首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sensitivity of stomata and water use efficiency to high CO2   总被引:17,自引:9,他引:8  
Abstract The observed responses of stomata to carbon dioxide are reviewed, and the interaction of other known factors on the sensitivity to CO2 are summarized. The role of stomatal response to CO2 is discussed, and it is argued that while the effect of the CO2 response in normal daily stomatal behaviour is presently poorly understood the stomatal response to CO2 will have major impact in improving water use efficiency in future CO2 atmospheres. However, the attenuation of this increase is emphasized so that increases at the crop level will probably be much smaller than those observed at the single leaf assimilation level.  相似文献   

2.
3.
Accumulation of recently photosynthesized sucrose in the guard‐cell wall is the empirical foundation for a hypothesis that links the rates of photosynthesis, translocation, and transpiration (Plant Physiology 114, 109–118). Critical assumptions of this hypothesis were tested by use of Vicia faba, an apoplastic phloem loader. Following measurements of the leaflet‐apoplastic‐water volume (by P–V isotherm analysis) and the guard‐cell wall volume (by 3‐D analysis), intact leaflets were fed dilute solutions of mannitol, an impermeant non‐toxic osmolyte. Even at bulk‐leaflet mannitol concentrations that would have only a negligible osmotic effect on stomata, transpiration at constant temperature, water‐vapour pressure, air movement and irradiance was diminished up to 25%, compared with controls. This effect on transpiration, a manifestation of smaller stomatal aperture size, was explained by accumulation of mannitol, up to 350 mol m ? 3, in the estimated aqueous volume of the guard‐cell wall. The conclusion is that mannitol, a xenobiotic with structural similarity to sucrose, can move throughout the apoplast of a transpiring leaflet and accumulate in an osmotically significant concentration in the guard‐cell wall. These data therefore provide support for a new role for sucrose as a signal metabolite that integrates essential functions of the whole leaf. In addition, the results raise questions about the physiological or experimental accumulation of other guard‐cell‐targeted apoplastic solutes such as plant growth regulators, particularly abscisic acid, and ions.  相似文献   

4.
The increasing demand for food production and predicted climate change scenarios highlight the need for improvements in crop sustainability. The efficient use of water will become increasingly important for rain‐fed agricultural crops even in fertile regions that have historically received ample precipitation. Improvements in water‐use efficiency in Zea mays have been limited, and warrant a renewed effort aided by molecular breeding approaches. Progress has been constrained by the difficulty of measuring water‐use in a field environment. The stable carbon isotope composition (δ13C) of the leaf has been proposed as an integrated signature of carbon fixation with a link to stomatal conductance. However, additional factors affecting leaf δ13C exist, and a limited number of studies have explored this trait in Z. mays. Here we present an extensive characterization of leaf δ13C in Z. mays. Significant variation in leaf δ13C exists across diverse lines of Z. mays, which we show to be heritable across several environments. Furthermore, we examine temporal and spatial variation in leaf δ13C to determine the optimum sampling time to maximize the use of leaf δ13C as a trait. Finally, our results demonstrate the relationship between transpiration and leaf δ13C in the field and the greenhouse. Decreasing transpiration and soil moisture are associated with decreasing leaf δ13C. Taken together these results outline a strategy for using leaf δ13C and reveal its usefulness as a measure of transpiration efficiency under well‐watered conditions rather than a predictor of performance under drought.  相似文献   

5.
6.
The gas exchange traits of wild type soybeans (cv. Clark) and a near-isogenic, chlorophyll-deficient line homozygous for the recessive allele y9 (y9y9) were compared under either well-watered or water-stress conditions. Mature leaves of y9 had a 65% lower chlorophyll content than wild type. However, the net photosynthetic rate (PN) of y9 leaves was only 20% lower than in the wild type, irrespective of water availability. Transpiration rates (E) were significantly higher in leaves of y9, compared to the wild type, either under well-watered or stress conditions. The higher E of y9 correlated with increased stomatal conductance, particularly in the abaxial epidermis, where more than 70% of the stomata were located. The combination of lower PN and increased E resulted in a significant decrease of water use efficiency in y9, at both water availability levels. The relative water content decreased in stressed leaves, much more in y9 than in wild type leaves, probably because of the higher E of the mutant line. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Two allelic Arabidopsis mutants, leaf wilting 2-1 and leaf wilting 2-2 (lew2-1 and lew2-2 ), were isolated in a screen for plants with altered drought stress responses. The mutants were more tolerant to drought stress as well as to NaCl, mannitol and other osmotic stresses. lew2 mutant plants accumulated more abscisic acid (ABA), proline and soluble sugars than the wild type. The expression of a stress-inducible marker gene RD29A, a proline synthesis-related gene P5CS (pyrroline-5-carboxylate synthase) and an ABA synthesis-related gene SDR1 (alcohol dehydrogenase/reductase) was higher in lew2 than in the wild type. Map-based cloning revealed that the lew2 mutants are new alleles of the AtCesA8/IRX1 gene which encodes a subunit of a cellulose synthesis complex. Our results suggest that cellulose synthesis is important for drought and osmotic stress responses including drought induction of gene expression.  相似文献   

8.
Stomatal opening and closing are driven by ion fluxes that cause changes in guard cell turgor and volume. This process is, in turn, regulated by environmental and hormonal signals, including light and the phytohormone abscisic acid (ABA). Here, we present genetic evidence that expression of PHO1 in guard cells of Arabidopsis thaliana is required for full stomatal responses to ABA. PHO1 is involved in the export of phosphate into the root xylem vessels and, as a result, the pho1 mutant is characterized by low shoot phosphate levels. In leaves, PHO1 was found expressed in guard cells and up‐regulated following treatment with ABA. The pho1 mutant was unaffected in production of reactive oxygen species following ABA treatment, and in stomatal movements in response to light cues, high extracellular calcium, auxin, and fusicoccin. However, stomatal movements in response to ABA treatment were severely impaired, both in terms of induction of closure and inhibition of opening. Micro‐grafting a pho1 shoot scion onto wild‐type rootstock resulted in plants with normal shoot growth and phosphate content, but failed to restore normal stomatal response to ABA treatment. PHO1 knockdown using RNA interference specifically in guard cells of wild‐type plants caused a reduced stomatal response to ABA. In agreement, specific expression of PHO1 in guard cells of pho1 plants complemented the mutant guard cell phenotype and re‐established ABA sensitivity, although full functional complementation was dependent on shoot phosphate sufficiency. Together, these data reveal an important role for phosphate and the action of PHO1 in the stomatal response to ABA.  相似文献   

9.
Current models of plasma membrane (PM) postulate its organization in various nano‐ and micro‐domains with distinct protein and lipid composition. While metazoan PM nanodomains usually display high lateral mobility, the dynamics of plant nanodomains is often highly spatially restricted. Here we have focused on the determination of the PM distribution in nanodomains for Arabidopsis thaliana flotillin (AtFLOT) and hypersensitive induced reaction proteins (AtHIR), previously shown to be involved in response to extracellular stimuli. Using in vivo laser scanning and spinning disc confocal microscopy in Arabidopsis thaliana we present here their nanodomain localization in various epidermal cell types. Fluorescence recovery after photobleaching (FRAP) and kymographic analysis revealed that PM‐associated AtFLOTs contain significantly higher immobile fraction than AtHIRs. In addition, much lower immobile fractions have been found in tonoplast pool of AtHIR3. Although members of both groups of proteins were spatially restricted in their PM distribution by corrals co‐aligning with microtubules (MTs), pharmacological treatments showed no or very low role of actin and microtubular cytoskeleton for clustering of AtFLOT and AtHIR into nanodomains. Finally, pharmacological alteration of cell wall (CW) synthesis and structure resulted in changes in lateral mobility of AtFLOT2 and AtHIR1. Accordingly, partial enzymatic CW removal increased the overall dynamics as well as individual nanodomain mobility of these two proteins. Such structural links to CW could play an important role in their correct positioning during PM communication with extracellular environment.  相似文献   

10.
Higher transpiration efficiency (TE) has been proposed as a mechanism to increase crop yields in dry environments where water availability usually limits yield. The application of a coupled radiation and TE simulation model shows wheat yield advantage of a high‐TE cultivar (cv. Drysdale) over its almost identical low‐TE parent line (Hartog), from about ?7 to 558 kg/ha (mean 187 kg/ha) over the rainfed cropping region in Australia (221–1,351 mm annual rainfall), under the present‐day climate. The smallest absolute yield response occurred in the more extreme drier and wetter areas of the wheat belt. However, under elevated CO2 conditions, the response of Drysdale was much greater overall, ranging from 51 to 886 kg/ha (mean 284 kg/ha) with the greatest response in the higher rainfall areas. Changes in simulated TE under elevated CO2 conditions are seen across Australia with notable increased areas of higher TE under a drier climate in Western Australia, Queensland and parts of New South Wales and Victoria. This improved efficiency is subtly deceptive, with highest yields not necessarily directly correlated with highest TE. Nevertheless, the advantage of Drysdale over Hartog is clear with the benefit of the trait advantage attributed to TE ranging from 102% to 118% (mean 109%). The potential annual cost‐benefits of this increased genetic TE trait across the wheat growing areas of Australia (5 year average of area planted to wheat) totaled AUD 631 MIL (5‐year average wheat price of AUD/260 t) with an average of 187 kg/ha under the present climate. The benefit to an individual farmer will depend on location but elevated CO2 raises this nation‐wide benefit to AUD 796 MIL in a 2°C warmer climate, slightly lower (AUD 715 MIL) if rainfall is also reduced by 20%.  相似文献   

11.
Abstract. Peristomatal transpiration is defined as the relative high local rate of cuticular water loss from external and internal surfaces around the stomatal pore and its decisive role in the control of stomatal movement is re-emphasized. As the resistance towards changes in air humidity is low in the pore surroundings, the state of turgor is particularly unsteady there. Due to the inherent instability the guard cell 'senses' fluctuations in the supply-demand relationship of water and is thus the control unit proper. The environmental variables (supply and demand) are cross-correlated within the subsidiary cell and the information is transmitted to the guard cell through the water potential gradient between the two cells. A conceptual segregation of a 'humidity response' by 'passive' stomatal movements is rejected.
As ions always accumulate at the most distant point of the liquid path and as this point varies with pore width according to the prevailing water potential gradients, it is felt that the water stream is causing the characteristic pattern of ion distribution within the epidermis. Passive import of ions is attributed to local concentration gradients which are steepened by continuous supply and by water uptake into the guard cell in response to starch hydrolysis. A mechanistic model supplements the discussion.  相似文献   

12.
The role of the mesophyll in stomatal responses to light and CO2   总被引:1,自引:0,他引:1  
Stomatal responses to light and CO2 were investigated using isolated epidermes of Tradescantia pallida , Vicia faba and Pisum sativum . Stomata in leaves of T. pallida and P. sativum responded to light and CO2, but those from V. faba did not. Stomata in isolated epidermes of all three species could be opened on KCl solutions, but they showed no response to light or CO2. However, when isolated epidermes of T. pallida and P. sativum were placed on an exposed mesophyll from a leaf of the same species or a different species, they regained responsiveness to light and CO2. Stomatal responses in these epidermes were similar to those in leaves in that they responded rapidly and reversibly to changes in light and CO2. Epidermes from V. faba did not respond to light or CO2 when placed on mesophyll from any of the three species. Experiments with single optic fibres suggest that stomata were being regulated via signals from the mesophyll produced in response to light and CO2 rather than being sensitized to light and CO2 by the mesophyll. The data suggest that most of the stomatal response to CO2 and light occurs in response to a signal generated by the mesophyll.  相似文献   

13.
《植物生态学报》2017,41(5):497
Aims We evaluated the applicability of different measures of water use efficiency through analyzing the coupled dynamics of GPP and evapotranspiration in the semi-arid steppe in the Loess Plateau of China. Our objective is to explore the applicability of two quantitative measures of ecosystem water use efficiency—inherent water use efficiency (IWUE) and underlying water use efficiency (uWUE) —for the semi-arid steppe and to endeavor necessary modifications.Methods The consistency and stability of three indices of water use efficiency formulations (i.e. WUE, IWUE, uWUE) were calculated and compared at hourly, daily and annual time scales before proposing an optimal water use efficiency (oWUE). These indices were additionally used to quantify their importances in modeling the diel change of gross primary production (GPP). The yielded-accuracy of the prediction was used for justifying their uses.Important findings IWUE and uWUE appeared suitable for examining the coupled water-carbon characteristics of vegetation at hourly and daily scales, whereas WUE was more plausible on the annual and interannual scales. The optimized water use efficiency index did not improve the prediction of the coupled water-carbon characteristics as compared with uWUE, but it improved the prediction of GPP and its dynamics. oWUE and uWUE improved the predictions of GPP in the peak growing period, while WUE predicted the GPP better at the early and late growing season. Interestingly, we found that IWUE was not suitable for predicting GPP and its dynamics. The results will be of great importance in modeling the effects of climate change on the carbon assimilation and water cycle for the future.  相似文献   

14.
Water limitation is one of the most important factors limiting crop productivity world-wide and has likely been an important selective regime influencing the evolution of plant physiology. Understanding the genetic and physiological basis of drought adaptation is therefore important for improving crops as well as for understanding the evolution of wild species. Here, results are presented from quantitative trait loci (QTL) mapping of flowering time (a drought escape mechanism) and carbon stable isotope ratio (δ13C) (a drought-avoidance mechanism) in Arabidopsis thaliana. Whole-genome scans were performed using multiple-QTL models for both additive and epistatic QTL effects. We mapped five QTL affecting flowering time and five QTL affecting δ13C, but two genomic regions contained QTL with effects on both traits, suggesting a potential pleiotropic relationship. In addition, we observed QTL–QTL interaction for both traits. Two δ13C QTL were captured in near-isogenic lines to further characterize their physiological basis. These experiments revealed allelic effects on δ13C through the upstream trait of stomatal conductance with subsequent consequences for whole plant transpiration efficiency and water loss. Our findings document considerable natural genetic variation in whole-plant, drought resistance physiology of Arabidopsis and highlight the value of quantitative genetic approaches for exploring functional relationships regulating physiology.  相似文献   

15.
Epigenetic variation is frequently observed in plants and direct relationships between differences in DNA methylation and phenotypic responses to changing environments have often been described. The identification of contributing genetic loci, however, was until recently hampered by the lack of suitable genome wide mapping resources that specifically segregate for epigenetic marks. The development of epi-RIL populations in the model species Arabidopsis thaliana has alleviated this obstacle, enabling the accurate genetic analysis of epigenetic variation. Comprehensive morphological phenotyping of a ddm1 derived epi-RIL population in different environments and subsequent epi-QTL mapping revealed a high number of epi-QTLs and pleiotropic effects of several DMRs on numerous traits. For a number of these epi-QTLs epistatic interactions could be observed, further adding to the complexity of epigenetic regulation. Moreover, linkage to epigenetic marks indicated a specific role for DNA-methylation variation, rather than TE transposition, in plastic responses to changing environments. These findings provide supportive evidence for a role of epigenetic regulation in evolutionary and adaptive processes.  相似文献   

16.
在晴天条件下 ,研究了 4年生甘肃红豆草 (Onobrychis viciaefolia scop.cv.‘Gansu’)、沙打旺 (Astragalus adsurgens)、东方山羊豆 (Galega orientalis)和多年生香豌豆 (L athyruslatifolius)人工种群花期 (5月 31日 )和再生期 (7月 10日 )的净光合速率、蒸腾速率、气孔导度、水分利用效率以及土壤贮水量和水分利用特征。结果表明 ,自 5月 31日 (花期 )至 7月 10日 (再生期 ) ,4种牧草对土壤水分消耗由大到小依次为 :沙打旺 119.2 mm、多年生香豌豆 91.6 mm、山羊豆 81.9m m和红豆草 73.8m m。红豆草在花期和再生期的净光合速率分别为 12 .4 1和 9.0 6μ mol CO2 / (m2 · s) ,沙打旺为 10 .10和 7.0 1μ m ol CO2 / (m2 · s) ;红豆草在花期和再生期的日均蒸腾速率 8.13和 9.0 5 m m ol H2 O/ (m2· s) ,沙打旺刈割前和刈割后蒸腾速率分别为 7.4 0和 6 .5 4mmol H2 O/ (m2· s) ,属于高光合、高蒸腾型。而山羊豆和多年生香豌豆则属于低蒸腾、低光合类型 ,花期和再生期 ,山羊豆的日均光合速率分别为 4 .74和 4 .88μm ol CO2 / (m2· s) ,多年生香豌豆为 4 .4 1和 4 .6 4 μ mol CO2 / (m2· s) ,相应的蒸腾速率分别达到 3.75和 5 .4 2 m mol H2 O/ (m2 · s) ,4 .74和 4 .34m mol H2 O/ (m2 · s)。  相似文献   

17.
The hormone auxin is known to inhibit root elongation and to promote initiation of lateral roots. Here we report complex effects of auxin on lateral root initiation in roots showing reduced cell elongation after auxin treatment. In Arabidopsis thaliana, the promotion of lateral root initiation by indole-3-acetic acid (IAA) was reduced as the IAA concentration was increased in the nanomolar range, and IAA became inhibitory at 25 nM. Detection of this unexpected inhibitory effect required evaluation of root portions that had newly formed during treatment, separately from root portions that existed prior to treatment. Lateral root initiation was also reduced in the iaaM-OX Arabidopsis line, which has an endogenously increased IAA level. The ethylene signaling mutants ein2-5 and etr1-3, the auxin transport mutants aux1-7 and eir1/pin2, and the auxin perception/response mutant tir1-1 were resistant to the inhibitory effect of IAA on lateral root initiation, consistent with a requirement for intact ethylene signaling, auxin transport and auxin perception/response for this effect. The pericycle cell length was less dramatically reduced than cortical cell length, suggesting that a reduction in the pericycle cell number relative to the cortex could occur with the increase of the IAA level. Expression of the DR5:GUS auxin reporter was also less effectively induced, and the AXR3 auxin repressor protein was less effectively eliminated in such root portions, suggesting that decreased auxin responsiveness may accompany the inhibition. Our study highlights a connection between auxin-regulated inhibition of parent root elongation and a decrease in lateral root initiation. This may be required to regulate the spacing of lateral roots and optimize root architecture to environmental demands.  相似文献   

18.
Physiological basis of QTLs for boron efficiency in Arabidopsis thaliana   总被引:1,自引:0,他引:1  
Boron (B) is an essential micronutrient for higher plants, but the adaptability of plants to B deficiency varies widely both between and within species. On the basis of quantitative trait loci (QTL) analysis of the B efficiency coefficient (BEC) detected in an Arabidopsis thaliana Ler × Col recombinant inbred (RI) population, B efficiency was evaluated in the original parents (Ler and Col-4) and two F8 lines (1938 and 1961), both of which were selected on the basis of phenotype and genotype of the RI population. The parent Ler and F8 progeny 1938 had higher BEC and B utilization efficiency (BUE) values than those calculated for parent Col-4 and F8 progeny 1961, respectively, when grown in nutrient solutions containing three different concentrations of B. The magnitude of the BEC and BUE-values was correlated closely with the combined phenotypic effect of the corresponding QTLs among the four genotypes. The F8 line, 1938, inherited all four B-efficient QTLs, AtBE1-1, AtBE1-2, AtBE2 and AtBE5, from its two original parents. The four QTLs accounted for 65.2% of the total variation in BEC and 1938 showed the highest BEC (0.74) and BUE (10.5) values among the four genotypes when grown in nutrient solution that contained 0.324 μM B. Only one minor-effect QTL (AtBE1-1) was found in the parent, Col-4. This QTL accounted only for 8.8% of total BEC variation and resulted in the lowest BEC (0.39) and BUE (0.76) in Col-4 when it was grown in nutrient solution that contained 0.324 μM B. Phenotypic profile analysis showed that 1938 not only inherited the B utilization and distribution characteristics found in the silique of Ler, but also acquired the low-B requirement for root and shoot growth from Col-4. As a result, this genotype displayed the strongest tolerance to B deficiency. In addition, both B-efficient genotypes, 1938 and Ler, possessed the QTL (AtBE1-2) and both plants had high-seed yields and high-B distributions in their siliques. Therefore, we hypothesize that QTL AtBE1-2 plays a role in the utilization and/or the distribution of B to the silique when plants suffer from B deficiency. A close correlation between the B-efficient phenotype and the corresponding QTLs indicated that phenotypic differences depend on the genetic variation. Responsible Editor: Richard W. Bell.  相似文献   

19.
研究了表油菜素内酯(epi-BR)对拟南芥细胞体外分化的影响.表明epi-BR不仅能促进愈伤组织的增殖,而且还能有效地诱导愈伤组织转绿,继而分化绿芽和长成小植株,其诱导频率高达70%以上。电镜观察表明,epi-BR诱导的转绿细胞中的叶绿体发育正常。  相似文献   

20.
The best predictor of leaf level photosynthetic rate is the porosity of the leaf surface, as determined by the number and aperture of stomata on the leaf. This remarkable correlation between stomatal porosity (or diffusive conductance to water vapour gs) and CO2 assimilation rate (A) applies to all major lineages of vascular plants (Figure 1) and is sufficiently predictable that it provides the basis for the model most widely used to predict water and CO2 fluxes from leaves and canopies. Yet the Ball–Berry formulation is only a phenomenological approximation that captures the emergent character of stomatal behaviour. Progressing to a more mechanistic prediction of plant gas exchange is challenging because of the diversity of biological components regulating stomatal action. These processes are the product of more than 400 million years of co‐evolution between stomatal, vascular and photosynthetic tissues. Both molecular and structural components link the abiotic world of the whole plant with the turgor pressure of the epidermis and guard cells, which ultimately determine stomatal pore size and porosity to water and CO2 exchange (New Phytol., 168, 2005, 275). In this review we seek to simplify stomatal behaviour by using an evolutionary perspective to understand the principal selective pressures involved in stomatal evolution, thus identifying the primary regulators of stomatal aperture. We start by considering the adaptive process that has locked together the regulation of water and carbon fluxes in vascular plants, finally examining specific evidence for evolution in the proteins responsible for regulating guard cell turgor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号