首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ion transporters such as Na(+)/H(+) exchanger (NHE), Cl(-)/HCO(3)(-) exchanger (AE), and Na(+)/HCO(3)(-) cotransporter (NBC) are known to contribute to the intracellular pH (pH(i)) regulation during agonist-induced stimulation. This study examined the mechanisms for the pH(i) regulation in the mouse parotid and sublingual acinar cells using the fluorescent pH-sensitive probe, BCECF. The pH(i) recovery from agonist-induced acidification in the sublingual acinar cells was completely blocked by EIPA, a NHE inhibitor. However, the parotid acinar cells required DIDS, a NBC1 inhibitor, in addition to EIPA in order to block the pH(i) recovery. Moreover, RT-PCR analysis detected the expression of pancreatic NBC1 (pNBC1) only in the parotid acinar cells. These results provide strong evidence that the mechanisms for the pH(i) regulation are different in the two types of acinar cells, and pNBC1 contributes to pH(i) regulation in the parotid acinar cells, whereas NHE is likely to be the exclusive pH(i) regulator in the sublingual acinar cells.  相似文献   

2.
Cell migration is crucial for processes such as immune defense, wound healing, or the formation of tumor metastases. Typically, migrating cells are polarized within the plane of movement with lamellipodium and cell body representing the front and rear of the cell, respectively. Here, we address the question of whether this polarization also extends to the distribution of ion transporters such as Na(+)/H(+) exchanger (NHE) and anion exchanger in the plasma membrane of migrating cells. Both transporters are required for locomotion of renal epithelial (Madin-Darby canine kidney, MDCK-F) cells and human melanoma cells since their blockade reduces the rate of migration in a dose-dependent manner. Inhibition of migration of MDCK-F cells by NHE blockers is accompanied by a decrease of pH(i). However, when cells are acidified with weak organic acids, migration of MDCK-F cells is normal despite an even more pronounced decrease of pH(i). Under these conditions, NHE activity is increased so that cells are swelling due to the accumulation of organic anions and Na(+). When exclusively applied to the lamellipodium, blockers of NHE or anion exchange inhibit migration of MDCK-F cells as effectively as when applied to the entire cell surface. When they are directed to the cell body, migration is not affected. These data are confirmed immunocytochemically in that the anion exchanger AE2 is concentrated at the front of MDCK-F cells. Our findings show that NHE and anion exchanger are distributed in a polarized way in migrating cells. They are consistent with important contributions of both transporters to protrusion of the lamellipodium via solute uptake and consequent volume increase at the front of migrating cells.  相似文献   

3.
Although the inhibitory effects of high concentrations of mineral N (> 1.0 mM) on nodule development and function have often been studied, the effects of low, static concentrations of NH4+ (< 1.0 mM) on nodulation are unknown. In the present experiments we examine the effects of static concentrations of NH4+ at 0, 0.1 and 0.5 mM in flowing, hydroponic culture on nodule establishment and nitrogenase activity in field peas [Pisum sativum L. cv. Express (Svalöf AB)] for the initial 28 days after planting (DAP). Peas grown in the presence of low concentrations of NH4+ had significantly greater nodule numbers (up to 4-fold) than plants grown without NH4+. Nodule dry weight per plant was significantly higher at 14, 21 and 28 DAP in plants grown in the presence of NH4+, but individual nodule mass was lower than in plants grown without NH4+. The nodulation pattern of the plants supplied with NH4+ was similar to that often reported for supernodulating mutants, however the plants did not express other growth habits associated with supernodulation. Estimates of N2 fixation indicate that the plus-NH4+ peas fixed as much or more N2 than the plants supplied with minus-NH4+ nutrient solution. There were no significant differences in nodule numbers, nodule mass or NH4+ uptake between the plants grown at the two concentrations of NH4+. Nodulation appeared to autoregulate by 14 DAP in the minus-NH4+ treatment. Plant growth and N accumulation in the minus-NH4+ plants lagged behind those of the plus-NH4+ treatments prior to N2 fixation becoming well established in the final week of the experiment. The plus-NH4+ treatments appeared not to elicit autoregulation and plants continued to initiate nodules throughout the experiment.  相似文献   

4.
Summary Elodea canadensis grows over a wide range of inorganic carbon, nutrient, and light conditions in lakes and streams. Affinity for HCO 3 - use during photosynthesis ranged from strong to weak in Elodea collected from seven localities with different HCO 3 - and CO2 concentrations. The response to HCO 3 - was also very plastic in plants grown in the laboratory at high HCO 3 - concentrations and CO2 concentrations varying from 14.8 to 2,200 M. Bicarbonate affinity was markedly reduced with increasing CO2 concentrations in the growth medium so that ultimately HCO 3 - use was not detectable. High CO2 concentrations also decreased CO2 affinity and induced high CO2 compensation points (360M CO2) and tenfold higher half-saturation values (800 M CO2).The variable HCO 3 - affinity is probably environmentally based. Elodea is a recently introduced species in Denmark, where it reproduces only vegetatively, leaving little opportunity for genetic variation. More important, local populations in the same water system had different HCO 3 - affinities, and a similar variation was created by exposing one plant collection to different laboratory conditions.Bicarbonate use enabled Elodea to photosynthesize rapidly in waters of high alkalinity and enhanced the carbon-extracting capacity by maintaining photosynthesis above pH 10. On the other hand, use of HCO 3 - represents an investment in transport apparatus and energy which is probably not profitable when CO2 is high and HCO 3 - is low. This explanation is supported by the findings that HCO 3 - affinity was low in field populations where HCO 3 - was low (0.5 and 0.9 m M) or CO2 was locally high, and that HCO 3 - affinity was suppressed in the laboratory by high CO2 concentrations.Abbreviations DIC dissolved inorganic carbon (CO2+ HCO 3 - +CO 3 - ) - CO2 compensation point - K 1/2 apparent halfsaturation constant - PHCO 3 interpolated photosynthesis in pure HCO 3 - and zero CO2 - Pmax photosynthetic rate under carbon and light saturation  相似文献   

5.
Chloroplasts with high rates of photosynthetic O2 evolution (up to 120 mol O2· (mg Chl)-1·h-1 compared with 130 mol O2· (mg Chl)-1·h-1 of whole cells) were isolated from Chlamydomonas reinhardtii cells grown in high and low CO2 concentrations using autolysine-digitonin treatment. At 25° C and pH=7.8, no O2 uptake could be observed in the dark by high- and low-CO2 adapted chloroplasts. Light saturation of photosynthetic net oxygen evolution was reached at 800 mol photons·m-2·s-1 for high- and low-CO2 adapted chloroplasts, a value which was almost identical to that observed for whole cells. Dissolved inorganic carbon (DIC) saturation of photosynthesis was reached between 200–300 M for low-CO2 adapted chloroplasts, whereas high-CO2 adapted chloroplasts were not saturated even at 700 M DIC. The concentrations of DIC required to reach half-saturated rates of net O2 evolution (Km(DIC)) was 31.1 and 156 M DIC for low- and high-CO2 adapted chloroplasts, respectively. These results demonstrate that the CO2 concentration provided during growth influenced the photosynthetic characteristics at the whole cell as well as at the chloroplast level.Abbreviations Chl chlorophyll - DIC dissolved inorganic carbon - Km(DIC) coneentration of dissolved inorganic carbon required for the rate of half maximal net O2 evolution - PFR photon fluence rate - SPGM silicasol-PVP-gradient medium  相似文献   

6.
Alison M. Smith 《Planta》1988,175(2):270-279
In order to determine whether round-and wrinkled-seeded peas (Pisum sativum L.) differ in the activity and properties of starch-branching enzyme (1,4--D-glucan, 1,4--D-glucan-6-glycosyl transferase; EC 2.4.1.18) in their developing embryos, essentially isogenic lines of peas, differing only at the r (rugosus) locus that confers the round (RR, Rr) or wrinkled (rr) phenotype, were studied. Activity of the enzyme rises rapidly from an early stage of development in embryos of round peas, but only at later stages in embryos of wrinkled peas. The purified enzyme from mature embryos of round peas can be resolved into two isoforms that differ in molecular weight and in their ability to branch amylose. The purified enzyme from mature embryos of wrinkled peas is a single protein with the same molecular weight and branching properties as one of the isoforms from embryos of round peas. The difference in activity of starch-branching enzyme between embryos of round and wrinkled peas is likely to be due to the absence from embryos of wrinkled peas of one of the isoforms occurring in embryos of round peas.Abbreviations DEAE diethylaminoethyl - FW fresh weight - kDa kilodalton - SDS sodium dodecyl sulfate  相似文献   

7.
At six sites in central Germany consequences of SO2, NOX and O3 deposition and of acid precipitation on canopy throughfall of sulphate, nitrate, ammonium, organic acids and of metal cations from Norway spruce crowns were investigated in the field. Measured canopy throughfall rates (mmol ion kg-1 needle dw a-1 are separated in (i) background ion throughfall rates in clean air and (ii) trace gas-(or acid interception)-dependent throughfall rates at ambient trace gas concentrations. Based on synchronously measured pollution, precipitation and canopy throughfall data, statistical response functions are given, which allow the separate estimation of annual rates of sulphur and nitrogen deposition into spruce canopies if only annual means of SO2 or NO2 concentrations in air are known. The specific SO2 deposition rate of (0.841±0.214) mmol S kg-1 needle dw a-1 (nPa SO2 Pa-1)-1 is 2.3 times higher than the specific stomatal SO2 uptake. The NO2-dependent nitrogen deposition of (2.464±0.707) mmol N kg-1 needle dw a-1 (nPa NO2 Pa-1)-1 is 2.2 times higher than the specific stomatal NOX (NO2+NO) uptake. These ratios (2.32.2) are explained by the percentage of annual hours with open needle stomata. The shape of observed epicuticular SO2 and NOX deposition curves and of stomatal SO2 and NOX uptake curves are congruent. As for stomatal NOX uptake, there is an apparent compensation point at (5 to 8) nPa NO2 Pa-1. There is significant SO2-dependent canopy throughfall of Ca>K>Al>Mg>Fe in this order of relative importance. NOX deposition in spruce canopies reduces K+ throughfall and it weakly promotes throughfall of Mn2+ and Zn2+. There was no significant codeposition of sulphate and ammonium and no ion exchange of intercepted H3O+ with nutrient cations at the measured ambient pH values of the precipitation water. In the presence of O3, throughfall of Mn2+ is reduced and throughfall of K+, Ca2+ and Al3+ is enhanced. In the cooperative presence of SO2, NO2 and O3 pollution in the field there is a 1.3-fold increase of the annual K+ demand and a 1.5-fold Mg2+ demand of spruce canopies relative to the situation in clean air. This trace gas-dependent additional cation demand of spruce canopies corresponds to a needle loss percentage of (23 to 33)% if the additional K+ and Mg2+ throughfall could not be recycled in spruce ecosystems. Observed canopy thinning ranges from (13 to 26)% at the investigated six spruce stands.Abbreviations Aspec Specific needle surface area per kg needle dry matter (m2kg-1 needle dw) - Atot Total needle surface of spruce stands (ha ha-1) - [gas]a Ambient trace gas concentration (gas=SO2; NO2 or O3) in air (nPa Pa-1=ppb) - GP Number of days per annual growth period d a-1) - ICH30 + Acid interception rate (Eq H3O+ kg-1 needle dw a-1) - ko Trace gas-independent ion throughfall rate constant (mmol kg-1 needle dw a-1) - kgas SO2-,NO2-or O3-dependent ion throughfall rate per unit of trace gas pollution (mmol kg-1 needle dw a-1 (nPa Pa-1)-1) - kH30 Specific H3O+/Me+ exchange ratio (mol mol-1) - Lo Background throughfall rate at [gas]a=0 (mmol kg-1 needle dw a-1) - Lion Canopy throughfall rate of ions (mmol kg-1 needle dw a-1) - L'ion Trace gas dependent ion throughfall (mEq kg-1 needle dw a-1 (nPa Pa-1)-1) - LAI Leaf area index of the canopy (m2 projected needle surface m-2 ground) - Me+ Equivalents of metal cations (Eq) - N Stock of needles of spuce stands in the field (kg needle dw ha-1) - P% Percentage of needle loss relative to a healthy reference (%) - r Pearson correlation coefficient (no dimension) - R COO--Sum of all organic anion equivalents Cat+ - An- (Eq kg-1 needle dw a-1) - An- Sum of all measured inorganic anion equivalents (Eq kg-1 needle dw a-1) - Cat+ Sum of all measured inorganic cation equivalents (Eq kg-1 needle dw a-1)  相似文献   

8.
In an early-flowering line of pea (G2) apical senescence occurs only in long days (LD), while growth in short days (SD) is indeterminate. In SD, G2 plants are known to produce a graft-transmissible substance which delays apical senescence in related lines that are photoperiod-insensitive with regard to apical senescence. Gibberellic acid (GA3) applied to the apical bud of G2 plants in LD delayed apical senescence indefinitely, while N6-benzyladenine and -naphthaleneacetic acid were ineffective. Of the gibberellins native to pea, GA9 had no effect whereas GA20 had a moderate senescence-delaying effect. [3H]GA9 metabolism in intact leaves of G2 plants was inhibited by LD and was restored by placing the plants back in SD. Leaves of photoperiod-insensitive lines (I-types) metabolized GA9 readily regardless of photoperiod, but the metabolites differed qualitatively from those in G2 leaves. A polar GA9 metabolite, GAE, was found only in G2 plants in SD. The level of GA-like substances in methanol extracts from G2 plants dropped about 10-fold after the plants were moved from SD to LD; it was restored by transferring the plants back to SD. A polar zone of these GA-like materials co-chromatographed with GAE. It is suggested that a polar gibberellin is synthesized by G2 plants in SD; this gibberellin promotes shoot growth and meristematic activity in the shoot apex, preventing senescence.Abbreviations GA gibberellin - GA3 gibberellic acid - SD short days - LD long days  相似文献   

9.
ACPase activity was localized in the apoplast of pea root nodules under phosphorus deficiency. Pea plants (Pisum sativum L. cv. Sze ciotygodniowy) where inoculated with Rhizobium leguminosarum bv. viciae 248 and were cultured on nitrogen-free medium with phosphate (−N/+P) or phosphate-deficient (−N/−P) one. In comparison with control nodules, P-deficient nodules showed the increase of ACPase activity in plant cell walls and the infection threads. The increase in bacterial ACPase activity under P-deficiency may reflect higher demand for inorganic phosphorus that is necessary for bacteria multiplication within the infection threads. The increase of ACPase activity in nodule apoplast under P stress may enlarge the availability of phosphate for plant and bacteria.  相似文献   

10.
Norvell  W. A.  Welch  R. M.  Adams  M. L.  Kochian  L. V. 《Plant and Soil》1993,(1):123-126
Neither the reduction of Fe(III) to Fe(II) by roots nor its induction by Fe-deficiency are unique characteristics of the reductive activities of roots. We show that chelated Mn(III) or chelated Cu(II), as well as chelated Fe(III), may be reduced by Fe-stressed roots of pea (Pisum sativum L.). Deficiency of Fe stimulated the reduction of Fe(III)EDTA about 20-fold, the reduction of Mn(III)CDTA about 11-fold, the reduction of Cu(II)(BPDS)2 about 5-fold, and the reduction of Fe(III)(CN)6 by only about 50%. Not only are metals other than Fe reduced as part of the Fe-stress response, but deficiencies of metals other than Fe stimulate the reductive activity of roots. We show that depriving peas or soybeans (Glycine max) of Cu or Zn stimulates the reduction of Fe(III).  相似文献   

11.
12.
Intracellular pH (pH(i)) exerts considerable influence on cardiac contractility and rhythm. Over the last few years, extensive progress has been made in understanding the system that controls pH(i) in animal cardiomyocytes. In addition to the housekeeping Na(+)-H(+) exchanger (NHE), the Na(+)-HCO(3)(-) symporter (NHS) has been demonstrated in animal cardiomyocytes as another acid extruder. However, whether the NHE and NHS functions exist in human atrial cardiomyocytes remains unclear. We therefore investigated the mechanism of pH(i) recovery from intracellular acidosis (induced by NH(4)Cl prepulse) using intracellular 2',7'-bis(2-carboxethyl)-5(6)-carboxy-fluorescein fluorescence in human atrial myocardium. In HEPES (nominally HCO(3)(-)-free) Tyrode solution, pH(i) recovery from induced intracellular acidosis could be blocked completely by 30 microM 3-methylsulfonyl-4-piperidinobenzoyl, guanidine hydrochloride (HOE 694), a specific NHE inhibitor, or by removing extracellular Na(+). In 3% CO(2)-HCO(3)(-) Tyrode solution, HOE 694 only slowed the pH(i) recovery, while addition of HOE 694 together with 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (an NHS inhibitor) or removal of extracellular Na(+) inhibited the acid extrusion entirely. Therefore, in the present study, we provided evidence that two acid extruders involved in acid extrusion in human atrial myocytes, one which is HCO(3)(-) independent and one which is HCO(3)(-) dependent, are mostly likely NHE and NHS, respectively. When we checked the percentage of contribution of these two carriers to pH(i) recovery following induced acidosis, we found that the activity of NHE increased steeply in the acid direction, while that of NHS did not change. Our present data indicate for the first time that two acid extruders, NHE and NHS, exist functionally and pH(i) dependently in human atrial cardiomyocytes.  相似文献   

13.
Rates of N uptake by spring wheat as ammonium and as nitrate, and rates of nitrification, gross N immobilization and gross N mineralization were measured in a pot experiment during 84 days of growth in a clay soil. Soil treatments included an unfertilized control and addition of 15NH4NO3 or NH4 15NO3 in the absence and presence of N-serve 24E. Incorporation of ammonium into the soil organic N pool was considerably higher in the presence compared to the absence of nitrapyrin, but the processes contributing to this effect could not be positively identified. Both dry matter and grain yield as well as N uptake by wheat were enhanced in the presence of the inhibitor in N fertilized soil, despite the increased immobilization of N. On the other hand, inhibitor application had a detrimental effect on yield and N uptake by wheat in unfertilized soil. Both ammonium and nitrate forms of inorganic N were absorbed by wheat, but nitrate uptake was dominant in the absence of the inhibitor. The uptake of N as ammonium was higher and the uptake of N as nitrate was less, both in absolute and proportional terms, in the presence compared to the absence of inhibitor. In addition, the proportion of N taken up as ammonium was higher than the proportion of N as ammonium in the available N pool up to day 56 in the inhibitor treatment, which indicated a preference for ammonium uptake by wheat. Evidence was obtained which suggested that several factors may have contributed to the positive response of wheat to inhibitor application in N fertilized soil, including reduced N losses, higher gross N mineralization and a physiological response due to the proportional increase in uptake of inorganic N as ammonium.  相似文献   

14.
The exudation of certain organic anions and protons by roots which may affect solubility of metals and P and uptake by plants, is affected by nitrogen form and pH. The objective of this work was to study exudation of carboxylates and H+/OH by tomato plants in response to NH4/NO3 ratio and pH in nutrient solution. Four NH4/(NH4+NO3) ratios (R= 0, 0.33, 0.67 and 1) and constant vs. variable solution pH treatments were investigated. The sum of the exudation rates of all carboxylates tended to decline with increasing R, particularly tri- and dicarboxylates. The molar fraction of the exuded tri- and dicarboxylates, averaged over all treatments and plant ages, increased in the order tartarate 2%), malate (6%), succinate (15%), citrate (26%) and fumarate (46%). At R=1 the solution pH dropped from 5.2 to 3 and at R=0 increased to 8. The R corresponding to the pH stat of tomato plant was 0.3. For the constant solution pH treatment, the effect of solution pH on carboxylate exudation rate was small as compared to the effect of R. The exudation of citrate and H+ efflux which were initiated when NO3 and NH4 uptake rates per plant exceeded certain threshold values, increased with plant age.  相似文献   

15.
The transport of exogenous indol-3yl-acetic acid (IAA) from the apical tissues of intact, light-grown pea (Pisum sativum L. cv. Alderman) shoots exhibited properties identical to those associated with polar transport in isolated shoot segments. Transport in the stem of apically applied [1-14C]-or [5-3H]IAA occurred at velocities (approx. 8–15 mm·h-1) characteristic of polar transport. Following pulse-labelling, IAA drained from distal tissues after passage of a pulse and the rate characteristics of a pulse were not affected by chases of unlabelled IAA. However, transport of [1-14C]IAA was inhibited through a localised region of the stem pretreated with a high concentration of unlabelled IAA or with the synthetic auxins 1-napthaleneacetic acid and 2,4-dichlorophenoxyacetic acid, and label accumulated in more distal tissues. Transport of [1-14C]IAA was also completely prevented through regions of the intact stem treated with N-1-naphthylphthalamic acid (NPA) and 2,3,5-triiodobenzoic acid.Export of IAA from the apical bud into the stem increased with total concentration of IAA applied (labelled+unlabelled) but approached saturation at high concentrations (834 mmol·m-3). Transport velocity increased with concentration up to 83 mmol·m-3 IAA but fell again with further increase in concentration.Stem segments (2 mm) cut from intact plants transporting apically applied [1-14C]IAA effluxed 93% of their initial radioactivity into buffer (pH 7.0) in 90 min. The half-time for efflux increased from 32.5 to 103.9 min when 3 mmol·m-3 NPA was included in the efflux medium. Long (30 mm) stem sections cut from immediately below an apical bud 3.0 h after the apical application of [1-14C]IAA effluxed IAA when their basal ends, but not their apical ends, were immersed in buffer (pH 7.0). Addition of 3 mmol·m-3 NPA to the external medium completely prevented this basal efflux.These results support the view that the slow long-distance transport of IAA from the intact shoot apex occurs by polar cell-to-cell transport and that it is mediated by the components of IAA transmembrane transport predicted by the chemiosmotic polar diffusion theory.Abbreviations IAA indol-3yl-acetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid - NAA 1-naphthaleneacetic acid - NPA N-1-naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid  相似文献   

16.
BassiriRad  Hormoz  Prior  Stephen A.  Norby  Rich J.  Rogers  Hugo H. 《Plant and Soil》1999,217(1-2):195-204
Models describing plant and ecosystem N cycles require an accurate assessment of root physiological uptake capacity for NH 4 + and NO 3 - under field conditions. Traditionally, rates of ion uptake in field-grown plants are determined by using excised root segments incubated for a short period in an assay solution containing N either as a radioactive or stable isotope tracer (e.g., 36ClO3 as a NH 4 + analogue, 14CH3NH3 as an NO 3 - analogue or 15NH 4 + and 15NO 3 - ). Although reliable, this method has several drawbacks. For example, in addition to radioactive safety issues, purchase and analysis of radioactive and stable isotopes is relatively expensive and can be a major limitation. More importantly, because excision effectively interrupts exchange of compounds between root and shoot (e.g., carbohydrate supply to root and N transport to shoot), the assay must be conducted quickly to avoid such complications. Here we present a novel field method for simultaneous measurements of NH 4 + and NO 3 - uptake kinetics in intact root systems. The application of this method is demonstrated using two tree species; red maple (Acer rubrum) and sugar maple (Acer saccharum) and two crop species soybean (Glycine max) and sorghum (Sorghum bicolor). Plants were grown in open-top chambers at either ambient or elevated levels of atmospheric CO2 at two separate US national sites involved in CO2 research. Absolute values of net uptake rates and the kinetic parameters determined by our method were found to be in agreement with the literature reports. Roots of the crop species exhibited a greater uptake capacity for both N forms relative to tree species. Elevated CO2 did not significantly affect kinetics of N uptake in species tested except in red maple where it increased root uptake capacity, V, for NH 4 + . The application, reliability, advantages and disadvantages of the method are discussed in detail. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Mori  S.  Okumura  N.  Nakanishi  H.  Umehara  Y.  Chino  M.  Nishizawa  N. K. 《Plant and Soil》1993,155(1):135-138
A ZAPII-cDNA library constructed from poly(A)+-RNA isolated from Fe-deficient barley roots was used for differential screening of barley roots grown in the presence and absence of Fe. Among seven clones that hybridised specifically to the probe for Fe deficiency, one clone (Ids2) was sequenced. Using a part of the cDNA sequence as a probe, a genomic-DNA library was probed and a corresponding DNA clone was isolated and sequenced. The predicted amino acid sequence resembled 2-oxoglutarate-dependent dioxygenase. Ids2 had a metal regulatory element as well as Cu regulatory elements of CUP1 gene of yeast MT.  相似文献   

18.
With 3-O-methylfluorescein phosphate (3-OMFP) as substrate for the phosphatase reaction catalyzed by the (Na+ + K+)-ATPase, a number of properties of that reaction differ from those with the common substratep-nitrophenyl phosphate (NPP): theK m is 2 orders of magnitude less and the Vmax is two times greater, and dimethyl sulfoxide (Me2SO) inhibits rather than stimulates. In addition, reducing the incubation pH decreases both theK m and Vmax for K+-activated 3-OMFP hydrolysis as well as theK 0.5 for K+ activation. However, reducing the incubation pH increases inhibition by Pi and the Vmax for 3-OMFP hydrolysis in the absence of K+. When choline chloride is varied reciprocally with NaCl to maintain the ionic strength constant, NaCl inhibits K+-activated 3-OMFP hydrolysis modestly with 10 mM KCl, but stimulates (in the range 5–30 mM NaCl) with suboptimal (0.35 mM) KCl. In the absence of K+, however, NaCl stimulates increasingly over the range 5–100 mM when the ionic strength is held constant. These observations are interpreted in terms of (a) differential effects of the ligands on enzyme conformations; (b) alternative reaction pathways in the absence of Na+, with a faster, phosphorylating pathway more readily available to 3-OMFP than to NPP; and (c) a (Na+ + K+)-phosphatase pathway, most apparent at suboptimal K+ concentrations, that is also more readily available to 3-OMFP.Abbreviations Et3N triethyl amine - FITC fluorescein isothiocyanate - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonate - MES 2-(N-morpholino)ethanesulfonate - Me2SO dimethyl sulfoxide - NPP p-nitrophenyl phosphate - 3-OMFP 3-O-methylfluorescein phosphate - TNP-ATP 2, (or 3)-O-(2,4,6-trinitrophenyl)-ATP  相似文献   

19.
For the purpose of developing highly sensitive and convenient determination of plasmalogens, the high-performance liquid chromatography (HPLC) method using radioactive iodine ((125)I) was investigated. Radioactive triiodide (1-) ion ((125)I(3)(-)), which is an actual iodine form capable of reacting with vinyl ether bond ([bond]CH(2)[bond]O[bond]CH[double bond]CH[bond]) of plasmalogens, could be safely and efficiently produced by oxidizing a commercial radioactive sodium iodine (Na(125)I) with hydrogen peroxide (H(2)O(2)) under acid condition (pH 5.5-6.0), which is called iodine-125 reagent. I(3)(-) specifically reacted with plasmalogens at the molar ratio of 1:1 in methanol, and 1 or 2 mol of plasmalogens was involved in the binding with iodine per iodine atom, resulting in the formation of stable iodine-binding phospholipids. The HPLC system with Diol column and acetonitrile/water as a mobile phase was available for separating iodine-binding phospholipids from nonbinding free iodine and for separately eluting iodine-binding phospholipids derived from choline and ethanolamine plasmalogens. Using iodine-125 reagent (1.85 MBq/ml), plasmalogens were detectable at high sensitivity of 10,000-15,000 cpm/nmol, which is more than 1000-fold higher sensitivity than the classical determination with nonradioactive iodine. Plasmalogen concentrations in human plasma were measured with the HPLC system and determined as, on average, 129.1+/-31.3 microM (n=8) in a 1.2 content ratio of choline to ethanolamine plasmalogens, a concentration that nearly agrees with the value reported previously.  相似文献   

20.
The effect of HCO 3 - on ion absorption by young corn roots was studied in conditions allowing the independent control of both the pH of uptake solution and the CO2 partial pressure in air bubbled through the solution. The surface pH shift in the vicinity of the outer surface of the plasmalemma induced by active H+ excretion was estimated using the initial uptake rate of acetic acid as a pH probe (Sentenac and Grignon (1987) Plant Physiol. 84, 1367). Acetic acid and orthophosphate uptake rates and NO 3 - accumulation were slowed down, while 86Rb+ uptake and K+ accumulation rates were increased by HCO 3 - . These effects were similar to those induced by 4-(2-hydroxyethyl)-1-piperazineethane sulfonic acid/2-amino-2-(hydroxymethyl)-1,3-propanediol (Hepes-Tris). They were more pronounced when the H+ excretion was strong, were rapidly reversible and were not additive to those of Hepes-Tris. The hypothesis is advanced that the buffering system CO2/H2CO3/HCO 3 - accelerated the diffusion of equivalent H+ inside the cell wall towards the medium. This attenuated the surface pH shift in the vicinity the plasma membrane and affected the coupling between the proton pump and cotransport systems.Abbreviations FW fresh weight - Hepes 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid - Jaa acetic acid influx - JK + K+ influx - JPi orthophosphate influx - Mes 2-(N-morpholino)ethanesulfonic acid - pCO2 CO2 partial pressure - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号