首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present investigation, the effect of three beneficial organisms (root endophytic fungus Piriformospora indica (Pi) and pseudomonads strains R62 and R81) and their four different consortia (Pi+R62, Pi+R81, R62+R81, Pi+R62+R81) was investigated on the plant Vigna mungo through their inorganic carrier-based (talcum powder and vermiculite) formulations. All the treatments resulted in significant increase in growth parameters under glasshouse as well as field conditions and showed a consistency in their performance on moving from glasshouse to field conditions. In glasshouse conditions, a maximum increase of 4.5-fold in dry root weight and 3.9-fold in dry shoot weight compared to control was obtained with vermiculite-based consortium formulation of Pi+R81. In field studies using vermiculite as carrier, a maximum enhancement of 3.2-fold in dry root weight, 3.0-fold in dry shoot weight, 8.4-fold in number of nodules and 4.0-fold in number of pods in comparison to control was obtained with the bio-inoculant formulation containing consortium of Pi+R81. The same treatment also caused the highest improvement of 1.9-fold in nitrogen content and 1.7-fold in phosphorus content, while the highest increase of 1.4-fold in potassium content was obtained with Pi alone.  相似文献   

2.
Arbuscular mycorrhizal fungi (AMF) and plant growth promoting rhizobacteria (PGPR) have potential to control soil-borne diseases including plant-parasitic nematodes. First, the effects of dual inoculation of mycorrhiza (Rhizophagus irregularis) and two stains of pseudomonads (Pseudomonas jessenii strain R62 and Pseudomonas synxantha strain R81) on tomato (Solanum lycopersicum cv. PT-3) growth were tested. Further, the physiological and biochemical changes caused by these beneficial organisms during infection by the root-knot nematode Meloidogyne incognita were studied. The experiment was conducted under glass house conditions and carried out up to one month after nematode inoculation. Plants treated with dual or individual inoculation of AMF and PGPR showed significantly enhanced plant growth and reduced nematode infection. In addition, they exhibited potent activity of phenolics (28 %) and defensive enzymes i.e. peroxidase (PO; 1.26 fold), polyphenyloxidase (PPO; 1.35 fold) and superoxide dismutase (SOD; 1.09 fold) while a significant reduction in malondialdehyde (MDA; 1.63 fold) and hydrogen peroxide (H2O2; 1.30 fold) content was recorded when compared to the nematode-infected plants. These findings indicate the feasibility of AMF and PGPR individually or in combinations as potential biocontrol agents for the management of root-knot nematodes.  相似文献   

3.
In vascular (Arabidopsis thaliana) and non‐vascular (Physcomitrella patens) plants, PHOSPHATE 1 (PHO1) homologs play important roles in the acquisition and transfer of phosphate. The tomato genome contains six genes (SlPHO1;1SlPHO1;6) homologous to AtPHO1. The six proteins have typical characteristics of the plant PHO1 family, such as the three Syg1/Pho81/XPRI (SPX) subdomains in the N‐terminal portion and one ERD1/XPR1/SYG1 (EXS) domain in the C‐terminal portion. Phylogenetic analysis revealed that the SlPHO1 family is subdivided into three clusters. A pairwise comparison indicated that SlPHO1;1 showed the highest level of sequence identity/similarity (67.39/76.21%) to AtPHO1. SlPHO1;1 deletion mutants induced by clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 displayed typical phenotypes of Pi starvation, such as decreased shoot fresh weight and increased root fresh weight, therefore having a greater root‐to‐shoot ratio. Mutants also accumulated more anthocyanin and had more soluble Pi content in the root and less in the shoot. These results indicate that SlPHO1;1 plays an important role in Pi transport in the tomato at seedling stage.  相似文献   

4.
The ability of fluorescent pseudomonads and arbuscular mycorrhizal fungi (AMF) to promote plant growth is well documented but knowledge of the impact of pseudomonad-mycorrhiza mixed inocula on root architecture is scanty. In the present work, growth and root architecture of tomato plants (Lycopersicon esculentum Mill. cv. Guadalete), inoculated or not with Pseudomonas fluorescens 92rk and P190r and/or the AMF Glomus mosseae BEG12, were evaluated by measuring shoot and root fresh weight and by analysing morphometric parameters of the root system. The influence of the microorganisms on phosphorus (P) acquisition was assayed as total P accumulated in leaves of plants inoculated or not with the three microorganisms. The two bacterial strains and the AMF, alone or in combination, promoted plant growth. P. fluorescens 92rk and G. mosseae BEG12 when co-inoculated had a synergistic effect on root fresh weight. Moreover, co-inoculation of the three microorganisms synergistically increased plant growth compared with singly inoculated plants. Both the fluorescent pseudomonads and the myco-symbiont, depending on the inoculum combination, strongly affected root architecture. P. fluorescens 92rk increased mycorrhizal colonization, suggesting that this strain is a mycorrhization helper bacterium. Finally, the bacterial strains and the AMF, alone or in combination, improved plant mineral nutrition by increasing leaf P content. These results support the potential use of fluorescent pseudomonads and AMF as mixed inoculants for tomato and suggest that improved tomato growth could be related to the increase in P acquisition.  相似文献   

5.
Aims: Developing new bio‐agents to control plant disease is desirable. Entomopathogenic bacteria Xenorhabdus spp. have potential antimicrobial activity in agriculture. This work was conducted to evaluate the antimicrobial activity of Xenorhabdus bovienii YL002 on plant pathogenic fungi and oomycete in vitro and the efficiency of this strain to reduce the in vivo incidence of grey mould rot on tomato plants caused by Botrytis cinerea and leaf scorch on pepper plants caused by Phytophthora capsici. Methods and Results: The antimicrobial activity of X. bovienii YL002 was firstly determined on in vitro plant pathogenic fungi and oomycete and then on tomato fruits and plants infected with B. cinerea and pepper plants infected with P. capsici. The cell‐free filtrate of X. bovienii YL002 exhibited highest inhibition effects (>98%) on mycelia growth of P. capsici and B. cinerea. The 50% inhibition concentration (EC50) of the methanol‐extracted bioactive compounds (methanol extract) of the cell‐free filtrate against P. capsici and B. cinerea were 164·83 and 42·16 μg ml?1. The methanol extract also had a strong effect on the spore germination of P. capsici and B. cinerea, with a EC50 of 70·38 and 69·33 μg ml?1, respectively. At 1000 μg ml?1, the methanol extract showed a therapeutic effect of 70·82% and a protective effect of 77·4% against B. cinerea on tomato plants compared with the control. The methanol extract also showed potent effect against P. capsici, with a therapeutic effect of 68·14% and a protective effect of 65·46% on pepper plants compared with the control. Conclusions: Xenorhabdus bovienii YL002 produces antimicrobial compounds with strong activity on plant pathogenic fungi and oomycete and has the potential for controlling grey mould rot of tomato plants and leaf scorch of pepper and could be useful in integrated control against diverse plant pathogenic fungi and oomycete. Significance and Impact of the Study: This study showed the potential that X. bovienii YL002 can be used to control the grey mould rot caused by B. cinerea on tomato plants and leaf scorch caused by P. capsici on pepper plants with the objective to reduce treatments with chemical fungicides.  相似文献   

6.
Some 136 isolates of fluorescent pseudomonads were isolated from the rhizosphere of plants growing in 5 different ecosystems. Thirty-four percent of these isolates inhibited the causal agent of cassava stem rot, Erwinia carotovora pv. carotovora, in vitro. One month old plantlets, produced by rooting the shoots of 4 cultivars in distilled water, were inoculated with a suspension (1.1 × 109 cells/ml) of each pseudomonad. Some isolates increased root weight by 95% over uninoculated controls two months after planting when inoculated at planting, and 15, and 30 days afterwards. Inoculated plants were free from symptoms of root pathogens and roots filled earlier than controls. Taxonomic studies showed that these bacterial isolates, were either Pseudomonas putida (90%) or P. fluorescens (10%).  相似文献   

7.
While plant responses to herbivores and pathogens are well characterized, responses to attack by other plants remain largely unexplored. We measured phytohormones and C18 fatty acids in tomato attacked by the parasitic plant Cuscuta pentagona, and used transgenic and mutant plants to explore the roles of the defence‐related phytohormones salicylic acid (SA) and jasmonic acid (JA). Parasite attachment to 10‐day‐old tomato plants elicited few biochemical changes, but a second attachment 10 d later elicited a 60‐fold increase in JA, a 30‐fold increase in SA and a hypersensitive‐like response (HLR). Host age also influenced the response: neither Cuscuta seedlings nor established vines elicited a HLR in 10‐day‐old hosts, but both did in 20‐day‐old hosts. Parasites grew larger on hosts deficient in SA (NahG) or insensitive to JA [jasmonic acid‐insensitive1 (jai1) ], suggesting that both phytohormones mediate effective defences. Moreover, amounts of JA peaked 12 h before SA, indicating that defences may be coordinated via sequential induction of these hormones. Parasitism also induced increases in free linolenic and linoleic acids and abscisic acid. These findings provide the first documentation of plant hormonal signalling induced by a parasitic plant and show that tomato responses to C. pentagona display characteristics similar to both herbivore‐ and pathogen‐induced responses.  相似文献   

8.
Enantioselective biodegradation of chiral pesticide metalaxyl in grape, tomato, and rice plants under field conditions were studied. Metalaxyl enantiomers were completely separated with a resolution (Rs) of 5.01 by high‐performance liquid chromatography (HPLC) based on a cellulose tris (3‐chloro‐4‐methyl phenyl carbamate) chiral column (Lux Cellulose‐2). Metalaxyl enantiomers from matrixes were extracted by acetonitrile and purged using Cleanert Alumina‐A solid phase extraction (SPE). The linearity, recovery, precision, sensitivity, and matrix effect of the method were assessed. The result showed that significant stereoselectivity occurred in grape, tomato, and rice plants. In grape, (+)‐S‐metalaxyl with a half‐life of 5.5 d degraded faster than (–)‐R‐metalaxyl with that of 6.9 d, and the enantiomer fraction (EF) value reached 0.37 at 21 d. The same enantioselectivity was observed in tomato, and the half‐life was 2.2 d for the S‐enantiomer and 3.0 d for the R‐enantiomer. The EF values decreased from 0.49 of 0 d to 0.26 of 14 d. On the other hand, a preferential degradation of the R‐form was found in rice plants, with an EF value of 0.70 at 14 d, and the corresponding half‐life was 2.3 d for the R‐form and 2.8 d for the S‐form. Chirality 27:109–114, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
  • 1 Cabbage loopers Trichoplusia ni (Hübner) (Lepidoptera: Noctuidae) are serious pests in greenhouses growing tomatoes, cucumbers and bell peppers. A potential microbial control, now in development, is the broad host‐range virus Autographa californica multiple nucleopolyhedrovirus (AcMNPV).
  • 2 The relationships between the three host plants and the feeding behaviour, larval movement and performance of cabbage looper larvae that might relate to their interaction with AcMNPV applications were investigated.
  • 3 Larvae reared on cucumber plants consumed approximately ten‐fold more leaf area than larvae reared on pepper plants and almost five‐fold more than larvae reared on tomato plants. This could influence the amount of AcMNPV consumed if it were used as a microbial spray because increased consumption can be associated with increased probability of infection. Survival from neonate to pupa also varied, with the greatest being on cucumber, followed by tomato and pepper plants. Larvae fed cucumber were approximately four‐fold heavier than larvae fed tomato and over 15‐fold heavier than larvae fed pepper plants.
  • 4 The distribution of larvae on plants in commercial greenhouses where a single crop was being grown also varied with food plant with 73% being found on the bottom and middle portions of tomato plants and 87% occurring in the top portions of pepper plants. Larvae tended to be distributed on the middle portion of cucumber plants, the lower portion of tomato plants and the top portion of pepper plants. Larval movement did not vary between AcMNPV‐infected and uninfected controls.
  • 5 It is predicted that the higher leaf area consumption and location of larvae in the middle portion of cucumber plants may make them more susceptible to viral sprays. Furthermore, given their greater survival than larvae fed tomato and pepper, there may be a greater need for virus applications.
  相似文献   

10.
11.
In northern China, low temperature is the most common abiotic stresses for tomato plants cultivated in solar‐greenhouse in winter. We recently found that the expression and enzyme activity of fructose‐1,6‐bisphosphate aldolases (FBAs) in tomato, which are important enzymes in the Calvin–Benson cycle (CBC), were significantly altered in tomato seedlings subjected to heat/cold stresses. In order to study the role of FBA in photosynthesis and in regulating cold stress responses of tomato seedlings (Solanum lycopersicum ), we transformed a tomato inbred line (FF) with RNA interference (RNAi) vector containing SlFBA 7 reverse tandem repeat sequence. We found that the decreased SlFBA7 expression led to the decreased activities of FBA, as well as the activities of other main enzymes in the CBC. We also noticed a decrease in net photosynthetic rate, ribulose‐1,5‐bisphosphate and soluble sugar content, stem diameter, dry weight and seed size in RNAi SlFBA7 plants compared to wild‐type. However, there are no changes in starch contents in the RNAi transgenic plants. RNAi SlFBA7 plants showed a decreased germination rate, and an increased levels of superoxide anions (O2·‐) and hydrogen peroxide (H2O2) under low temperature (8/5°C) and low‐light intensity (100 μmol m?2 s?1 photon flux density) growth conditions. These findings demonstrated the important role of SlFBA7 in regulating growth and chilling tolerance of tomato seedlings, and suggested that the catalytic activity of FBA in the CBC is sensitive to temperature.  相似文献   

12.
A field survey was conducted to determine the relationship between Ralstonia solanacearum diversity and severity of bacterial wilt disease in tomato plants grown in plastic greenhouses. Both vegetative and reproductive stages of the plants were surveyed, and the symptoms were empirically categorized into five scales: 0 (asymptomatic): 1st, 2nd, 3rd and 4th. The bacterial wilt pathogen was isolated from infected plants at each disease scale; pathogenic characteristics and population densities of the bacterial strains were assessed. Two hundred and eighty‐two isolates were identified as R. solanacearum, which were divided into three pathogenic types, virulent, avirulent and interim, using the attenuation index (AI) method and a plant inoculation bioassay. Ralstonia solanacearum was detected in all asymptomatic and symptomatic tomato plants, with population numbers, ranging from 10.5 to 86.7 × 105 cfu/g. However, asymptomatic plants harboured only avirulent or interim R. solanacearum, whereas tomato plants displaying 1st or 2nd disease degree contained interim and virulent strains. Additionally, 3rd and 4th degree plants harboured only virulent strains. The disease was more severe in vegetative‐stage plants (disease severity index (DSI) 0.20) with higher total numbers of interim and virulent R. solanacearum strains than those in reproductive‐stage plants (DSI 0.12). Three pathotypes of R. solanacearum coexisted in a competitive growth system in the tomato field, and their distribution closely correlated with the severity of tomato bacterial wilt.  相似文献   

13.
14.

Background and aims

Bioinoculants are commonly used for enhancing crop productivity but little information is available on their effect on key microbial communities such as those involved in the cycling of nitrogen, a major plant nutrient. Here we developed a formulation combining different bioinoculants (Bacillus megaterium, Pseudomonas fluorescens and Trichoderma harzianum) and examined their effects on both Cajanus cajan growth and N-cycling microorganisms.

Methods

Seven bioinoculant combinations were evaluated in pots under field conditions, and their effects on plant growth were measured using various biometric parameters. The abundances of the total bacterial and crenarchaeal communities along with those involved in N-cycling were monitored by qPCR at vegetative, pre-flowering, flowering and maturity stages of the crop.

Results

A significant increase in growth of C. cajan was observed when treated with mixture of three bioinoculants with dry biomass and grain yield increase by 330?% and 238?%, respectively. The combination of three bioinoculants also increased the abundance of nitrogen fixers and denitrifiers towards the flowering and maturity stages.

Conclusions

The consortium of three bioinoculants increased plant growth and grain yield of C. cajan. These bioinoculants also had a positive effect on the abundance of several N-cycling microbial communities stressing the importance of understanding non-target effects of bioinoculants together with their impact on plant growth.  相似文献   

15.
This investigation was carried out based on the hypothesis that there may be some pseudomonad strains, which could exist in rhizosphere of plant species contributing multifaceted beneficial activities. For this purpose, 21 pseudomonad isolates from the rhizosphere of rice, cultivated in western parts of Tamil Nadu were screened. All the 21 isolates were authenticated as pseudomonads by a genus-specific PCR screening. The molecular diversity of these isolates was investigated by Amplified Ribosomal DNA Restriction Analysis (ARDRA) and the dendrogram obtained from the analysis revealed that all the 21 isolates clustered into seven groups. Further, these isolates were screened for plant growth promoting activities such as diazotrophy (PCR amplification of nifH gene and acetylene reduction assay), Indole acetic acid (IAA) and siderophore production (spectrometrically), 1-Aminocyclopropane-1-carboxylic acid (ACC) deaminase for ethylene regulation (PCR screening), mineral solubilization (biochemically) and antagonistic potential against soil pathogenic fungi (dual culture assay). Based on the results, two elite Pseudomonas isolates (S9 and O3) were chosen as multi-functional plant growth-promoting rhizobacteria, paving way for potential use as bioinoculants in rice.  相似文献   

16.
S. D. Park    Z. Khan    J. G. Ryu    Y. J. Seo    J. T. Yoon 《Journal of Phytopathology》2005,153(4):250-253
The pathogenic potential and reproduction fitness of Meloidogyne hapla on three species of medicinal plants, Angelica koreana, Peucedanum japonicum and Astragalus membranaceus was determined in potted soil under greenhouse conditions. Three weeks old seedlings were inoculated with population density (Pi) of 1000; 2000; 3000; 4000; 5000 and 10000 juveniles (J2)/kg soil. A significant damage was observed in shoot and root length, weight and root‐diameter of these plants by all Pi levels at 90‐day postinoculation. Damage increased with increase in Pi up to 5000 J2/kg soil. At 5000 Pi caused 34.8, 34.1 and 33.3% reduction in root weight of Ang. koreana, P. japonicum and Ast. membranaceus, respectively. Greater root gall severity was observed on Ang. koreana and P. japonicum than on Ast. membranaceus at all Pi levels. At 5000 Pi, root gall severity was 5.0, 5.0, and 3.0 on Ang. koreana, P. japonicum and Ast. membranaceus, respectively. Increasing rate of Pi exponentially reduced reproductive factor (Rf) of M. hapla on all of these medicinal plants. However, Rf was higher on Ang. koreana and P. japonicum than on Ast. membranaceus at all Pi levels. The host status of these medicinal plants renders them unsuitable for their use in crop rotation system in M. hapla‐infested fields.  相似文献   

17.
Bacterial canker of tomato, caused by Clavibacter michiganensis subsp. michiganensis, continues to be a problem for tomato growers in the Souss-Massa Draa valley, South of Morocco. Assuming that biological control is an alternative for the management of this disease, a total of 303 fluorescent pseudomonads strains isolated from roots and rhizospheric soil of tomato plants were in vitro tested against C. michiganensis subsp. michiganensis. Fluorescent pseudomonads strains which showed the highest antagonistic properties were thereafter investigated for their ability to colonize tomato roots. Our results showed that fluorescent pseudomonads are more represented in rhizospheric soils. However, the most efficient fluorescent pseudomonads isolates were found in the rhizoplane soil and the endorhizosphere. Among 42 spontaneous antibiotic resistant mutants obtained by treatment of the wild-type isolates with five antibiotics (rifampicine, nalidixic acid, ampicilline and chloramphenicol), 28 completely colonized the roots of all tomatoes seedlings used in this investigation. The 42 wild type isolates were then used for in vivo screening with the cotyledon test. Using this test, eight isolates from 42 tested induced a significant decrease of disease incidence and disease symptoms. The eight efficient isolates were then tested for their effectiveness in the protection of tomato plants in pots under greenhouse conditions. Results obtained showed that all tested isolates applied as seed and root treatments reduced significantly (P ≤ 0.001) the incidence of bacterial canker.  相似文献   

18.
The effects of ethylene (C2H4) on tetrasporogenesis of the red seaweed Pterocladiella capillacea (S. G. Gmelin) Bornet were investigated. Ethylene is a gaseous hormone that is involved in a variety of physiological processes (e.g., flowering, fruit abscission) in higher plants. To study the effects of ethylene on the reproduction of the red seaweed P. capillacea, immature tetrasporophytic thalli were exposed to a flow of ethylene for different time periods. Maximum maturation of tetrasporangia was observed at 7 d in thalli exposed to ethylene for 15 min. This maturation was accompanied by a significant increase in the free fraction of putrescine (Put) and a 5‐fold increase in the level of total RNA. These changes were specifically due to ethylene since they were blocked by the presence of the ethylene perception inhibitor silver thiosulphate (STS). Moreover, P. capillacea was determined to produce ethylene at a rate of 1.12 ± 0.06 nmol ethylene · h?1· g?1 fresh weight (fwt) with specific activities for 1‐aminocyclopropane‐1‐acrylic acid (ACC) synthase of 11.21 ± 1.19 nmol ethylene · h?1· mg?1 protein and for ACC oxidase (ACO) of 7.12 ± 0.11 nmol ethylene · h?1· mg?1 protein. We conclude that ethylene may indeed be a physiological regulator of tetrasporogenesis in this red seaweed.  相似文献   

19.
In tomato plants, Pepper mild mottle virus (PMMoV) cannot replicate because the tm‐1 protein inhibits RNA replication. The resistance of tomato plants to PMMoV remains durable both in the field and under laboratory conditions. In this study, we constructed several mutant PMMoVs and analysed their abilities to replicate in tomato protoplasts and plants. We found that two mutants, PMMoV‐899R,F976Y and PMMoV‐899R,F976Y,D1098N, were able to replicate in tomato protoplasts, but only PMMoV‐899R,F976Y,D1098N was able to multiply in tomato plants. Further analysis showed that the D1098N mutation of the replication proteins weakened the inhibitory effect of the tm‐1 protein and enhanced the replication efficiency of PMMoV‐899R,F976Y,D1098N. We also observed that the infectivity of the viruses decreased in the order wild‐type PMMoV > PMMoV‐899R,F976Y > PMMoV‐899R,F976Y,D1098N in original host plants, pepper and tobacco plants. On the contrary, the single mutation D1098N abolished PMMoV replication in tobacco protoplasts. On the basis of these observations, it is likely that the deleterious side‐effects of mutations in replication proteins prevent the emergence of PMMoV mutants that can overcome tm‐1‐mediated resistance.  相似文献   

20.
Aim: To study the induction of a viable but nonculturable (VBNC) state in Vibrio cholerae O1 in freshwater, in response to cold temperatures (4°C) and starvation. Methods and Results: Vibrio cholerae O1 cells were inoculated in freshwater microcosm and incubated at 4°C. The cells became coccoid, rugose and subsequently nonculturable by day 16 on tryptic soy agar (TSA) and by day 23 on TSA‐SP, while 87 and 65% of the cells retained their membrane integrity, respectively. Viable cells were observed until day 30 using direct fluorescent antibody–direct viable count method. In vitro resuscitation was demonstrated by temperature upshift. Utilizing 16S rRNA as an endogenous control, the DNA pol II (27·43‐fold), fliG (12·44‐fold), ABC transporter (27·11‐fold), relA (60·76‐fold) and flaC (15·29‐fold) were significantly up‐regulated in VBNC cells, while the expression of fadL‐3 was comparable. The expression of DNA pol II, fliG, ABC transporter, relA and flaC was 3·3, 1·1, 5·9, 5·8 and 1·2‐fold, respectively, for resuscitated cells. VBNC cells were found to be virulent, as ctxA and tcpA were expressed. Conclusions: Vibrio cholerae undergoes both phenotypic alteration and genotypic modulation to protect itself from stress in freshwater. Significance and Impact of the Study:: Induction and resuscitation of the VBNC state in freshwater is important for an understanding of the epidemiology of cholera in the freshwater environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号