首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
2.
Tropical streams are one of the most endangered ecosystems in the world due to the constant pressures from human activities. Among these activities, agriculture represents a land use that is crucial for human development but also a key driver of stream degradation and biodiversity decline in the tropics. Against this background, we investigated indirect effects of agriculture (alterations in stream flow and nutrient availability) and climate characteristics (water temperature) on benthic biofilm communities in tropical streams (São Paulo State, Brazil). Three first‐order streams draining catchments dominated by agricultural land use (sugarcane for bioenergy production, pasture) with some remaining riparian forest were studied for 1 year. We focused on the relationships of benthic biofilm biomass, algal biomass, diatom community, and functional structure with streamflow dynamics, nitrate concentrations, and water temperature. Our results indicate that these biological responses were mainly mediated by flow and water temperature and not by resource availability in the studied headwater streams. This result could be explained by the heavy rains and elevated runoff generation in these tropical catchments under agricultural influence, which might override the known effects of nutrient enrichment on benthic biofilm communities. Considering forecast climate and land‐use changes in tropical streams, our findings may suggest potential shifts in benthic biofilm communities, with functional consequences for aquatic food webs in these environments. Abstract in Brazilian Portuguese is available with online material.  相似文献   

3.
A correlative study was performed to determine if variation in streambed microbial community structure in low-order forested streams can be directly or indirectly linked to the chemical nature of the parental bedrock of the environments through which the streams flow. Total microbial and photosynthetic biomass (phospholipid phosphate [PLP] and chlorophyll a), community structure (phospholipid fatty acid analysis), and physical and chemical parameters were measured in six streams, three located in sandstone and three in limestone regions of the Bankhead National Forest in northern Alabama. Although stream water flowing through the two different bedrock types differed significantly in chemical composition, there were no significant differences in total microbial and photosynthetic biomass in the sediments. In contrast, sedimentary microbial community structure differed between the bedrock types and was significantly correlated with stream water ion concentrations. A pattern of seasonal variation in microbial community structure was also observed. Further statistical analysis indicated dissolved organic matter (DOM) quality, which was previously shown to be influenced by geological variation, correlated with variation in bacterial community structure. These results indicate that the geology of underlying bedrock influences benthic microbial communities directly via changes in water chemistry and also indirectly via stream water DOM quality.  相似文献   

4.
5.
6.
It is well established that soil microbial communities change in response to altered land use and land cover, but less is known about the timing of these changes. Understanding temporal patterns in recovering microbial communities is an important part of improving how we assess and manage reconstructed ecosystems. We assessed patterns of community-level microbial diversity and abundance in corn and prairie plots 2 to 4 years after establishment in agricultural fields, using phospholipid fatty acid biomarkers. Principal components analysis of the lipid biomarkers revealed differing composition between corn and prairie soil microbial communities. Despite no changes to the biomass of Gram-positive bacteria and actinomycetes, total biomass, arbuscular mycorrhizal fungi biomass, and Gram-negative bacteria biomass were significantly higher in restored prairie plots, approaching levels found in long-established prairies. These results indicate that plant-associated soil microbes in agricultural soils can shift in less than 2 years after establishment of perennial grasslands.  相似文献   

7.
1. Subarctic ponds are seasonal aquatic habitats subject to short summers but often have surprisingly numerous planktonic consumers relative to phytoplankton productivity. Because subarctic ponds have low pelagic productivity but a high biomass of benthic algae, we hypothesised that benthic mats provide a complementary and important food source for the zooplankton. To test this, we used a combination of fatty acid and stable isotope analyses to evaluate the nutritional content of benthic and pelagic food and their contributions to the diets of crustacean zooplankton in 10 Finnish subarctic ponds. 2. Benthic mats and seston differed significantly in total lipids, with seston (62.5 μg mg?1) having approximately eight times higher total lipid concentrations than benthic mats (7.0 μg mg?1). Moreover, the two potential food sources differed in their lipid quality, with benthic organic matter completely lacking some nutritionally important polyunsaturated fatty acids (PUFA), most notably docosahexaenoic acid and arachidonic acid. 3. Zooplankton had higher PUFA concentrations (27–67 μg mg?1) than either of the food sources (mean benthic mats: 1.2 μg mg?1; mean seston: 9.9 μg mg?1), indicating that zooplankton metabolically regulate their accumulation of PUFA. In addition, when each pond was evaluated independently, the zooplankton was consistently more 13C‐depleted (δ13C ?20 to ?33‰) than seston (?23 to ?29‰) or benthic (?15 to ?27‰) food sources. In three ponds, a subset of the zooplankton (Eudiaptomus graciloides, Bosmina sp., Daphnia sp. and Branchinecta paludosa) showed evidence of feeding on both benthic and planktonic resources, whereas in most (seven out of 10) ponds the zooplankton appeared to feed primarily on plankton. 4. Our results indicate that pelagic primary production was consistently the principal food resource of most metazoans. While benthic mats were highly productive, they did not appear to be a major food source for zooplankton. The pond zooplankton, faced by strong seasonal food limitation, acquires particular dietary elements selectively.  相似文献   

8.
Organism growth and reproduction are often limited by nutrient availability in freshwater ecosystems where, in some cases, food webs are primarily supported by allochthonous organic matter. Therefore, we hypothesized that the composition of riparian vegetation would influence the variability of N, P, and fatty acid content of in-stream consumers. Specifically, we predicted that organisms living in alder streams would have higher levels of N, P, and polyunsaturated fatty acids than organisms in coniferous streams. To determine this, we sampled fresh and aged leaf litter, periphyton, invertebrates, and cutthroat trout (Oncorhynchus clarki) from 6 streams in western Washington state: 3 streams had high densities of nitrogen-fixing red alder (Alnus rubra) in the riparian zone, whereas 3 had high densities of conifers. We found fresh alder litter had twice the total polyunsaturated fatty acid concentrations of hemlock vegetation while there were few statistical differences among aged alder and aged hemlock vegetation. Multidimensional plots showed fatty acid profiles were unique to vegetation and fish while periphyton and invertebrates shared the same multidimensional space. We used a mixed model to determine the relative importance of vegetation type (fixed factor: conifer or alder), trophic levels (fixed factor: periphyton, primary consumer, or fish), and streams (random factor) on individual fatty acid concentrations. Total polyunsaturated fatty acids, 16:0, 20:1, 20:3n6 and total n3 were the only fatty acids influenced by stream vegetation (vegetation + stream model or full model). 67% of the fatty acids were best supported by the trophic + stream model. Nitrogen, P, Ca, Fe, C:N, N:P, and C:N:P were all best supported by the trophic level + stream model, and Zn was the only nutrient supported best by the full model. Correlations of n3 and n6 fatty acid concentrations between periphyton and primary consumers, and primary consumers with trout indicated several fatty acid metrics, such as n3:n6, showed food resources may affect relative fatty acid abundances of consumers. Although vegetation type did not influence relative fatty acids of stream organisms, the importance of trophic level likely indicates organisms have different physical requirements for fatty acids. The significance of a random factor, ‘stream,’ suggests that the relative abundances of fatty acids in periphyton, invertebrates, and trout are stream-specific and are responding to local environmental or communal variables.  相似文献   

9.
A new opportunistic annelid (Ophryotrocha cyclops) discovered on benthic substrates underneath finfish aquaculture sites in Newfoundland (NL) may be involved in the remediation of organic wastes. At those aquaculture sites, bacterial mats and O. cyclops often coexist and are used as indicators of organic enrichment. Little is known on the trophic strategies used by these annelids, including whether they might consume bacteria or other aquaculture-derived wastes. We studied the lipid and fatty acid composition of the annelids and their potential food sources (degraded flocculent organic matter, fresh fish pellets and bacterial mats) to investigate feeding relationships in these habitats and compared the lipid and fatty acid composition of annelids before and after starvation. Fish pellets were rich in lipids, mainly terrestrially derived C18 fatty acids (18:1ω9, 18:2ω6, 18:3ω3), while bacterial samples were mainly composed of ω7 fatty acids, and flocculent matter appeared to be a mixture of fresh and degrading fish pellets, feces and bacteria. Ophryotrocha cyclops did not appear to store excessive amounts of lipids (13%) but showed a high concentration of ω3 and ω6 fatty acids, as well as a high proportion of the main fatty acids contained in fresh fish pellets and bacterial mats. The dorvilleids and all potential food sources differed significantly in their lipid and fatty acid composition. Interestingly, while all food sources contained low proportions of 20:5ω3 and 20:2ω6, the annelids showed high concentrations of these two fatty acids, along with 20:4ω6. A starvation period of 13 days did not result in a major decrease in total lipid content; however, microscopic observations revealed that very few visible lipid droplets remained in the gut epithelium after three months of starvation. Ophryotrocha cyclops appears well adapted to extreme environments and may rely on lipid-rich organic matter for survival and dispersal in cold environments.  相似文献   

10.
  1. Understanding changes in macroinvertebrate communities is important because they play a large role in stream ecosystem functioning, and they are an important food resource for fish. Beaver-induced changes to stream morphology could alter macroinvertebrate communities, which in turn could affect food webs and ecosystem function. However, studies investigating the effects of North American beaver activities on macroinvertebrates are rare in the inter-mountain west, an area with high potential for beaver-assisted restoration.
  2. The aim of this study was to quantify differences in the macroinvertebrate community between unaltered segments of streams and within beaver ponds in north-eastern Utah, U.S.A. We assessed macroinvertebrate species richness, biomass, density, functional feeding group composition, mobility group composition, and macroinvertebrate habitat characteristics to test the hypothesis that macroinvertebrate communities will differ among habitat types (undammed stream segments and beaver ponds) in beaver-occupied streams.
  3. Beaver pond communities significantly differed from lotic reach communities in many ways. Beaver ponds were less diverse with 25% fewer species. Although there was variability among streams, in general, beaver ponds had 75% fewer individuals and 90% lower total macroinvertebrate biomass compared to lotic reaches.
  4. Regarding functional feeding groups, beaver ponds contained more engulfers, while lotic reaches contained more scrapers, filterers, and gatherers. For mobility groups, beaver ponds had more sprawlers, while lotic reaches had more clingers. Swimmers were also more prevalent in lotic reaches, although this is probably due to the abundance of Baetis within lotic reaches. More beaver pond taxa were classified as lentic-dwelling insects, while more lotic reach taxa were categorised as preferring lotic habitats.
  5. The creation of ponds by beavers fundamentally altered the macroinvertebrate community in north-eastern Utah streams. Such changes to stream macroinvertebrate communities suggest that recolonisation of beavers across North America may be altering stream functioning and food webs. Our study highlights the need to further investigate the effects of beaver recolonisation on stream communities.
  相似文献   

11.
1. While the balance of light and nutrients is known to influence the food quality of herbivores by altering algal phosphorus and nitrogen content, the combined effects of light and nutrients on fatty acid synthesis in freshwater periphyton are relatively unknown. In this study, we manipulated light and phosphorus concentration in large, flow‐through experimental streams to examine their effects on both elemental stoichiometry and fatty acid content in periphyton. 2. Two levels of phosphorus (4 and 80 μg L?1) and three of light (17, 40, 110 μmol photons m?2 s?1) were applied in a factorial design in two separate experiments. Diatoms dominated periphyton communities in both experiments, comprising >95% of algal biovolume. Periphyton growth in the streams was simultaneously affected by both resources, even at low rates of supply. 3. Periphyton C/P and C/N ratios increased with light augmentation and decreased with phosphorus enrichment, and consistent with the light : nutrient hypothesis (LNH). Light effects were strongest in streams with low phosphorus concentrations. 4. Periphyton fatty acids reflected the dominance of diatoms : palmitic (16 : 0), palmitoleic (16 : 1ω7) and eicosapentanoic (20 : 5ω3) were the principal saturated (SAFA), monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA), respectively. Linoleic (18 : 2ω6) and linolenic (18 : 3ω3) acids, characteristic of chlorophytes and cyanophytes, were rare, comprising <2% of total fatty acids. 5. Periphyton fatty acid profiles were highly sensitive to light and phosphorus. The proportion of fatty acids comprised by SAFA and MUFA increased with light augmentation and decreased with phosphorus enrichment, whereas PUFA decreased with light and increased with phosphorus. Light effects on fatty acid composition were strongest in phosphorus‐poor streams. PUFA declined with increasing light/phosphorus ratios in the streams, whereas ‘energy’ fatty acids (16 : 0 and 16 : 1) increased. The ratio of SAFA/PUFA was strongly and positively correlated with C/P and C/N ratios. SAFA and MUFA, normalised to dry mass, increased two‐ to threefold with increasing light, while PUFA normalised to dry mass was not significantly affected by light. 6. Similarities in the responses of fatty acids and elemental stoichiometry to light and phosphorus treatments suggested that they were influenced by a common mechanism. Both components of food quality appeared to be sensitive to light‐regulated rates of carbon fixation which, when coupled with insufficient supplies of phosphorus, caused diatom cells to store surplus carbon in SAFA, MUFA and other carbon‐rich compounds that diluted both essential fatty acids and mineral nutrients.  相似文献   

12.
13.
Diverse benthic communities in streams include a wide variety of predators with different habitat preferences, e.g. for pools or riffles. We hypothesised that these preferences result in mesohabitat-specific predator community structures with quantitative differences concerning predation intensity by vertebrate and invertebrate predators, importance of intraguild predation, or top–down pressure. This hypothesis was evaluated for a small submontane stream by means of mesohabitat-specific quantification of prey consumption by two benthivorous fish species (Gobio gobio and Barbatula barbatula) and several invertebrate predators. The estimation was based on daily food rations and diet composition of predators and mesohabitat-specific predator biomass. We found clear differences between the two mesohabitat types. Predator food webs were less complex in pools than in riffles. Fish predation was more important than invertebrate predation in pools, and intraguild predation had a higher relative importance in these mesohabitats. These differences were probably caused by the mesohabitat use of G. gobio, the largest top predator, which preferred pools. Consequently, the predator food webs were more similar between the mesohabitats when fish were absent. Top–down pressure on primary consumers by all predators together was lowest in pools without fish, but the effect was not significant. Omnivory (including cannibalism) was intense, but its potentially destabilising effects were probably counterbalanced by mesohabitat connectivity. From the results of our experimental study, we conclude that even in small stream ecosystems, food web structures and predation pathways can differ between mesohabitats and that a mesohabitat-specific consideration will help to explain the variety of top–down effects on benthic communities.  相似文献   

14.
1. Low pH inhibits microbial conditioning of leaf‐litter, which forms the principal energy input to many headwater streams. This reduces food quality and availability for the shredder assemblage, thereby creating a potential bottleneck in the flux of energy and biomass through acidified food webs. 2. We explored the consequences of acidity on the well‐characterised community of Broadstone Stream in southeast England, by quantifying the physiological condition (protein and lipid content) of three dominant shredder species (Leuctra nigra, L. hippopus and Nemurella pictetii) and relating this to changes in the numerical abundance and biomass of invertebrates across a longitudinal pH gradient (5.3–6.5). 3. Total taxon richness increased with pH, as did shredder diversity. The acid‐tolerant stonefly, L. nigra, exhibited a positive correlation between pH and protein content, but its abundance was suppressed in the less acid reaches. These results suggest that the impacts of environmental stressors might be manifested differently at the population (i.e. numerical and biomass abundance) versus the physiological (i.e. protein content of individuals) levels of organisation. Body composition of L. hippopus and N. pictetii did not exhibit any significant relationship with stream pH in the field. 4. The survey data were corroborated with a laboratory rearing experiment using N. pictetii, in which survival rate, growth rate, and protein and lipid content of individuals were measured in stream water of differing pH and acid versus circumneutral microbial conditioning regimes. Acid‐conditioned leaves were associated with increased mortality and reduced protein content in consumers’ tissues, with acid water also having the latter effect. 5. Our results suggest that biochemical constraints within key taxa might create energy flux bottlenecks in detrital‐based food webs, and that this could ultimately determine the productivity of the entire system. Hence assays of the body composition of macroinvertebrates could be an effective new tool that complements population level studies of the impacts of stressors in fresh waters.  相似文献   

15.
The spatial distribution of communities was examined in estuarine mud flat sediments by the biochemical analysis of the lipids and lipid components extracted from the sediments. Total phospholipid was used as a measure of total biomass, and fatty acids were used as indicators of community composition. Comparisons were made among 2- by 2-m (location) and 0.2- by 0.2-m (cluster) sampling plots by using a nested analysis of variance to design an optimal sampling strategy to define the microbial content of a large, relatively homogenous area. At two of the three stations, a 2- by 2-m plot was representative of the station, but 0.2- by 0.2-m areas were in no case representative of the station. The biomass measured by the extractable phospholipid and the total lipid palmitic acid showed excellent correlation with the fatty acid “signatures” characteristic of bacteria, but showed a lower correlation with the long-chain polyenoic fatty acids characteristic of the microfauna.  相似文献   

16.
Environmental degradation may have strong effects on community assembly processes. We examined the assembly of bacterial and fungal communities in anthropogenically altered and near‐pristine streams. Using pyrosequencing of bacterial and fungal DNA from decomposed alder Alnus incana leaves, we specifically examined if environmental degradation deterministically decreases or increases the compositional turnover of bacterial and fungal communities. Our results showed that near‐pristine streams and anthropogenically altered streams supported distinct fungal and bacterial communities. The mechanisms assembling these communities were different in near‐pristine and altered environments. Environmental disturbance homogenized bacterial communities, whereas fungal communities were more dissimilar in disturbed sites than in near‐pristine sites. Compositional variation of both bacteria and fungi was related to water chemistry variables in disturbed sites, further implying the influence of environmental degradation on community assembly. Bacterial and fungal communities in near‐pristine streams were weakly controlled by environmental factors, suggesting that the relative importance of niche‐based versus neutral processes in assembling microbial communities may strongly depend on the spatial scale and local environmental context. Our results thus suggest that environmental degradation may strongly affect the composition and β‐diversity of stream microbial communities colonizing leaf litter, and that the direction of the change can be different between bacteria and fungi. A better understanding of the environmental tolerances of microbes and the mechanisms assembling microbial communities in natural environmental settings is needed to predict how environmental alteration is likely to affect microbial communities.  相似文献   

17.
1. Empirical and theoretical research over the past decade has demonstrated the widespread importance of aquatic subsidies to terrestrial food webs. In particular, adult aquatic insects that emerge from streams and lakes are prey for terrestrial predators. While variation in the magnitude of this subsidy is clearly important, the potential top‐down effects of the predatory adults of some aquatic insects in terrestrial food webs are largely unknown. 2. I used published data on benthic insect density (as a proxy for emergence) in North and South America to explore how the proportion of benthic insects that are predatory as adults varies across a gradient of mean annual stream temperature. 3. The proportion of benthic insects that are predatory as adults varied widely across sites (0–12% by abundance; 0–86% by biomass). There was a positive relationship between mean annual stream temperature and the proportion of predatory adults across all sites, driven largely by the greater abundance/biomass of predatory taxa (e.g. odonates), relative to non‐predators (e.g. midges, mayflies, caddisflies), in tropical than in temperate streams. 4. The ‘trophic structure’ (i.e. the proportion of predators) of emerging adult aquatic insects is an understudied source of variation in aquatic–terrestrial interactions. Incorporation of trophic structure in future studies is needed to understand how future modification of fresh waters may affect adjacent terrestrial food webs through both bottom‐up and top‐down effects.  相似文献   

18.
The absolute amount of microbial biomass and relative contribution of fungi and bacteria are expected to vary among types of organic matter (OM) within a stream and will vary among streams because of differences in organic matter quality and quantity. Common types of benthic detritus [leaves, small wood, and fine benthic organic matter (FBOM)] were sampled in 9 small (1st-3rd order) streams selected to represent a range of important controlling factors such as surrounding vegetation, detritus standing stocks, and water chemistry. Direct counts of bacteria and measurements of ergosterol (a fungal sterol) were used to describe variation in bacterial and fungal biomass. There were significant differences in bacterial abundance among types of organic matter with higher densities per unit mass of organic matter on fine particles relative to either leaves or wood surfaces. In contrast, ergosterol concentrations were significantly greater on leaves and wood, confirming the predominance of fungal biomass in these larger size classes. In general, bacterial abundance per unit organic matter was less variable than fungal biomass, suggesting bacteria will be a more predictable component of stream microbial communities. For 7 of the 9 streams, the standing stock of fine benthic organic matter was large enough that habitat-weighted reach-scale bacterial biomass was equal to or greater than fungal biomass. The quantities of leaves and small wood varied among streams such that the relative contribution of reach-scale fungal biomass ranged from 10% to as much as 90% of microbial biomass. Ergosterol concentrations were positively associated with substrate C:N ratio while bacterial abundance was negatively correlated with C:N. Both these relationships are confounded by particle size, i.e., leaves and wood had higher C:N than fine benthic organic matter. There was a weak positive relationship between bacterial abundance and streamwater soluble reactive phosphorus concentration, but no apparent pattern between either bacteria or fungi and streamwater dissolved inorganic nitrogen. The variation in microbial biomass per unit organic matter and the relative abundance of different types of organic matter contributed equally to driving differences in total microbial biomass at the reach scale.  相似文献   

19.
1. The apparent absence of a specialist herbivorous grazer guild from many acid streams suggests that algae-grazer linkages in acid-stream food webs are weak or absent. It has been hypothesized that the absence of herbivores is a consequence of the low quality and/or quantity of biofilms in acid streams.
2. We compared the taxonomic composition, biomass and potential nutritional quality of epilithic biofilms from four acid and four circumneutral streams, and examined whether nymphs of a herbivore–detritivore, the stonefly Nemurella pictetii (Plecoptera: Nemouridae), could grow equally well when fed on eight biofilms from four acid and four circumneutral streams.
3. Biofilms from acid and circumneutral streams differed strongly in algal composition, the former having relatively more coccoid green algae but fewer diatoms and filamentous green algae. Diatom floras differed with stream water pH.
4. The quantity (i.e. area-specific chlorophyll content, algal numbers and AFDM) and quality (biomass-specific protein and soluble carbohydrate content) of biofilms differed significantly, both among sites of similar pH, and overall between the groups of acid and circumneutral streams.
5. Nymphs of N. pictetii grew successfully on biofilms for 8–10 weeks up to emergence. However, no systematic differences in growth rate were found between the two groups of acid and circumneutral streams. Differences in the digestibility of benthic algae from different sources, and the adjustment of nymphal feeding rates, are discussed in the light of a lack of a clear relationship between growth and food quality.  相似文献   

20.
The investigation of prokaryotes in aquatic ecology is often limited to their role in nutrient cycling and the degradation of organic matter. While this aspect of the microbial loop is undoubtedly important, further aspects of bacterial roles in marine food webs exist which have not been fully considered in light of recent research in related fields. The concept of bacteria providing essential nutrients may derive importance from two aspects of their role in the marine environment; firstly as a primary food source for omnivorous, sestonivorous and filtering benthic animals and secondly as components of the commensal microbial communities of marine animals. Many marine organisms lack the de novo ability to produce n-3 polyunsaturated fatty acids (PUFA) and hence rely on a dietary supply of PUFA. The issue of PUFA origin in the marine food web is particularly salient in light of recent research demonstrating the influence of PUFA levels on the efficiency of energy transfer between trophic levels. The assumption that microalgae provide the bulk of de novo PUFA production for all marine food webs must be actively reviewed with respect to particular microbial niches such as sea ice, marine animals and abyssal communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号