a plausible mechanism to account for the maintenance of sex‐chromosome homomorphy.  相似文献   

13.
Washburn LL  Albrecht KH  Eicher EM 《Genetics》2001,158(4):1675-1681
C57BL/6J-T-associated sex reversal (B6-TAS) in XY mice results in ovarian development and involves (1) hemizygosity for Tas, a gene located in the region of Chromosome 17 deleted in T(hp) and T(Orl), (2) homozygosity for one or more B6-derived autosomal genes, and (3) the presence of the AKR Y chromosome. Here we report results from experiments designed to investigate the Y chromosome component of this sex reversal. Testis development was restored in B6 T(Orl)/+ XY(AKR) mice carrying a Mus musculus Sry transgene. In addition, two functionally different classes of M. domesticus Sry alleles were identified among eight standard and two wild-derived inbred strains. One class, which includes AKR, did not initiate normal testis development in B6 T(Orl)/+ XY mice, whereas the other did. DNA sequence analysis of the Sry ORF and a 5' 800-bp segment divided these inbred strains into the same groups. Finally, we found that Sry is transcribed in B6 T(Orl)/+ XY(AKR) fetal gonads but at a reduced level. These results pinpoint Sry as the Y-linked component of B6-TAS. We hypothesize that the inability of specific M. domesticus Sry alleles to initiate normal testis development in B6 T(Orl)/+ XY(AKR) mice results from a biologically insufficient level of Sry expression, allowing the ovarian development pathway to proceed.  相似文献   

14.
The medaka, Oryzias latipes, has an XX/XY sex determination mechanism. A Y-linked DM domain gene, DMY, has been isolated by positional cloning as a prime candidate for the sex-determining gene. Furthermore, the crucial role of DMY during male development was established by studying two wild-derived XY female mutants. In this study, to find new DMY and sex-determination related gene mutations, we conducted a broad survey of the genotypic sex (DMY-negative or DMY-positive) of wild fish. We examined 2274 wild-caught fish from 40 localities throughout Japan, and 730 fish from 69 wild stocks from Japan, Korea, China, and Taiwan. The phenotypic sex type agreed with the genotypic sex of most fish, while 26 DMY-positive (XY) females and 15 DMY-negative (XX) males were found from 13 and 8 localities, respectively. Sixteen XY sex-reversals from 11 localities were mated with XY males of inbred strains, and the genotypic and phenotypic sexes of the F(1) progeny were analyzed. All these XY sex-reversals produced XY females in the F(1) generation, and all F(1) XY females had the maternal Y chromosome. These results show that DMY is a common sex-determining gene in wild populations of O. latipes and that all XY sex-reversals investigated had a DMY or DMY-linked gene mutation.  相似文献   

15.
Despite their ability to interbreed and produce fertile offspring,there is continued disagreement about the genetic relationshipof the domestic horse (Equus caballus) to its endangered wildrelative, Przewalski's horse (Equus przewalskii). Analyses havediffered as to whether or not Przewalski's horse is placed phylogeneticallyas a separate sister group to domestic horses. Because Przewalski'shorse and domestic horse are so closely related, genetic datacan also be used to infer domestication-specific differencesbetween the two. To investigate the genetic relationship ofPrzewalski's horse to the domestic horse and to address whetherevolution of the domestic horse is driven by males or females,five homologous introns (a total of 3 kb) were sequenced onthe X and Y chromosomes in two Przewalski's horses and threebreeds of domestic horses: Arabian horse, Mongolian domestichorse, and Dartmoor pony. Five autosomal introns (a total of6 kb) were sequenced for these horses as well. The sequencesof sex chromosomal and autosomal introns were used to determinenucleotide diversity and the forces driving evolution in thesespecies. As a result, X chromosomal and autosomal data do notplace Przewalski's horses in a separate clade within phylogenetictrees for horses, suggesting a close relationship between domesticand Przewalski's horses. It was also found that there was alack of nucleotide diversity on the Y chromosome and highernucleotide diversity than expected on the X chromosome in domestichorses as compared with the Y chromosome and autosomes. Thissupports the hypothesis that very few male horses along withnumerous female horses founded the various domestic horse breeds.Patterns of nucleotide diversity among different types of chromosomeswere distinct for Przewalski's in contrast to domestic horses,supporting unique evolutionary histories of the two species.  相似文献   

16.
The canonical model of sex‐chromosome evolution assigns a key role to sexually antagonistic (SA) genes on the arrest of recombination and ensuing degeneration of Y chromosomes. This assumption cannot be tested in organisms with highly differentiated sex chromosomes, such as mammals or birds, owing to the lack of polymorphism. Fixation of SA alleles, furthermore, might be the consequence rather than the cause of recombination arrest. Here we focus on a population of common frogs (Rana temporaria) where XY males with genetically differentiated Y chromosomes (nonrecombinant Y haplotypes) coexist with both XY° males with proto‐Y chromosomes (only differentiated from X chromosomes in the immediate vicinity of the candidate sex‐determining locus Dmrt1) and XX males with undifferentiated sex chromosomes (genetically identical to XX females). Our study finds no effect of sex‐chromosome differentiation on male phenotype, mating success or fathering success. Our conclusions rejoin genomic studies that found no differences in gene expression between XY, XY° and XX males. Sexual dimorphism in common frogs might result more from the differential expression of autosomal genes than from sex‐linked SA genes. Among‐male variance in sex‐chromosome differentiation seems better explained by a polymorphism in the penetrance of alleles at the sex locus, resulting in variable levels of sex reversal (and thus of X‐Y recombination in XY females), independent of sex‐linked SA genes.  相似文献   

17.
Accidental recombination between the differential segments of the X and Y chromosomes in man occasionally allows transfer of Y-linked sequences to the X chromosome leading to testis differentiation in so-called XX males. Loss of the same sequences by X-Y interchange allows female differentiation in a small proportion of individuals with XY gonadal dysgenesis. A candidate gene responsible for primary sex determination has recently been cloned from within this part of the Y chromosome by Page and his colleagues. The observation that a homologue of this gene is present on the short arm of the X chromosome and is subject to X-inactivation, raises the intriguing possibility that sex determination in man is a quantitative trait. Males have two active doses of the gonad determining gene, and females have one dose. This hypothesis has been tested in a series of XX males, XY females and XX true hermaphrodites by using a genomic probe, CMPXY1, obtained by probing a Y-specific DNA library with synthetic oligonucleotides based on the predicted amino-acid sequence of the sex-determining protein. The findings in most cases are consistent with the hypothesis of homologous gonad-determining genes, GDX and GDY, carried by the X and Y chromosomes respectively. It is postulated that in sporadic or familial XX true hermaphrodites one of the GDX loci escapes X-inactivation because of mutation or chromosomal rearrangement, resulting in mosaicism for testis and ovary-determining cell lines in somatic cells. Y-negative XX males belong to the same clinical spectrum as XX true hermaphrodites, and gonadal dysgenesis in some XY females may be due to sporadic or familial mutations of GDX.  相似文献   

18.
Summary An inherited genetic disorder causes XY embryos of the horse to develop as mares. On the basis of our study of 38 such mares, we have identified four grades or classes of XY sex reversal according to this scheme: class I, nearly normal female, of which some are fertile; class II, female with gonadal dysgenesis, normal mullerian development; calss III, intersex mare with gonadal dysgenesis, abnormal mullerian development, enlarged clitoris; class IV, virilized intersex characterized by high levels of testosterone. In general, class I and calss II mares were typed H-Y antigen-negative whereas class III and class IV mares were typed H-Y antigen-positive.  相似文献   

19.
When the Y chromosome of the laboratory inbred mouse strain C57BL/6 (B6) is replaced by the Y of certain strains of Mus musculus domesticus, testis determination fails and all XY fetuses develop either as hermaphrodites or XY females (XY sex reversal). This suggests the presence of at least two alleles of Sry, the male-determining gene on the Y:M. m. domesticus and B6. The B6 Y chromosome is derived from the Japanese house mouse, M. m. molossinus and therefore carries a molossinus Sry allele. As a first step to determine how the molossinus Sry allele evolved, its distribution pattern was determined in wild mice. The cumulative data of 96 M. musculus samples obtained from 58 geographical locations in Europe, North Africa, and Asia show the molossinus Sry allele is restricted to Japan and the neighboring Asian mainland and confirm that Japanese M. m. molossinus mice were derived in part from a race of M. m. musculus from Korea or Manchuria. Sry polymorphisms, as illustrated by the molossinus Sry allele, can serve as molecular markers for studies on the evolution of wild M. musculus populations and can help determine the role sex determination plays in speciation.   相似文献   

20.
In mouse and man, Y chromosome deletions are frequently associated with spermatogenic defects. XY(Tdy)(m1)qdelSry males have an extensive Yq deletion that almost completely abolishes the expression of two gene families, Ssty and Sly, located within the male-specific region of the mouse Y long arm. These males exhibit severe sperm defects and sterility. XY(RIII)qdel males have a smaller interstitial Yq deletion, removing approximately two thirds of Ssty/Sly gene copies, and display an increased incidence of mild sperm head anomalies with impairment of fertility and an intriguing distortion in the sex ratio of offspring in favor of females. Here we used intracytoplasmic sperm injection (ICSI) to investigate the functional capacity of sperm from these Yq deletion males. Any selection related to the ability of sperm to fertilize in vitro is removed by ICSI, and we obtained two generations of live offspring from the infertile males. Genotyping of ICSI-derived offspring revealed that the Y(Tdym1)qdel deletion does not interfere with production of Y chromosome-bearing gametes, as judged from the frequency of Y chromosome transmission to the offspring. ICSI results for XY(RIII)qdel males also indicate that there is no deficiency of Y sperm production in this genotype, although the data show an excess of females following in vitro fertilization and natural mating. Our findings suggest that 1) Yq deletions in mice do not bias the primary sex ratio and 2) Y(RIII)qdel spermatozoa have poorer fertilizing ability than their X-bearing counterparts. Thus, a normal complement of the Ssty and/or Sly gene families on mouse Yq appears necessary for normal sperm function. Summary: ICSI was successfully used to reproduce infertile mice with Yq deletions, and the analysis of sperm function in obtained offspring demonstrated that gene families located within the deletion interval are necessary for normal sperm function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号