首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: BACKGROUND: Uropathogenic strains of Escherichia coli cause symptomatic infections whereas asymptomatic bacteriuria (ABU) strains are well adapted for growth in the human urinary tract, where they establish long-term bacteriuria. Human urine is a very complex growth medium that could be perceived by certain bacteria as a stressful environment. To investigate a possible imbalance between endogenous oxidative response and antioxidant mechanisms, lipid oxidative damage estimated as thiobarbituric acid reactive substances (TBARS) content was evaluated in twenty-one E. coli belonging to various pathovars and phylogenetic groups. Antioxidant defense mechanisms were also analysed. RESULTS: During exponential growth in urine, TBARS level differs between strains, without correlation with the ability to grow in urine which was similarly limited for commensal, ABU and uropathogenic strains. In addition, no correlation between TBARS level and the phylogroup or pathogenic group is apparent. The growth of ABU strain 83972 was associated with a high level of TBARS and more active antioxidant defenses that reduce the imbalance. CONCLUSIONS: Our results indicate that growth capacity in urine is not a property of ABU strains. However, E. coli isolates respond very differently to this stressful environment. In strain ABU 83972, on one hand, the increased level of endogenous reactive oxygen species may be responsible for adaptive mutations. On the other hand, a more active antioxidant defense system could increase the capacity to colonize the bladder.  相似文献   

2.
Escherichia coli strains, grown to suppress fimbrial expression, synthesised enhanced quantities of polysaccharide capsule, which significantly lessened their binding to heparin sepharose columns. In the presence of poly-L-lysine, these strains were strongly retained on the columns confirming their highly anionic nature. Uropathogenic strains of E. coli expressing type 1 fimbrial adhesins activated the respiratory burst, the degranulation response and the release of leukotrienes from human neutrophils (PMN) to a significantly greater extent than the same strains grown in a medium to suppress this fimbrial expression. The addition of the poly-cation poly-L-lysine, however, selectively increased neutrophil activation in response to these non-fimbriate strains. This dose-dependent effect was reversed by the addition of heparin suggesting a mechanism dependent on surface charge. The results of this study suggest that non-specific mechanisms involving the neutralisation of surface charge, in addition to specific receptor and adhesin mediated events could affect neutrophil activation at sites of infection.  相似文献   

3.
Smith A  van Rooyen JP  Argo E  Cash P 《Proteomics》2011,11(11):2283-2293
Escherichia coli is a major cause of urinary tract infections (UTIs) where the initial infection arises from bacteria originating in the bowel. However, significant differences are observed between the genomes of intestinal and urinary E. coli strains with the latter possessing many adaptations that promote growth in the urinary tract. To define further the adaptation of urinary E. coli isolates, the cellular proteomes of 41 E. coli strains, collected from cases of UTIs or random faecal samples, were compared by 2-D gel electrophoresis and principal component analysis. The data indicated that individual patients carried relatively homogenous E. coli populations, as defined by their cellular proteomes, but the populations were distinct between patients. For one patient, E. coli, isolated during two recurrent infections 3 months apart, were indistinguishable, indicating that for this patient the infections were possibly caused by the same bacterial population. To understand the basis of the discrimination of the bacteria, selected protein spots were identified by peptide fragment fingerprinting. The identified proteins were involved in a variety of metabolic and structural roles. The data obtained for these E. coli strains provide a basis from which to target key bacterial proteins for further investigation into E. coli pathogenesis.  相似文献   

4.
Urinary tract infections (UTIs) affect millions of people each year. Escherichia coli is the most common organism associated with asymptomatic bacteriuria (ABU) in humans. Persons affected by ABU may carry a particular E. coli strain for extended periods of time without any symptoms. In contrast to uropathogenic E. coli (UPEC) that cause symptomatic UTI, very little is known about the mechanisms by which these strains colonize the urinary tract. Here, we have investigated the growth characteristics in human urine as well as adhesin repertoire of nine ABU strains; the ability of ABU strains to compete against the UPEC strain CFT073 was also studied. The different ABU strains displayed a wide variety of the measured characteristics. Half of the ABU strains displayed functional type 1 fimbriae while only one expressed functional P fimbriae. A good correlation between the growth rate of a particular strain and the survival of the strain in competition against CFT073 was observed. Our results support the notion that for strains with reduced capacity to express fimbriae, the ability to grow fast in human urine becomes crucial for colonization of the urinary tract.  相似文献   

5.
Enterococcus faecium is an opportunistic pathogen responsible for numerous outbreaks worldwide. The basis for the colonization capacities, host persistence and environmental stress response of the hospital-adapted clones emerging from E. faecium are poorly understood. In this study, we propose the use of Galleria mellonella as a simple nonmammalian model to assess E. faecium host persistence. Various strains (n = 10), including hospital-adapted, commensal or animal isolates and a SodA-deficient strain were used to assess the relevance of this model. Compared to Enterococcus faecalis, E. faecium strains do not appear very lethal in a Galleria killing assay. The ability of E. faecium strains to overcome host-immune responses and multiply within the host system was evaluated by monitoring bacterial loads following Galleria infection. Among the E. faecium strains, two hospital-adapted isolates displayed increased colonization ability. In contrast, inactivation of sodA, encoding a putative manganese-dependent superoxide dismutase, significantly reduced survival of E. faecium to Galleria defenses. Galleria appears to be a suitable and convenient surrogate model to study E. faecium survival to host defenses and the role of suspected virulence factors in the colonization process.  相似文献   

6.
Escherichia coli are the most common etiological agents of urinary tract infections (UTIs). Uropathogenic E. coli (UPECs) produce specific toxins including the cytotoxic necrotizing factor-1 (CNF1) and the alpha-hemolysin (alpha-Hly). CNF1 triggers, through Rho protein activation, a specific gene response of host cells, which results in the production for instance of interleukin-8 (IL-8), monocyte chemoattractant protein-1 (MCP-1) and the macrophage inflammatory protein-3alpha (MIP-3alpha). The alpha hemolysin alpha-Hly also triggers the production of inflammatory mediators. Cnf1 is always associated with alpha-hly in a pathogenicity island conserved among UPECs. Using two complementary approaches we have investigated whether alpha-hly and cnf1 bearing UPECs are associated with a specific type of UTI both in term of pathology and host response. Here we report that UPECs bearing alpha-hly/cnf1 have a prevalence of 50% in UPECs isolated from hemorrhagic UTIs, as compared to 30% in the overall UPEC population. In addition, we observed that MCP-1, and IL-8 to a lower extent, is produced in urine at higher concentrations in UTIs caused by UPECs carrying alpha-hly/cnf1.  相似文献   

7.
Major injury is widely thought to predispose the injured host to opportunistic infections. This idea is supported by animal studies showing that major injury causes reduced resistance to polymicrobial sepsis induced by cecal ligation and puncture. Although cecal ligation and puncture represents a clinically relevant sepsis model, we wanted to test whether injury might also lead to greater susceptibility to peritoneal infection caused by a single common pathogen, Escherichia coli. Contrary to our expectation, we show herein that the LD(50) for sham-injured mice was 10(3) CFU of E. coli, whereas the LD(50) for burn-injured mice was 50 x 10(3) CFU at 7 days postinjury. This injury-associated enhanced resistance was apparent as early as 1 day after injury, and maximal resistance was observed at days 7 and 14. We found that burn-injured mice had higher numbers of circulating neutrophils and monocytes than did sham mice before infection and that injured mice were able to recruit greater numbers of neutrophils to the site of infection. Moreover, the peritoneal neutrophils in burn-injured mice were more highly activated than neutrophils from sham mice as determined by Mac-1 expression, superoxide generation, and bactericidal activity. Our findings suggest that the enhanced innate immune response that develops following injury, although it is commonly accepted as the mediator of the detrimental systemic inflammatory response syndrome, may also, in some cases, benefit the injured host by boosting innate immune antimicrobial defenses.  相似文献   

8.
Urinary tract infections (UTIs) are among the most common bacterial infections and are responsible for significant morbidity and health care costs worldwide. The main bacterial cause of uncomplicated UTI is Escherichia coli, which possesses numerous virulence factors (VFs). Many studies of the pathogenesis of E. coli UTI have centered on VF genes. Hence, the development of better molecular assays to study VF genes would facilitate these studies. We developed a highly sensitive and specific multiplex PCR-based reverse line blot (mPCR/RLB) assay to simultaneously detect 22 VF genes of uropathogenic E. coli and then used it to characterize 180 isolates from nonpregnant women of child-bearing age with cystitis and 153 fecal isolates from similar-age healthy women, in regional New South Wales, Australia. The assay accurately identified all VF genes (of the 22 under study) known to be present in 30 previously characterized control strains. The detection limits were 28 ng of DNA from E. coli isolates and 50 CFU/ml in mock-infected urine specimens containing known concentrations of E. coli. Cystitis isolates (compared to the fecal isolates) showed a significantly higher prevalence of 18 individual VF genes and contained significantly more VF genes per isolate (median number, 18.5 versus 6.5 [P = 0.001]). Discordance between paired probes for a given VF gene occurred in several clinical test isolates but no reference strains and among the test isolates was associated with fecal source (10% of VF genes versus 2% for cystitis isolates [P < 0.001]). This novel mPCR/RLB method is a potentially powerful tool for investigating the prevalence and distribution of VFs in E. coli.  相似文献   

9.
Abstract Expression of globoside-specific pilus adhesin of Escherichia coli is the virulence factor most commonly associated with pyelonephritis. In the clinical isolate J96 (O4:K6:H5) expression of globoside binding pili require the proteins encoded by the papE, papF , and papG genes in the pap gene cluster. Probes derived from these genes were used in dot blot hybridization analysis of E. coli urinary tract isolates obtained from patients with significant bacteriuria. Fecal E. coli isolates from healthy individuals were also analyzed. The probe encompassing the papF and papF J96 genes hybridized to all urinary tract infectious (UTI) isolates expressing globoside-specific adhesin, whereas papG J96 only hybridized to the strain from which the fragment was cloned. In contrast, a papG -specific probe from the O:6 strain IA2 hybridized to all but one of the UTI isolates that expressed the adhesin. In both materials, but especially among the fecal isolates, strains were found that hybridized to the probes but did not express the adhesin. The data shows that papEF -specific DNA can be used for the diagnosis of potentially pyelonephritic E. coli .  相似文献   

10.
Formally included in the larger category of extraintestinal pathogenic Escherichia coli (ExPEC), the uropathogenic E. coli remains the most frequent cause of urinary tract infection (UTI), an important endemic health problem. The genomic DNA of E. coli urinary isolates from adults diagnosed with urinary tract infections and of E. coli fecal isolates from healthy subjects was analysed by PCR for the presence of virulence factor encoding genes pap, sfa/foc, afa, hly and cnf and by field inversion gel electrophoresis (FIGE) fingerprinting of XbaI DNA macrorestriction fragments. The aim was to obtain more detailed microbiological data regarding the community circulating strains in respect of their virulence potential and genetic relatedness. Almost 70% of the urinary strains carried at least one of the target virulence genes, and only 35.5% of the fecal E. coli strains were positive in the PCR screening. Taking into account the virulence genotypes exhibited, a part of the strains isolated from the urinary tract could be defined as belonging to the ExPEC pathotype. A unique FIGE profile was obtained for each of the selected isolates and the dendrogram generated by Taxotron software package analysis suggested a polyclonal population of potential uropathogenic strains clustered into 14 groups of only 60% similarity. For better understanding the epidemiology of UTIs, diseases commonly caused by such a heterogeneous species like E. coli, molecular analysis methods could be essential due to their increased power of identification and fingerprinting.  相似文献   

11.
This study examined the role of P and type 1 fimbriae for neutrophil migration across Escherichia coli-infected uroepithelial cell layers in vitro and for neutrophil recruitment to the urinary tract in vivo. Recombinant E. coli K-12 strains differing in P or type 1 fimbrial expression were used to infect confluent epithelial layers on the underside of transwell inserts. Neutrophils were added to the upper well, and their passage across the epithelial cell layers was quantified. Infection with the P- and type 1-fimbriated recombinant E. coli strains stimulated neutrophil migration to the same extent as a fully virulent clinical E. coli isolate, but the isogenic non-fimbriated vector control strains had no stimulatory effect. The enhancement of neutrophil migration was adhesion dependent; it was inhibited by soluble receptor analogues blocking the binding of P fimbriae to the globoseries of glycosphingolipids or of type 1 fimbriae to mannosylated glycoprotein receptors. P- and type 1-fimbriated E. coli triggered higher interleukin (IL) 8 secretion and expression of functional IL-8 receptors than non-fimbriated controls, and the increase in neutrophil migration across infected cell layers was inhibited by anti-IL-8 antibodies. In a mouse infection model, P- or type 1-fimbriated E. coli stimulated higher chemokine (MIP-2) and neutrophil responses than the non-fimbriated vector controls. The results demonstrated that transformation with the pap or fim DNA sequences is sufficient to convert an E. coli K-12 strain to a host response inducer, and that fimbriation enhances neutrophil recruitment in vitro and in vivo. Epithelial chemokine production provides a molecular link between the fimbriated bacteria that adhere to epithelial cells and tissue inflammation.  相似文献   

12.
The aim of this study was to examine if E. coli isolated from asymptomatic bacteriuria differed in pathogenic features from strains isolated from symptomatic infections of urinary tract. In this study 130 strains of E. coli isolated from women having asymptomatic bacteriuria and 112 strains isolated from patients with symptoms of urinary tract infection were examined. It was shown that E. coli isolated from patients with symptomatic urinary tract infection showed the more frequently ability to cause mannose-resistant haemagglutination of human erythrocytes, resistance to bactericidal activity of serum and haemolytic properties than those isolated from asymptomatic bacteriuria. These strains showed also the higher ability to adhere to Vero cells in tissue culture. Among E. coli strains isolated from persons with asymptomatic bacteriuria the pathogenic features were most frequently found in strains from healthy women and the most rarely in isolated from diabetic women.  相似文献   

13.
Escherichia coli isolates were obtained from common host sources of fecal pollution and characterized by using repetitive extragenic palindromic (REP) PCR fingerprinting. The genetic relationship of strains within each host group was assessed as was the relationship of strains among different host groups. Multiple isolates from a single host animal (gull, human, or dog) were found to be identical; however, in some of the animals, additional strains occurred at a lower frequency. REP PCR fingerprint patterns of isolates from sewage (n = 180), gulls (n = 133), and dairy cattle (n = 121) were diverse; within a host group, pairwise comparison similarity indices ranged from 98% to as low as 15%. A composite dendrogram of E. coli fingerprint patterns did not cluster the isolates into distinct host groups but rather produced numerous subclusters (approximately >80% similarity scores calculated with the cosine coefficient) that were nearly exclusive for a host group. Approximately 65% of the isolates analyzed were arranged into host-specific groups. Comparable results were obtained by using enterobacterial repetitive intergenic consensus PCR and pulsed-field gel electrophoresis (PFGE), where PFGE gave a higher differentiation of closely related strains than both PCR techniques. These results demonstrate that environmental studies with genetic comparisons to detect sources of E. coli contamination will require extensive isolation of strains to encompass E. coli strain diversity found in host sources of contamination. These findings will assist in the development of approaches to determine sources of fecal pollution, an effort important for protecting water resources and public health.  相似文献   

14.
Bacterial persistence describes a heterogeneous response to antibiotics in clonal populations of bacteria due to phenotypic variation within the population, with a small proportion of cells surviving treatment even at very high concentrations of drug. The aim of this study was to determine whether different natural isolates of Escherichia coli, selected at random from a collection representing the spectrum of genetic diversity in the species, generate different fractions of persister cells. Despite comparable minimum inhibitory concentrations (MICs) to the antibiotics between the different strains, highly significant variation was observed in persister fractions following exposure to ampicillin, streptomycinm, or norfloxacin. Survival following treatment with one drug did not, however, correlate with survival against another. Finally, using competition assays we quantify fitness benefits of persistence. These results show that different strains of E. coli vary markedly in their response to antibiotics despite comparable genetic susceptibility and indicate different mechanisms of evolved persistence to different antibiotics.  相似文献   

15.
From October 1999 to July 2001, a prospective cohort study was conducted to assess the intestinal Escherichia coli population dynamics of 23 sexually active couples. We tested the hypothesis that intestinal persistence and predominance of specific E. coli strains, co-colonization of sex partners with the same E. coli strain, and the intestinal diversity of fecal E. coli, contribute to recurrent urinary tract infection (UTI). E. coli isolates causing UTI, asymptomatic bacteriuria (ABU), or intestinal co-colonization were evaluated by ERIC2 PCR and compared with strains recovered exclusively from stool samples with respect to intestinal persistence, predominance, and diversity. Contrary to our hypothesis, UTI-causing strains exhibited similar levels of intestinal persistence and predominance as did fecal strains, and UTI episodes were not associated with shifts in fecal E. coli diversity. In contrast, intestinal co-colonization strains exhibited greater persistence and predominance than did fecal strains and were more likely to cause ABU, and co-colonization episodes were associated with significantly increased fecal E. coli diversity. Nonetheless, intestinal co-colonization strains were not associated with UTI. These findings suggest that E. coli strains involved in co-colonization may be more important contributors to intestinal E. coli dynamics than to UTI pathogenesis.  相似文献   

16.
Thirty nine isolates of Escherichia coli, twenty two isolates of Klebsiella pneumoniae and sixteen isolates of Pseudomonas aeruginosa isolated from urinary tract infected patients were analyzed by antimicrobial susceptibility typing and random amplified polymorphic DNA (RAPD)-PCR. Antibiotic susceptibility testing was carried out by microdilution and E Test methods. From the antibiotic susceptibility, ten patterns were recorded (four for E. coli, three for K. pneumoniae and three for P. aeruginosa respectively). Furthermore, genotyping showed seventeen RAPD patterns (seven for E. coli, five for K. pneumoniae and five for P. aeruginosa respectively). In this study, differentiation of strains of E. coli, K. pneumoniae and P. aeruginosa from nosocomial infection was possible with the use of RAPD.  相似文献   

17.
A group of Escherichia coli isolates from nature were compared with one another and with laboratory strains of E. coli with respect to size distribution of chromosomal restriction endonuclease fragments and differences in nucleotide sequences in selected small portions of the genomes. The estimated frequency of base substitutions in nucleotide sequences in and near the trp operons of 26 of the 28 E. coli strains examined ranged from 0.008 to 0.066. Nucleotide sequences in or near lambda prophage homologs were significantly more variable than the sequences in or near trp, tnaA, and thyA genes. Thus, the lambda-homologous regions may have a significant horizontal component in their evolutionary histories, having undergone genetic exchange, whereas the trp, tnaA, and thyA regions may have solely vertical evolutionary histories. The relatedness of the E. coli strains in the genetic regions studied indicated that laboratory strains are not more closely related to one other than they are to isolates from nature. The isolates from natural populations did not form groups related either by host taxa or by geographical region of isolation.  相似文献   

18.
Escherichia coli strains that cause disease outside the intestine are known as extraintestinal pathogenic E. coli (ExPEC) and include pathogens of humans and animals. Previously, the genome of avian-pathogenic E. coli (APEC) O1:K1:H7 strain O1, from ST95, was sequenced and compared to those of several other E. coli strains, identifying 43 genomic islands. Here, the genomic islands of APEC O1 were compared to those of other sequenced E. coli strains, and the distribution of 81 genes belonging to 12 APEC O1 genomic islands among 828 human and avian ExPEC and commensal E. coli isolates was determined. Multiple islands were highly prevalent among isolates belonging to the O1 and O18 serogroups within phylogenetic group B2, which are implicated in human neonatal meningitis. Because of the extensive genomic similarities between APEC O1 and other human ExPEC strains belonging to the ST95 phylogenetic lineage, its ability to cause disease in a rat model of sepsis and meningitis was assessed. Unlike other ST95 lineage strains, APEC O1 was unable to cause bacteremia or meningitis in the neonatal rat model and was significantly less virulent than uropathogenic E. coli (UPEC) CFT073 in a mouse sepsis model, despite carrying multiple neonatal meningitis E. coli (NMEC) virulence factors and belonging to the ST95 phylogenetic lineage. These results suggest that host adaptation or genome modifications have occurred either in APEC O1 or in highly virulent ExPEC isolates, resulting in differences in pathogenicity. Overall, the genomic islands examined provide targets for further discrimination of the different ExPEC subpathotypes, serogroups, phylogenetic types, and sequence types.  相似文献   

19.
Evolution of the iss gene in Escherichia coli   总被引:1,自引:0,他引:1  
The increased serum survival gene iss has long been recognized for its role in extraintestinal pathogenic Escherichia coli (ExPEC) virulence. iss has been identified as a distinguishing trait of avian ExPEC but not of human ExPEC. This gene has been localized to large virulence plasmids and shares strong similarities with the bor gene from bacteriophage lambda. Here, we demonstrate that three alleles of iss occur among E. coli isolates that appear to have evolved from a common lambda bor precursor. In addition to the occurrence of iss on the ColV/BM virulence plasmids, at least two iss alleles occur within the E. coli chromosome. One of these alleles (designated type 3) was found to occur in the genomes of all currently sequenced ExPEC strains on a similar prophage element that also harbors the Sit iron and manganese transport system. When the prevalence of the three iss types was examined among 487 E. coli isolates, the iss type 3 gene was found to occur at a high frequency among ExPEC isolates, irrespective of the host source. The plasmid-borne iss allele (designated type 1) was highly prevalent among avian pathogenic E. coli and neonatal meningitis-associated E. coli isolates but not among uropathogenic E. coli isolates. This study demonstrates the evolution of iss in E. coli and provides an additional tool for discriminating among E. coli pathotypes through the differentiation of the three iss allele types and bor.  相似文献   

20.
目的探讨临床分离大肠埃希菌对碳青霉烯类抗生素的耐药机制及流行情况,为临床用药和院内感染监控提供依据。方法收集2012年8月至2013年7月温州医科大学附属第二医院厄他培南不敏感的大肠埃希菌10株,采用VITEK Compact2全自动微生物分析仪检测18种常用抗菌药物的MIC值;改良Hodge试验检测碳青霉烯酶,PCR扩增包括碳青霉烯酶基因在内的多种B.内酰胺酶基因;应用脉冲场凝胶电泳(PFGE)分析菌株同源性。结果分离菌株来自不同病区无聚集现象,标本来源以尿液为主;菌株对广谱青霉素、三代、四代头孢菌素、氟喹诺酮类和酶抑制剂复合物耐药严重,对氨基糖苷类抗生素较为敏感;PCR扩增几乎所有菌株携带ESBL基因,只有一株除外,其中主要是blarsm和、blactx-mo3株blaNOM-1基因阳性,未检出其他碳青霉烯酶基因;脉冲场凝胶电泳分析表明,菌株之间没有克隆关系。结论该院分离10株大肠埃希菌对碳青霉烯类耐药主要是存在NDM-1金属酶联合ESBL,菌株间未发现克隆传播。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号