首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microbe‐associated molecular pattern (MAMP)‐triggered immunity plays critical roles in the basal resistance defense response in plants. Chitin and peptidoglycan (PGN) are major molecular patterns for fungi and bacteria, respectively. Two rice (Oryza sativa) lysin motif‐containing proteins, OsLYP4 and OsLYP6, function as receptors that sense bacterial PGN and fungal chitin. These membrane receptors, which lack intracellular kinase domains, likely contain another component for transmembrane immune signal transduction. Here, we demonstrate that the rice LysM receptor‐like kinase OsCERK1, a key component of the chitin elicitor signaling pathway, also plays an important role in PGN‐triggered immunity in rice. Silencing of OsCERK1 suppressed PGN‐induced (and chitin‐induced) immunity responses, including reactive oxygen species generation, defense gene expression, and callose deposition, indicating that OsCERK1 is essential for both PGN and chitin signaling initiated by OsLYP4 and OsLYP6. OsLYP4 associated with OsLYP6 and the rice chitin receptor chitin oligosaccharide elicitor‐binding protein (CEBiP) in the absence of PGN or chitin, and treatment with PGN or chitin led to their disassociation in vivo. OsCERK1 associated with OsLYP4 or OsLYP6 when induced by PGN but it associated with OsLYP4, OsLYP6, or CEBiP under chitin treatment, suggesting the presence of different patterns of ligand‐induced heterooligomeric receptor complexes. Furthermore, the receptor‐like cytoplasmic kinase OsRLCK176 functions downstream of OsCERK1 in the PGN and chitin signaling pathways, suggesting that these MAMPs share overlapping intracellular signaling components. Therefore, OsCERK1 plays dual roles in PGN and chitin signaling in rice innate immunity and as an adaptor involved in signal transduction at the plasma membrane in conjunction with OsLYP4 and OsLYP6.  相似文献   

2.
Plants use pattern recognition receptors to defend themselves from microbial pathogens. These receptors recognize pathogen-associated molecular patterns (PAMPs) and activate signaling pathways that lead to immunity. In rice (Oryza sativa), the chitin elicitor binding protein (CEBiP) recognizes chitin oligosaccharides released from the cell walls of fungal pathogens. Here, we show that the rice blast fungus Magnaporthe oryzae overcomes this first line of plant defense by secreting an effector protein, Secreted LysM Protein1 (Slp1), during invasion of new rice cells. We demonstrate that Slp1 accumulates at the interface between the fungal cell wall and the rice plasma membrane, can bind to chitin, and is able to suppress chitin-induced plant immune responses, including generation of reactive oxygen species and plant defense gene expression. Furthermore, we show that Slp1 competes with CEBiP for binding of chitin oligosaccharides. Slp1 is required by M. oryzae for full virulence and exerts a significant effect on tissue invasion and disease lesion expansion. By contrast, gene silencing of CEBiP in rice allows M. oryzae to cause rice blast disease in the absence of Slp1. We propose that Slp1 sequesters chitin oligosaccharides to prevent PAMP-triggered immunity in rice, thereby facilitating rapid spread of the fungus within host tissue.  相似文献   

3.
Plants have the ability to detect invading fungi through the perception of chitin fragments released from the fungal cell walls. Plant chitin receptor consists of two types of plasma membrane proteins, CEBiP and CERK1. However, the contribution of these proteins to chitin signaling is different between Arabidopsis and rice. In Arabidopsis, it seems CERK1 receptor kinase is enough for both ligand perception and signaling, whereas both CEBiP and OsCERK1 are required for chitin signaling in rice. Here we report that Arabidopsis CEBiP homolog, LYM2, is not involved in chitin signaling but contributes to resistance against a fungal pathogen, Alternaria brassicicola, indicating the presence of a novel disease resistance mechanism in Arabidopsis.  相似文献   

4.
Plants activate defense responses through the recognition of microbe-associated molecular patterns (MAMPs). Recently, several pattern-recognition receptors (PRRs) have been identified in plants, paving the way for manipulating MAMP signaling. CEBiP is a receptor for the chitin elicitor (CE) identified in the rice plasma membrane and XA21 is a member of the receptor-like protein kinase (RLK) family that confers disease resistance to rice bacterial leaf blight expressing the sulfated protein Ax21. To improve resistance to rice blast, the most serious fungal disease of rice, we aimed to create a defense system that combines high affinity of CEBiP for CE and the ability of XA21 to confer disease resistance. Cultured rice cells expressing the chimeric receptor CRXA, which consists of CEBiP and the intracellular region of XA21, induced cell death accompanied by an increased production of reactive oxygen and nitrogen species after exposure to CE. Rice plants expressing the chimeric receptor exhibited more resistance to rice blast. Engineering PRRs may be a new strategy in molecular breeding for achieving disease resistance.Key words: chimeric receptor, chitin signal, disease resistance, HR cell death, MAMP-induced resistance, rice blast fungus  相似文献   

5.
We previously reported that rice plants expressing the chimeric receptor consisting of rice chitin oligosaccharides binding protein (CEBiP) and the intracellular protein kinase region of Xa21, which confers resistance to rice bacterial blight, showed enhanced cellular responses to a chitin elicitor N-acetylchitoheptaose and increased resistance to the rice blast fungus Magnaporthe oryzae. Here, we investigated whether CEBiP fused with another type of receptor-like protein kinase (RLK) also functions as a chimeric receptor. Fusion proteins CRPis consist of CEBiP and the intracellular protein kinase region of a true resistance gene Pi-d2. Transgenic rice expressing a CRPi showed enhanced cellular responses specifically to N-acetylchitoheptaose in cultured cells and increased levels of disease resistance against M. oryzae in plants. These responses depended on the amino acid sequences predicted to be essential for the protein kinase activity of CRPi. The structure of the transmembrane domain in CRPi affected the protein accumulation, cellular responses, and disease resistance in transgenic rice. These results suggest that the chimeric receptor consisting of CEBiP and Pi-d2 functions as a receptor for chitin oligosaccharides and CEBiP-based chimeric receptors fused with other RLKs may also act as functional receptors.  相似文献   

6.
Chitin is commonly found in fungal cell walls and is one of the well-studied microbe/pathogen-associated molecular patterns. Previous studies showed that lysin motif (LysM)-containing proteins are essential for plant recognition of chitin, leading to the activation of plant innate immunity. In Arabidopsis (Arabidopsis thaliana), the LYK1/CERK1 (for LysM-containing receptor-like kinase1/chitin elicitor receptor kinase1) was shown to be essential for chitin recognition, whereas in rice (Oryza sativa), the LysM-containing protein, CEBiP (for chitin elicitor-binding protein), was shown to be involved in chitin recognition. Unlike LYK1/CERK1, CEBiP lacks an intracellular kinase domain. Arabidopsis possesses three CEBiP-like genes. Our data show that mutations in these genes, either singly or in combination, did not compromise the response to chitin treatment. Arabidopsis also contains five LYK genes. Analysis of mutations in LYK2, -3, -4, or -5 showed that LYK4 is also involved in chitin signaling. The lyk4 mutants showed reduced induction of chitin-responsive genes and diminished chitin-induced cytosolic calcium elevation as well as enhanced susceptibility to both the bacterial pathogen Pseudomonas syringae pv tomato DC3000 and the fungal pathogen Alternaria brassicicola, although these phenotypes were not as dramatic as that seen in the lyk1/cerk1 mutants. Similar to LYK1/CERK1, the LYK4 protein was also localized to the plasma membrane. Therefore, LYK4 may play a role in the chitin recognition receptor complex to assist chitin signal transduction and plant innate immunity.  相似文献   

7.
The expression of chimeric receptors in plants is a way to activate specific signaling pathways by corresponding signal molecules. Defense signaling induced by chitin from pathogens and nodulation signaling of legumes induced by rhizobial Nod factors (NFs) depend on receptors with extracellular lysin motif (LysM) domains. Here, we constructed chimeras by replacing the ectodomain of chitin elicitor receptor kinase 1 (AtCERK1) of Arabidopsis thaliana with ectodomains of NF receptors of Lotus japonicus (LjNFR1 and LjNFR5). The hybrid constructs, named LjNFR1–AtCERK1 and LjNFR5–AtCERK1, were expressed in cerk1‐2, an A. thaliana CERK1 mutant lacking chitin‐induced defense signaling. When treated with NFs from Rhizobium sp. NGR234, cerk1‐2 expressing both chimeras accumulated reactive oxygen species, expressed chitin‐responsive defense genes and showed increased resistance to Fusarium oxysporum. In contrast, expression of a single chimera showed no effects. Likewise, the ectodomains of LjNFR1 and LjNFR5 were replaced by those of OsCERK1 (Oryza sativa chitin elicitor receptor kinase 1) and OsCEBiP (O. sativa chitin elicitor‐binding protein), respectively. The chimeras, named OsCERK1–LjNFR1 and OsCEBiP–LjNFR5, were expressed in L. japonicus NF receptor mutants (nfr1‐1; nfr5‐2) carrying a GUS (β‐glucuronidase) gene under the control of the NIN (nodule inception) promoter. Upon chitin treatment, GUS activation reflecting nodulation signaling was observed in the roots of NF receptor mutants expressing both chimeras, whereas a single construct was not sufficient for activation. Hence, replacement of ectodomains in LysM domain receptors provides a way to specifically trigger NF‐induced defense signaling in non‐legumes and chitin‐induced nodulation signaling in legumes.  相似文献   

8.
The rice receptor-like cytoplasmic kinase 185 (OsRLCK185) interacts with the chitin receptor complex OsCERK1/CEBiP and positively regulates chitin-induced immune responses including MAP kinase activation, ROS production and defense gene expression. To elucidate the regulatory mechanisms of OsRLCK185-mediated immunity, we searched for interactors of OsRLCK185. OsDRE2a, rice homologs of the yeast Dre2 protein, were identified as novel interactors of OsRLCK185. OsDRE2a interacted with OsRLCK185 at plasma membrane. The conserved cysteine residues in CIAPIN1 domain of OsDRE2a were essential for tight interaction of OsRLCK185. OsDRE2a was phosphorylated by OsRLCK185. The expression of OsDRE2a and OsDRE2b was induced after chitin treatment. Reduction of OsDRE2a and OsDRE2b mRNA levels by RNA interference resulted in the decreased chitin-induced ROS production. Thus, it is likely that OsDRE2 regulates OsRLCK185-mediated immune responses.  相似文献   

9.
Chitin is a component of fungal cell walls, and its fragments act as elicitors in many plants. The plasma membrane glycoprotein CEBiP, which possesses LysM domains, is a receptor for the chitin elicitor (CE) in rice. Here, we report that the perception of CE by CEBiP contributes to disease resistance against the rice blast fungus, Magnaporthe oryzae, and that enhanced responses to CE by engineering CEBiP increase disease tolerance. Knockdown of CEBiP expression allowed increased spread of the infection hyphae. To enhance defense responses to CE, we constructed chimeric genes composed of CEBiP and Xa21, which mediate resistance to rice bacterial leaf blight. The expression of either CRXa1 or CRXa3, each of which contains the whole extracellular portion of CEBiP, the whole intracellular domain of XA21, and the transmembrane domain from either CEBiP or XA21, induced cell death accompanied by an increased production of reactive oxygen and nitrogen species after treatment with CE. Rice plants expressing the chimeric receptor exhibited necrotic lesions in response to CE and became more resistant to M. oryzae. Deletion of the first LysM domain in CRXA1 abolished these cellular responses. These results suggest that CEs are produced and recognized through the LysM domain of CEBiP during the interaction between rice and M. oryzae and imply that engineering pattern recognition receptors represents a new strategy for crop protection against fungal diseases.  相似文献   

10.

Background  

Rice CEBiP recognizes chitin oligosaccharides on the fungal cell surface or released into the plant apoplast, leading to the expression of plant disease resistance against fungal infection. However, it has not yet been reported whether CEBiP is actually required for restricting the growth of fungal pathogens. Here we evaluated the involvement of a putative chitin receptor gene in the basal resistance of barley to the ssd1 mutant of Magnaporthe oryzae, which induces multiple host defense responses.  相似文献   

11.
Plants have developed innate immune systems to fight against pathogenic fungi by monitoring pathogenic signals known as pathogen-associated molecular patterns (PAMP) and have established endo symbiosis with arbuscular mycorrhizal (AM) fungi through recognition of mycorrhizal (Myc) factors. Chitin elicitor receptor kinase 1 of Oryza sativa subsp. Japonica (OsCERK1) plays a bifunctional role in mediating both chitin-triggered immunity and symbiotic relationships with AM fungi. However, it remains unclear whether OsCERK1 can directly recognize chitin molecules. In this study, we show that OsCERK1 binds to the chitin hexamer ((NAG)6) and tetramer ((NAG)4) directly and determine the crystal structure of the OsCERK1-(NAG)6 complex at 2 Å. The structure shows that one OsCERK1 is associated with one (NAG)6. Upon recognition, chitin hexamer binds OsCERK1 by interacting with the shallow groove on the surface of LysM2. These structural findings, complemented by mutational analyses, demonstrate that LysM2 is crucial for recognition of both (NAG)6 and (NAG)4. Altogether, these findings provide structural insights into the ability of OsCERK1 in chitin perception, which will lead to a better understanding of the role of OsCERK1 in mediating both immunity and symbiosis in rice.  相似文献   

12.
13.
Presence of a high-affinity binding protein for N-acetylchitooligosaccharide (fragments of chitin) elicitor in the plasma membrane from rice leaf and root cells was shown by affinity labeling experiments with an 125I-labeled N-acetylchitooligosaccharide derivative. Binding studies also showed that binding site in the leaf cells has a high affinity to highly elicitor-active, larger chitin fragments but much lower or no affinity to less elicitor-active or elicitor-inactive oligosaccharides. The amount of the binding protein in the leaf cells was slightly smaller than that in the suspension-cultured cells but much larger compared to that in the root cells. These results indicate the possible- involvement of the elicitor binding protein in the perception of the elicitor signal in intact rice plant.  相似文献   

14.
Plants recognize potential microbial pathogens through microbial‐associated molecular patterns (MAMPs) and activate a series of defense responses, including cell death and the production of reactive oxygen species (ROS) and diverse anti‐microbial secondary metabolites. Mitogen‐activated protein kinase (MAPK) cascades are known to play a pivotal role in mediating MAMP signals; however, the signaling pathway from a MAPK cascade to the activation of defense responses is poorly understood. Here, we found in rice that the chitin elicitor, a fungal MAMP, activates two rice MAPKs (OsMPK3 and OsMPK6) and one MAPK kinase (OsMKK4). OsMPK6 was essential for the chitin elicitor‐induced biosynthesis of diterpenoid phytoalexins. Conditional expression of the active form of OsMKK4 (OsMKK4DD) induced extensive alterations in gene expression, which implied dynamic changes of metabolic flow from glycolysis to secondary metabolite biosynthesis while suppressing basic cellular activities such as translation and cell division. OsMKK4DD also induced various defense responses, such as cell death, biosynthesis of diterpenoid phytoalexins and lignin but not generation of extracellular ROS. OsMKK4DD‐induced cell death and expression of diterpenoid phytoalexin pathway genes, but not that of phenylpropanoid pathway genes, were dependent on OsMPK6. Collectively, the OsMKK4–OsMPK6 cascade plays a crucial role in reprogramming plant metabolism during MAMP‐triggered defense responses.  相似文献   

15.
Arabidopsis thaliana CERK1 is an essential receptor‐like kinase in the chitin signal transduction pathway. The juxtamembrane (JM) domain of CERK1 regulates the kinase activity of this receptor. Here we demonstrate that the JM domains of LysM‐RLKs, CERK1, and OsCERK1 play a functionally conserved role in the activation of chitin signaling in Arabidopsis. The C‐termini of the JM domains of both CERK1 and OsCERK1 are indispensable for their function. Moreover, after replacing the JM domain of CERK1 with that of the nonhomologous RLK, BAK1 (CJBa) or FLS2 (CJFl), the chimeric CERK1 receptors maintained their ability to activate chitin signaling in Arabidopsis. Interestingly, the heterologous expression of CJBa and CJFl did not induce cell death in Nicotiana benthamiana leaves. These results suggest that the JM domains of CERK1, BAK1, and FLS2 play a conserved role in chitin signaling via a mechanism not related to sequence homology.  相似文献   

16.
Chitin recognition in rice and legumes   总被引:2,自引:0,他引:2  
Stacey  Gary  Shibuya  Naoto 《Plant and Soil》1997,194(1-2):161-169
This review focuses on a comparison of plant reception of chitin oligosaccharides by legumes and rice. Chitin oligosaccharides (dp=6-8) released from fungal pathogens induce plant defense reactions in rice, while lipo-chitin oligosaccharides (dp=4-5) induce the development of a new plant organ, the nodule, in legumes during infection by rhizobia. The former situation is pathogenic and the latter situation beneficial to the plant. However, these two systems do share some common features. We hypothesize that rice and legumes, as well as other plants, may possess members of an evolutionarily conserved family of chitin binding proteins. These proteins may play an important role in chitin reception and subsequent signal transduction. However, data support the idea that legumes may possess a second chitin binding receptor that shows a greater specificity for the lipo-chitin nodulation signals. The presence of this second receptor may be one of the key factors that distinguishes plants capable of nodulation by rhizobia (e.g., soybean) from those that cannot be nodulated (e.g., rice).  相似文献   

17.
Summary N-acetylchitooligosaccharides (fragments of chitin) elicit the production of phytoalexin in suspension-cultured rice cells. This oligosaccharide elicitor induced rapid and transient membrane depolarization at sub-nanomolar concentrations. Only the oligomers with a certain degree of polymerization were active, while deacetylated chitooligosaccharides caused no effect. Such specificity coincided well with that for the elicitor activity, suggesting possible involvement of this transient change in membrane potential as one of the initial signals in the signal transduction sequence for the activation of defense responses.  相似文献   

18.
Cerebrosides, compounds categorized as glycosphingolipids, were found to occur in a wide range of phytopathogens as novel elicitors and to induce the effective disease resistance for rice plants in our previous study. Here, we showed that cerebroside elicitors lead to the accumulation of phytoalexins and pathogenesis-related (PR) protein in cell suspension cultures of rice with the structural specificity similar to that for the rice whole plants. This elicitor activity of the cerebroside was greater than jasmonic acid (JA) and chitin oligomer (which is known to be an elicitor for cell suspension cultures of rice). Treatment of cell suspension cultures with cerebroside and chitin oligomer resulted in a synergetic induction of phytoalexins, suggesting that cerebroside and carbohydrate elicitors, such as glucan and chitin elicitor, enhance the defense signals of rice in vivo. Induction of phytoalexins by the treatment with cerebroside elicitor was markedly inhibited by LaCl(3) and GdCl(3), Ca(2+ )channel blockers. It is possible that Ca(2+) may be involved in the signaling pathway of elicitor activity of cerebroside.  相似文献   

19.
Elicitor-triggered transient membrane potential changes and Ca2+ influx through the plasma membrane are thought to be important during defense signaling in plants. However, the molecular bases for the Ca2+ influx and its regulation remain largely unknown. Here we tested effects of overexpression as well as retrotransposon (Tos17)-insertional mutagenesis of the rice two-pore channel 1 (OsTPC1), a putative voltage-gated Ca(2+)-permeable channel, on a proteinaceous fungal elicitor-induced defense responses in rice cells. The overexpressor showed enhanced sensitivity to the elicitor to induce oxidative burst, activation of a mitogen-activated protein kinase (MAPK), OsMPK2, as well as hypersensitive cell death. On the contrary, a series of defense responses including the cell death and activation of the MAPK were severely suppressed in the insertional mutant, which was complemented by overexpression of the wild-type gene. These results suggest that the putative Ca(2+)-permeable channel determines sensitivity to the elicitor and plays a role as a key regulator of elicitor-induced defense responses, activation of MAPK cascade and hypersensitive cell death.  相似文献   

20.
Arabinogalactan proteins (AGPs) are hydroxyproline-rich glycoproteins present at the plasma membrane and in extracellular spaces. A synthetic chemical, beta-glucosyl Yariv reagent (beta-GlcY), binds specifically to AGPs. We previously reported that gibberellin signaling is specifically inhibited by beta-GlcY treatment in barley aleurone protoplasts. In the present study, we found that beta-GlcY also inhibited gibberellin-induced programmed cell death (PCD) in aleurone cells. We examined the universality and specificity of the inhibitory effect of beta-GlcY on gibberellin signaling using microarray analysis and found that beta-GlcY was largely effective in repressing gibberellin-induced gene expression. In addition, >100 genes were up-regulated by beta-GlcY in a gibberellin-independent manner, and many of these were categorized as defense-related genes. Defense signaling triggered by several defense system inducers such as jasmonic acid and a chitin elicitor could inhibit gibberellin-inducible events such as alpha-amylase secretion, PCD and expression of some gibberellin-inducible genes in aleurone cells. Furthermore, beta-GlcY repressed the gibberellin-inducible Ca2+-ATPase gene which is important for gibberellin-dependent gene expression, and induced known repressors of gibberellin signaling, two WRKY genes and a NAK kinase gene. These effects of beta-GlcY were also phenocopied by the chitin elicitor and/or jasmonic acid. These results indicate that gibberellin signaling is under the regulation of defense-related signaling in aleurone cells. It is also probable that AGPs are involved in the perception of stimuli causing defense responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号